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Abstract— In a service-oriented online social network con-
sisting of service providers and consumers, a service consumer
can search trustworthy service providers via the social network.
This requires the evaluation of the trustworthiness of a service
provider along a certain social trust path from the service
consumer to the service provider. However, there are usually
many social trust paths between participants in social networks.
Thus, a challenging problem is which social trust path is the
optimal one that can yield the most trustworthy evaluation
result. In this paper, we first present a novel complex social
network structure and a new concept, Quality of Trust (QoT).
We then model the optimal social trust path selection with
multiple end-to-end QoT constraints as a Multi-Constrained
Optimal Path (MCOP) selection problem which is NP-Complete.
For solving this challenging problem, we propose an efficient
heuristic algorithm, H OSTP. The results of our experiments
conducted on a large real dataset of online social networks
illustrate that our proposed algorithm significantly outperforms
existing approaches.

I. INTRODUCTION

Online social networking sites have been attracting a large

number of participants and are being used as the means for a

variety of rich activities. For example, participants carry out

business, and share photos and movies on the first generation

(e.g., ebay.com) and second generation (e.g., facebook.com)

social networking sites respectively [16]. In service-oriented

environments, social networks can be used as the means for

service consumers to look for trustworthy service providers

who are unknown prior to invoking services, with the assis-

tance of information from other participants. For example,

at FilmTrust1, which is a social networking site for movie

recommendations, a recommendation receiver can evaluate the

trustworthiness of a recommender via the social network be-

tween them. For another example, if a social network consists

of lots of buyers and sellers, it can be used by a buyer to

find the most trustworthy/reputable seller who sells the product

preferred by the buyer [7].

In social networks, each node represents a participant and

each link between participants corresponds to real-world in-

teractions or online interactions between them (e.g., A → B
and A → C in Fig. 1). One participant can give a trust

value to another based on their interactions. For example, a

trust rating can be given by a participant to another based

on the quality of the movies recommended by the latter at

1http://trust.mindswap.org/filmtrust/

Figure 1: Social network

FilmTrust1. As each participant usually interacts with many

other participants, multiple trust paths may exist between two

participants who have no direct links with each other (for

example, there are five trust paths from A to M in Fig. 1).

If a trust path links two nonadjacent participants (i.e., when

there is no direct link between them), the source participant

can evaluate the trustworthiness of the target one based on the

trust information between the intermediate participants along

the path. This process is called trust propagation and the path

with trust information linking the source participant and the

target one is called a social trust path [4], [6]. For example, in

Fig. 1, if A is a buyer and M is a seller in the social network,

A can evaluate the trustworthiness of M along the social trust

paths from A to M . We term A as the source participant and

M as the target participant.
In large-scale social networks, there are over tens of thou-

sands of social trust paths between a source participant and the

target one [9]. A challenging problem is that among multiple

paths, which one is the optimal yielding the most trustworthy

result of trust propagation. In the literature, Lin et al. [14]

propose an optimal social path selection method, where all

links are assigned the same weight and the shortest path

between the source participant and the target one is selected as

the optimal one, neglecting trust information between partici-

pants. In another reported work [6], the path with the maximal

propagated trust value is selected as the most trustworthy social

trust path. However, social relationships between adjacent

participants (e.g., the relationship between a buyer and a

seller) and the recommendation roles of a participant (e.g.,

a supervisor as a referee in his postgraduate’s job application)

have significant influence on trust propagation [1], [19] and
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can be obtained by using data mining techniques in social

networks [17]. Unfortunately, these factors have not been

considered in any existing trust propagation and social trust

path selection method.

In this paper, we aim to solve the optimal social trust

path selection problem in complex social networks. Our main

contributions are summarized as follows.

(1) We first present the structure of complex social networks

taking trust information, social relationships and recommen-
dation roles of participants into account. In addition, we

also introduce a new concept, Quality of Trust (QoT), taking

the above three factors as attributes. Furthermore, we model

the optimal social trust path selection problem as a Multi-

Constrained Optimal Path (MCOP) selection problem, which

is NP-Complete [8] (see section II).
(2) Since existing approximation algorithms [8], [13], [24]

for solving the MCOP selection problem do not scale to large

social networks and thus can not deliver good performance, we

propose an efficient heuristic algorithm, H OSTP for solving

the optimal social trust path selection problem (see section III).
(3) We have conducted experiments on a real online social

network dataset, Enron email corpus2. The experimental results

show that H OSTP performs well in both efficiency and the

quality of selected social trust paths. (see section IV).

The paper is organized as follows. Section II presents the

novel social trust path selection model in complex online social

networks. Section III introduces our proposed heuristic algo-

rithm, H OSTP. In the above two sections, before presenting

our proposed model, we briefly introduce some related works.

Section IV presents the experimental results and analysis.

Finally, section V concludes this paper.

II. SOCIAL TRUST PATH SELECTION IN COMPLEX SOCIAL

NETWORKS

In this section, we first introduce the complex social network

structure and then propose a novel social trust path selection

model with end-to-end Quality of Trust (QoT) constraints.

A. Complex Social Networks

Several trust management methods have been proposed for

online social networks [10]. Golback et al. [4] propose a

trust inference mechanism for the trust relation establishment

between a source participant and the target one based on

averaging trust values along the social trust paths. Jamali

et al. [7] propose a random walk model in a trust-based

social network consisting of sellers and buyers. These trust

management strategies are based only on ratings given by

participants. Again, as pointed in social science theories [1],

[19], social relationships and recommendation roles both have

significant influence on participants’ decision making. To ad-

dress these issues, we have proposed a complex social network

structure that comprises of the attributes of three impact factors

of trust, social intimacy degree and role impact factor, as

shown in Fig. 2. These three factors naturally influence the

trustworthiness of trust propagation and hence the decision

making of a source participant. For completeness, we give

2http://www.cs.cmu.edu/enron/

Figure 2: Complex social network

a brief introduction to the complex social network structure.

Further details can be found in our previous works [15], [16].

1) Trust: In the context of this paper, trust between par-

ticipants in social networks can be defined as “ Trust is the

belief of one participant in another, based on their interactions,

in the extent to which the future action to be performed by

the latter will lead to an expected outcome.” Let TAB ∈ [0, 1]
denote the trust value that participant A assigns to participant

B. If TAB =0, it indicates that A completely distrusts B while

TAB =1 indicates A completely believes B’s future action can

lead to the expected outcome.

2) Social Intimacy Degree: As illustrated in social psy-

chology [19], a participant can trust more the participants

with whom he/she has intimate social relationships than those

with whom he/she has less intimate social relationships. Let

rAB ∈ [0, 1] denote the Social Intimacy Degree (SID) between

participant A and participant B in online social networks.

rAB = 0 indicates that A and B have the least intimate

social relationship while rAB =1 indicates they have the most

intimate social relationship.

3) Role Impact Factor: In a certain domain of interest such

as opinions on movies or electronic goods, the recommen-

dations of a domain expert may be more credible than that

from a novice. In our model, the impact of recommendations

in trust calculations is considered by introducing the notion

of the role impact factor. Let ρA ∈ [0, 1] denote the Role
Impact Factor (RIF), illustrating the impact of participant

A’s recommendation role on trust propagation. Here ρA = 1
indicates that A is a domain expert while ρA =0 indicates that

A has no knowledge in the domain.

Though it is difficult to build up social relationships and

comprehensive role hierarchies in all domains, it is feasible

to build them up in a particular application. For example,

in the work by Mccallum et al. [17], through mining the

subjects and contents of emails in Enron Corporation2, the

social relationship between each email sender and receiver

can be discovered and their roles can be known. Then the

corresponding SID and RIF value can be calculated based on

probabilistic models. In another reported work [22], the SID
and RIF values are specified by participants when they interact

with each other in a small social network formed by the staff

of an university.
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B. Quality of Trust (QoT)

In Service-Oriented Computing (SOC), QoS consists of a

set of attributes (e.g., cost, delay and availability), used to

illustrate the ability of services to guarantee a certain level

of performance [3]. Similar to the QoS, we present a new

concept, Quality of Trust [15].

Definition 1: Quality of Trust (QoT) is the ability to guaran-

tee a certain level of trustworthiness in trust propagation along

a social trust path, taking trust (T ), social intimacy degree (r),

and role impact factor (ρ), as attributes.

In our model, depending on their requirements of services,

the source participants can set multiple end-to-end constraints

for QoT attributes (i.e., T , r and ρ) as the requirements of trust

propagation in a social trust path. In addition, a participant can

set different end-to-end QoT constraints in the social trust path

selection of different domains.

C. QoT Attribute Aggregation

For satisfying the different requirements of source partici-

pants in social trust path selection, we first need to know the

aggregated value of each QoT attribute in every social trust

path between a source participant and the target participant.

The aggregated values of all the QoT attributes are then

combined in a utility function defined over social trust paths,

and then the path with the best utility value is selected as the

optimal social trust path.

1) Trust Aggregation: The trust values between a source

participant and the target participant in a social path can be

aggregated based on trust transitivity (i.e., if A trusts B and B
trusts C, then A trusts C to some extent) [4]. In our model, we

adopt the strategy proposed in [12], [21], where if there are n
participants a1, ..., an in order in a social trust path (denoted

as p(a1, ..., an)), the aggregated trust value is calculated as in

Eq. (1). This strategy has been widely used in the literature as

a feasible trust aggregation method [12], [21].

Tp(a1,...,an) =
∏

(ai,ai+1)∈p(a1,...,an)

Tai ai+1 (1)

2) Social Intimacy Degree Aggregation: Firstly, social inti-

macy between participants is attenuated with the increasing

number of hops between them in a social trust path [11].

Secondly, in the real-world, the intimacy degree is attenuated

fast when it is approaching one. In contrast, the intimacy

degree is attenuated slowly when it is approaching zero [19].

In other words, the attenuation of social intimacy degree

is non-linear in social networks. The aggregated r value in

path p(a1, ..., an) can be calculated by Eq.(2) whose function

image is a hyperbolic curve, fitting the characteristic of social

intimacy attenuation.

rp(a1,...,an) =

∏
(ai,ai+1)∈p(a1,...,an) rai ai+1

θα
(2)

where θ is the number of hops of path p(a1, ..., an), α ≥ 1 is

used to control the attenuation speed.

3) Role Impact Factor Aggregation: We average the RIF
values of intermediate recommending participants in a social

trust path p(a1, ..., an) as the aggregated value:

ρp(a1,...,an) =
∑n−1

i=2 ρai

n − 2
(3)

D. Utility Function

In our model, the utility measures the trustworthiness of

social trust paths. The utility function (denoted as F) takes

the QoT attributes T , r and ρ as arguments in Eq. (4)

Fp(a1,...,an) =ωT ∗Tp(a1,...,an)+ωr ∗rp(a1,...,an) +ωρ ∗ρp(a1,...,an)

(4)

where ωT , ωr and ωρ are the weights of T , r and ρ respec-

tively; 0 < ωT , ωr, ωρ < 1 and ωT + ωr + ωρ = 1.

The goal of optimal social trust path selection is to select

the path that satisfies multiple end-to-end QoT constraints and

yields the best utility with the weights specified by the source

participant.

III. SOCIAL TRUST PATH SELECTION ALGORITHM

The optimal social trust path selection with multiple end-to-

end QoT constraints can be modelled as the classical Multi-

Constrained Optimal Path (MCOP) selection problem, which

is shown to be NP-Complete [8]. In the literature, several

approximation algorithms have been proposed to solve the

MCOP selection problem [8], [24], [25], [26]. In this section,

we first analyze some of those algorithms and then propose

an efficient Heuristic algorithm for Optimal Social Trust Path

selection.

A. Existing Algorithms

In an earlier work, Korkmaz et al. proposed a heuristic

algorithm, called H MCOP [8]. In this algorithm, both multi-

constraint values and QoS attributes values are aggregated

based on Eq. (5).

gλ(p) � (
q1(p)
Q1

)λ + (
q2(p)
Q2

)λ + ... + (
qm(p)
Qm

)λ (5)

where λ ≥ 1; qi(p) is the aggregated value of the ith QoS

attribute of path p; Qi is the ith QoS constraint of path p.

Firstly, H MCOP employs Dijkstra’s shortest path algorithm

[2] to find the path with the minimum gλ from the target to the

source when λ=1, and stores qv
i which is the aggregated value

of the ith QoS attribute from the target node to intermediate

node v. Secondly, from Eq. (5), if any QoS attribute does

not satisfy the corresponding QoS constraint in path p, then

gλ(p) > m, which indicates that no feasible solution exists

in the network. This process investigates whether a feasible

solution exists in the network. If gλ(p) ≤ m, the algorithm

again employs Dijkstra’s shortest path algorithm to search the

path with the minimum cost and calculates qv′
i which is the

aggregated value of the ith QoS attribute from the source node

to intermediate node v. In this process, the aggregated ith QoS

attribute value of each node is calculated as qv′
i +qv

i . If qv′
i +qv

i

satisfies the QoS constraint Qi, then the algorithm continues

to search the path with the minimum cost from v to the target

node. Otherwise, it stops searching the path with the minimum

cost and starts searching the path with the minimum gλ (λ>1).
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In this process, if the identified path with the minimum cost

is a feasible solution, it is the optimal one.

H MCOP is one of the most promising algorithms in solving

the MCOP selection problem as it outperforms prior existing

algorithms in both efficiency and the quality of delivered

solutions [8]. In the field of Service-Oriented Computing

(SOC), Yu et al. [24] propose an approximation algorithm

based on H MCOP, called MCSP K, which keeps only K
paths from a source node to each intermediate node, aiming

to reduce the search space and execution time. In their service

candidate graph, each node represents a service and all services

are categorized into different service sets based on their

functionality. Any two nodes in adjacent service sets have a

link with each other and thus all paths from a source node

to an intermediate node can be enumerated when necessary,

avoiding an exhaustive search. But if a network does not have

such a typical structure, MCSP K has to search all paths

from a source to each intermediate node and hence the time

complexity becomes exponential. Therefore, it does not fit

large-scale social networks.

Some other algorithms [25], [26] adopt the integer linear

programming method to solve the service selection problem

with multi-QoS constraints. However, in [24], they have been

proved having low efficiency in finding a near-optimal solution

in large-scale networks.

B. H OSTP

In this section, we propose an efficient heuristic algorithm,

H OSTP, for the optimal social trust path selection with

end-to-end QoT constraints in complex social networks. In

H OSTP, we first adopt the Backward Search procedure from

the target (denoted as vt) to the source (denoted as vs) to

investigate whether there exists a feasible solution in the sub-

network between vs and vt, and record the aggregated QoT

attributes (i.e., T, r and ρ) of the identified path from vt to

each intermediate node v. If a feasible solution exists, we then

adopt the Forward Search procedure to search the network

from vs to vt to deliver a near-optimal solution.

In social trust path selection, if a path satisfies multiple QoT

constraints, it means that each aggregated QoT attribute (i.e.,

T , r or ρ) of that path should be larger than the corresponding

QoT constraint. Therefore, we propose an objective function

in Eq. (6) to investigate whether the aggregated QoT attributes

of a path can satisfy the QoT constraints. From Eq. (6), we

can see that if any aggregated QoT attribute of a social trust

path does not satisfy the corresponding QoT constraint, then

δ(p) > 1. Otherwise δ(p) ≤ 1.

δ(p) � max{( 1 − Tp

1 − QT
p

), (
1 − rp

1 − Qr
p

), (
1 − ρp

1 − Qρ
p
)} (6)

Backward Search: In the backward search from vt to vs,

H OSTP identifies the path ps from vt to vs with the minimal

δ based on the Dijkstra’s shortest path algorithm [2]. In the

searching process, at each node vk (vk �= vt), the path from

vt to vk with the minimal δ (denoted as pk) is identified and

Tpk
rpk

and ρpk
are recorded. According to the following

Theorem 1, the Backward Search procedure can investigate

whether there exists a feasible solution in the sub-network.

Theorem 1: In the Backward Search procedure, the process

of identifying the path with the minimal δ can guarantee to find

a feasible solution if one exists in a sub-network.

Proof: Let ps be a path from vt to vs with the minimal δ,

and p∗ be a feasible solution. Then, δ(ps) ≤ δ(p∗). Assume

ps is not a feasible solution, then ∃ϕ ∈ {T, r, ρ} that ϕps
<

Qϕ
vs,vt

. Hence, δ(ps) > 1. Since p∗ is a feasible solution, then

δ(p∗) ≤ 1 and δ(ps) > δ(p∗). This contradicts δ(ps) ≤ δ(p∗).
Therefore, ps is a feasible solution. �

The Backward Search procedure can always identify the

path with the minimal δ. If δmin > 1, it indicates there is no

feasible solution in the sub-network. If δmin ≤ 1, it indicates

there exists at least one feasible solution and the identified path

is a feasible solution.

Forward Search: If there exists a feasible solution in the

sub-network, a heuristic forward search is executed from vs

to vt. This process uses the information provided by the

above Backward Search to identify whether there is another

path pt which is better than the above returned path ps (i.e.,

F(pt) > F(ps)). In this procedure, H OSTP first searches

the path with the maximal F value from vs. Assume node

vm ∈ {neighboring nodes of vs} is selected based on

the Dijkstra’s shortest path algorithm. H OSTP calculates the

aggregated QoT attribute values of the path from vs to vm

(denoted as path pm). Let p′m denote the path from vm to vt

identified in the Backward Search procedure, then a foreseen
path from vs to vt via vm (denoted as pfm = pm + p′m) can

be identified. Let h denote the number of hops of path pfm.

The aggregated QoS attribute values of pfm can be calculated

as Tpfm
= Tpm

∗ Tp′
m

, rpfm
= (rpm

∗ rp′
m

)/hα (α ≥ 1 is

the argument for controlling the attenuation speed of r) and

ρpfm
= (ρpm

+ ρp′
m

)/(h − 1). According whether pfm is

feasible, H OSTP adopts the following searching strategies.

Situation 1: If each aggregated QoT attribute of pfm

satisfies the corresponding end-to-end QoT constraint, then

H OSTP chooses the next node from vm with the maximal

F value which is calculated based on the Dijkstra’s shortest

path algorithm.

Situation 2: If any aggregated QoT attribute of pfm does

not satisfy the corresponding end-to-end QoT constraint, then

H OSTP does not search the path from vm and the link

vs → vm is deleted from the sub-network. Subsequently,

H OSTP performs the Forward Search procedure to search

the path from vs in the sub-network without the link vs → vm.

The following Theorem 2 illustrates that the social trust

path pt identified by the Forward Search procedure can not

be worse than the feasible social trust path ps identified by

the Backward Search procedure. Namely, F(pt) ≥ F(ps).
Theorem 2: With the social trust path ps identified by

the Backward Search procedure and the social trust path pt

identified by the Forward Search procedure in H OSTP, if ps

is a feasible solution, then pt is feasible and F(pt) ≥ F(ps).
Proof: Assume that path ps consists of n + 2 nodes

vs, v1, ..., vn, vt. In the Forward Search procedure, H OSTP

searches the neighboring nodes of vs and chooses v1 from

these nodes when a foreseen path from vs to vt via v1 is
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Algorithm 1: H OSTP

Data: M , QT
vs,vt

, Qr
vs,vt

, Qρ
vs,vt

, vs, vt

Result: pt, F(pt)
begin1

ps = ∅, pt = ∅2
Backward Search (M , QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt
, vs, vt)3

if δ(ps) > 1 then4
Return no feasible solution5

else6
Forward Search (M , Dist(v).T , Dist(v).r,7
Dist(v).ρ, QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt
, vs, vt)

Return pt and F(pt)8

end9

feasible and the current path from vs to v1 has the maximal F .

This step is repeated at all the nodes between v1 and vn until a

social trust path pt is identified. If at each search step, only one

node (i.e., v1, ..., vn) has a feasible foreseen path, then pt is the

only feasible solution in the sub-network between vs and vt.

According to Theorem 1, then pt = ps. Thus, F(pt) = F(ps).
Otherwise, if pt �= ps, It can lead to F(pt) > F(ps) by

maximizing the F value in all candidate nodes which have

feasible foreseen paths based on the Dijkstra’s shortest path

algorithm. Therefore, Theorem 2 is correct. �
If there exists only one feasible solution in the sub-network,

it can be identified by both the Backward Search procedure

and the Forward Seach procedure, and it is the optimal

solution. Otherwise, if there exists more than one feasible

solutions in the sub-network, then the solution identified by the

Forward Seach procedure is near-optimal or optimal, which

is better than the one identified by the Backward Search
procedure.

Next, we introduce the notations used in H OSTP.

Notations:

• Dist(v).T , Dist(v).r and Dist(v).ρ: the aggregated

values of the identified social trust path from vt to v
in the Backward Search procedure.

• Dist(v).δ: the δ value of the identified social trust path

from vt to v in the Backward Search procedure.

• M : an adjacency matrix that represents the sub-network

between vs to vt.

• M(vx, vy).T , M(vx, vy).r and M(vx, vy).ρ: the trust

value, social intimate degree between vx and vy, and

the role impact factor of vy .

• ps and pt: the paths identified by the Backward Search
procedure and the Forward Search procedure respec-

tively.

• prex: an array stores the ordered nodes in the shortest

path from vt to each node in the Backward Search
procedure.

• prey: an array stores the ordered nodes in the shortest

path from vs to each node in the Forward Search
procedure. For example, prex(v′′) = v′ represents in

the shortest path from vt to v′′, v′ is the preceding node

of v′′.

Algorithm 2: Backward Search

Data: M , QT
vs,vt

, Qr
vs,vt

, Qρ
vs,vt

, vs, vt

Result: δ(ps), Dist(v).T , Dist(v).r, Dist(v).ρ
begin1

Set vx.δ = ∞ (vx �= vt), vt.δ = 0, Sx = ∅2
Add vt into Sx3
while Sx �= ∅ do4

va.δ = min(v∗
a.δ) (v∗

a ∈ Sx)5
for each vb ∈ adj[va] do6

h is the number of hops of the path from vt to vb7
δ(pb) = max[(1 − vb.T ∗ M(va, vb).T/(1 −8
QT

st), (1− vb.r ∗M(va, vb).r/hα)/(1−Qr
st), (1−

(vb.ρ + M(va, vb).ρ))/(h − 1)/(1 − Qρ
st)]

if vb /∈ Sx then9
Put vb into Sx10
prex(vb) = va11

else if δ(pb) < Dist(vb).δ then12
Dist(vb).δ = δ(pb)13
Dist(vb).T = va.T ∗ M(va, vb).T14
Dist(vb).r = va.r ∗ M(va, vb).r15
Dist(vb).ρ = va.ρ + M(va, vb).ρ16
Put vb into Sx17
prex(vb) = va18

Remove va from Sx19

ps ← prex(vs) to prex(vt)20
Return ps and δ(ps)21

end22

• Sx and Sy: the sets of expanding node candidates in

Backward Search and Forward Search respectively.

• v.F : the utility of the identified social trust path from

vs to v in the Forward Search procedure.

• v.T , v.r and v.ρ: the aggregated QoT attributes values

of the identified social trust path from vs to v in the

Forward Search procedure.

The process of H OSTP is as follows.

Step 1: Start the Backward Search procedure. Add vt into

Sx. At each node vx (vx �= vt) in the sub-network, set

Dist(vx).δ = ∞ and Dist(vt).δ = 0. Select the node va from

Sx, where the δ value of the path from vt to va (denoted as pa)

is the minimum of all δ of the paths from vt to v∗a (v∗a ∈ Sx)
(lines 1-3 in Algorithm 1 and lines 1 to 5 in Algorithm 2).

Step 2: At each vb ∈ {neighboring nodes of va}, calculate

δ value of the identified social trust path form vt to vb (denoted

as pb). If vb /∈ Sx, add vb into Sx. Otherwise, if the current

δ of vb less than the previous δ value recorded at vb, then

replace the stored δ with the current δ and record Tpb
, rpb

and

ρpb
at vb. Add vb into Sx and set prex(vb) = va (lines 1-3 in

Algorithm 1 and lines 6 to 19 in Algorithm 2).

Step 3: Remove va from Sx. If Sx �= ∅, then go to Step 1.

Otherwise return ps through searching prex(vs). If δ(ps) ≤ 1,

go to Step 3. Otherwise terminate (i.e., there is no feasible

solution in the sub-network) (lines 4 to 5 in Algorithm 1 and
lines 20 to 22 in Algorithm 2).

Step 4: Start the Forward Search procedure. Add vs into

Sy . At each node vy (vy �= vs) in the sub-network, set vy.F =
0, and vs.F = ∞. Select the node vi from Sy , where the 1/F
value of the path from vs to vi (denoted as pi) is the minimum
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Algorithm 3: Forward Search

Data: M , Dist(v).T , Dist(v).r, Dist(v).ρ, QT
vs,vt

, Qr
vs,vt

,
Qρ

vs,vt
, vs, vt

Result: pt, F(pt)
begin1

Set F ′ = 1/F , vy.F ′ = ∞ (vy �= vs), vs.F ′ = 0, Sy = ∅2
Add vs into Sy3
while Sy �= ∅ do4

vi.F ′ = min(v∗
i .F ′) (v∗

i ∈ Sy)5
for each vj ∈ adj[vi] do6

h′ is the number of the hops of the foreseen path7
from vs to vt via vj

tempT = vi.T ∗ M(vi, vj).T ∗ Dist(vj).T8
tempr = vi.r ∗ M(vi, vj).r ∗ Dist(vj).r
tempρ = vi.ρ + M(vi, vj).ρ + Dist(vj).ρ
if tempT ≥ QT

st and tempr/h′α ≥ Qr
st and9

tempρ/(h′ − 1) ≥ Qρ
st then

if vj /∈ Sy then10
Put vj into Sy11
prey(vj) = vi12

else if F ′(pj) < vj .F ′ then13
vj .F ′ = F ′(pj)14
vj .T = vi.T ∗ M(vi, vj).T15
vj .r = vi.r ∗ M(vi, vj).r16
vj .ρ = vi.ρ + M(vi, vj).ρ17
Put vj into Sy18
prey(vj) = vi19

Remove vi from Sy20

pt ← Prey(vt) to Prey(vs)21
Return pt and F(pt))22

end23

in all 1/F values of the paths from vs to v∗
i (v∗i ∈ Sy) (lines

6 to 7 in Algorithm 1 and lines 1 to 5 in Algorithm 3).

Step 5: At each vj ∈ {neighboring nodes of vi}, calculate

F value of the identified path from vs to vj (denoted as pj).

If the current 1/F(pj) is less than the value recorded at node

vj , then calculate each aggregated QoT attribute value Tpj
, rpj

and ρpj . If each aggregated QoT value can satisfy the corre-

sponding QoT constraint, then replace the stored 1/F(pj) with

the current 1/F(pj) at vj and set prey(vj) = vi. Otherwise,

set M(vi, vj).T = 0, M(vi, vj).r = 0 and M(vi, vj).ρ = 0
(lines 6 to 7 in Algorithm 1 and lines 6 to 19 in Algorithm 3).

Step 6: Remove vi from Sx. If Sy �= ∅, then go to Step 5.

Otherwise, return pt through searching array prey(vt) (lines 8
to 9 in Algorithm 1 and lines 20 to 23 in Algorithm 3).

H OSTP consumes twice the execution time of Dijkstra’s

shortest path algorithm. The time complexity of H OSTP is

O(NlogN + E), where N is the number of nodes in the sub-

network between vs and vt, and E is the number of links

in the sub-network. H OSTP has the same time complexity

with H MCOP. But our proposed heuristic algorithm has better

searching strategies than H MCOP and thus outperforms it in

both efficiency and the quality of selected social trust paths

(see a more detailed analysis in section IV-B).

IV. EXPERIMENTS

The studies of social network properties can be traced

back to 1960’s when the small-world characteristic in social

networks was validated by Milgram [18], through illustrating

that the average path length between two Americans was

about 6 hops in an experiment of mail sending. More recently,

Mislove et al. [20] analyzed several popular social networks

including Facebook, MySpace, Flickr and Orkut, and validated

the small-world and power-law (i.e. in a social network, the

probability that a node has degree k is proportional to k−r,

r > 1) characteristics of online social networks by using data

mining techniques. The Enron email dataset2 has also been

proved to possess the small-world and power-law character-

istics of social networks and thus it has been widely used

in the studies of social networks [5], [17], [23]. In addition,

as we explained in section II-A3 the social intimate degree

between participants and the role impact factor of participants

can be calculated through mining the subjects and contents of

emails in the Enron email dataset [17]. Therefore, in contrast

to other real social network datasets (e.g., Epinions3 and

FilmTrust1), the Enron email dataset fits our proposed complex

social network structure better. Thus, to validate our proposed

algorithm, we select the Enron email corpus2 with 87,474

nodes (participants) and 30,0511 links (formed by sending and

receiving emails) as the dataset for our experiments.

A. Experiment Settings

As discussed in section III-A, H MCOP is the most promis-

ing algorithm for the MCOP selection problem. Based on

it, several approximation algorithms [13], [24] have been

proposed for the quality-driven service selection in the field

of SOC. But they do not fit the structure of large-scale

complex social networks. Thus, to study the performance of

our proposed heuristic algorithm H OSTP, we compare it

with H MCOP [8] in both execution time and the utilities

of identified social trust paths (see section IV-B).

Both H OSTP and H MCOP are implemented using Matlab

R2008a running on an IBM ThinkPad SL500 laptop with an

Intel Core 2 Duo T5870 2.00GHz CPU, 3GB RAM, Windows

XP SP3 operating system and MySql 5.1.35 database.

In our experiments, the T , R and ρ values are randomly

generated. The argument for controlling the attenuation speed

is set as α = 1.5. The end-to-end QoT constraints specified

by a source participant are set as Q = {QT ≥ 0.05, Qr ≥
0.001, Qρ ≥ 0.3} and the weights of attributes in the utility

function specified by the source participant are set as ωt =
0.25, ωr = 0.25 and ωρ = 0.5.

In order to evaluate the performance of our proposed

heuristic algorithm in the sub-networks of different scales and

structures, we first randomly select 100 pairs of source and

target participants from the Enron email dataset2. We then

extract the corresponding 100 sub-networks between them

by using the exhaustive searching method. Among them, the

maximal length of a social trust path varies from 4 to 7 hops

following the small-world characteristic. These sub-networks

are grouped by the number of hops. In each group they are

ordered by the number of nodes of them. Table I list the

properties of the simplest and the most complex sub-networks

3http://epinions.com/
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Figure 3: The comparison in path utilities of sub-networks

in each group of hops. In the simplest case, the sub-network

has 33 nodes and 56 links (4 hops), while in the most complex

case, the sub-network has 1695 nodes and 11175 links (7

hops).

B. Performance in Social Trust Path Selection

With each sub-network extracted from the Enron email

corpus, we repeat the experiment 5 times for each of H OSTP

and H MCOP. The results are plotted in Fig. 3 and 4 where the

execution time of each of H OSTP and H MCOP is averaged

based on the 5 independent runs.

Table I: The properties of the simplest and the most complex

sub-networks in each group of hops

Hops
The simplest sub-network The most complex sub-network
ID Nodes Links ID Nodes Links

4 1 33 56 25 393 1543
5 1 49 90 25 680 2670
6 1 48 74 25 1300 6396
7 1 40 64 25 1695 11175

Results (Utility). From Fig. 3, we can observe that in any

case, our H OSTP does not yield any utility worse than that

of H MCOP (e.g., S1 in Fig. 3 (a) to (d)) while in most

sub-networks (i.e., 59% of total sub-networks), the utilities of

social trust paths identified by H OSTP are better than those

of H MCOP (e.g., S2 in Fig. 3 (a) to (d)). The sum of utilities

computed by H OSTP and H MCOP in the sub-networks with

each group of hops is listed in Table II. From Table II, we can

see that the sum of utilities of our proposed heuristic algorithm

is 10.78% more than that of H MCOP in 4 hops sub-networks,

12.37% more in 5 hops, 15.75% more in 6 hops and 15.57%

more in 7 hops.

Analysis (Utility). From the above results, we can see that

H OSTP can yield a better social trust path than H MCOP in

most cases. This is because when a social trust path with the

maximal utility is a feasible solution in a sub-network, both

H MCOP and H OSTP can identify it as the optimal solution.

Thus, they can identify the same social trust path with the same

utility. However, when the social trust path with the maximal
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Figure 4: The comparison in execution time

utility is not a feasible solution, H MCOP stops searching the

path with the minimum cost and consequently start searching

the social trust path with the minimum gλ (λ > 1). This

heuristic search strategy can hardly find a near-optimal solution

and sometimes returns an infeasible one even when a feasible

solution exists (e.g., S3 in Fig. 3 (a) to (d)). In contrast, as

illustrated by Theorem 1, H OSTP can identify a feasible

solution if it exists (e.g., S3 in Fig. 3 (a) to (d)). In addition, as

illustrated by Theorem 2, H OSTP can identify a near-optimal

social trust path satisfying the end-to-end QoT constraints if

it exists. Therefore, in this case, the quality of the social trust

path identified by H OSTP is better than H MCOP.

Results (Execution Time). From Fig. 4, we can observe

that the execution time of H OSTP is less than that of

H MCOP in all sub-networks. The total execution time of each

of H OSTP and H MCOP in each group of hops is listed in

Table II. From Table II, we can see that the total execution

time of our proposed heuristic algorithm is only 60.06% of

that of H MCOP in 4 hops sub-networks, 51.33% in 5 hops,

53.56% in 6 hops and 50.29% in 7 hops.

Analysis (Execution Time). From the above results, we can

see that H OSTP is much more efficient than H MCOP. The

reasons are twofold. Firstly in the Forward Search procedure,

H OSTP does not calculate gλ (λ > 1) which consumes a

large amount of execution time when λ → ∞ [13]. Secondly,

in the searching process, when any aggregated QoT attribute

of a selected path from vs to vy (vy �= vt) does not satisfy

the corresponding QoT constraint, node vy is not regarded as

a candidate to be selected in the next searching step, which

can reduce the search space and thus significantly save the

execution time.

Through the above experiments conducted in sub-networks

with different scales and structures, we can see that overall

H OSTP is superior to H MCOP in both the execution time

and the quality of selected social trust path.

V. CONCLUSIONS

In this paper, we have presented a complex social network

structure that takes trust information, social relationship and

recommendation roles into account, reflecting the real-world
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Table II: The comparison of utility and execution time

Algorithms
The sum of utility The sum of execution time (sec)

4 hops 5 hops 6 hops 7 hops 4 hops 5 hops 6 hops 7 hops
H OSTP 11.3515 10.4770 10.3937 9.7074 133.9208 449.6327 1.1924e+003 2.2585e+003
H MCOP 10.5265 8.4712 6.6006 6.2363 222.9832 875.9788 2.2262e+003 4.4913e+003
difference 10.78% more 12.37% more 15.75% more 15.57% more 39.94% less 48.67% less 46.44% less 49.71% less

situations better. For selecting the optimal social trust path with

end-to-end QoT constraints in complex social networks, which

is an NP-Complete problem, we have also proposed H OSTP,

an efficient heuristic algorithm. The results of experiments

conducted on a real dataset of social networks demonstrate

that H OSTP significantly outperforms existing methods in

both execution time and optimal social trust path selection.

In our future work, we plan to develop a new trust-oriented

social service search engine, which maintains a database of

participants and the complex social network containing them.

In this system, our proposed method will be applied, for

instance, to help a buyer identify the most trustworthy one

from all sellers selling the product preferred by the buyer.
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