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Abstract 

Online product reviews provided by consumers who previously purchased products have become 
a major information source for consu mers and marketers regarding product quality . This study  extends 
previous research by conducting a m ore compelling test of the effect of online reviews on sales. In 
particular, we consider both quantitati ve and qua litative aspects of online re views, such as reviewer 
quality, reviewer exposure, product coverage, and temporal effects. Using transaction cost economics and 
uncertainty reduction theories, this study adopts a portfolio approach to assess the effectiveness of the  
online review market. We show that consumers unde rstand the value difference between favorable news 
and unfavorable news and respond accordingly. Furthermore, when consumers read online reviews, they 
pay attention not only to review scores but to other contextual information such as a reviewer’s reputation 
and reviewer exposure. The market resp onds more favorably to reviews written by reviewers with better 
reputation and higher exp osure. Finally, we dem onstrate that t he impact of online reviews on sal es 
diminishes over time. This suggests that firms need not provide incentives for customers to write reviews 
beyond a certain time period after products have been released.  
 
Keywords: Word-of-Mouth, Online Product R eviews, Transaction Cost Econom ics, Uncertainty 
Reduction, Efficient Market, Portfolio Analysis 
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1. Introduction 

Word-of-mouth (WOM) communication is considered a valuable marketing resource for consumers and 

marketers and a reliable and effective metric for measuring customer loyalty with critical implications for 

a product’s success. WOM communication includes all forms of information exchange among consumers 

regarding the characteristics and usage of particular products, services, or vendors. It is widely considered 

to be a major driver for the diffusion of new products and services [3, 6, 12].  

Online product reviews have becom e a major informational source for consumers due to the fast 

spread of WOM1 communication through the Internet. Reichheld [35] claims that a customer’s propensity 

to recommend a product to others – termed “ref erral value” – is the m ost important success measure in 

business today. Reichheld [35 ] argues that referral value may predict firm performance even better than 

traditional measures such  as custo mer satisfaction. Hence, online product r eviews have fundam ental 

implications for management activities such as reputation building and customer acquisition.  

Previous research has studied the impact of online product reviews on product sales with a variety 

of regression models [14, 15, 26] . This stream of literature provides useful i nsights by linking online 

reviews with sales; most of the studies show a positive correlation between the average review score and 

product sales. However, one im plicit assumption in these studie s is that consu mers consider only the 

scales of review scores when the y make a purchase decision. To t he best of our knowledge, none of  the 

previous studies considered other informational aspects of online reviews such as the quality reputation of 

a reviewer and his or her exposure to th e online community (the number of times a reviewer’s name is 

exposed to the public), the information environment or the age of a product. The latter variables are more 

compelling measurements of the information content of online reviews because they are directly related to 

the intrinsic quality  of the reviews in  terms of relia bility and trustworthiness. Further, in try ing to 

                                                           
1 Although the phrase “word-of-mouth” generally refers to oral communication, in this paper we are using this term 
to refer to person-to-person virtual communication. 
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understand the effectiveness of online reviews, it remains unclear what role time periods play in affecting 

sales. That is, should  firms like Am azon.com encourage buyers to provide reviews for all item s or only 

for newly released items?  

This paper extends previo us research by  linking changes in online review scores to changes  in 

sales while considering other important dimensions of online reviews such as the quality and exposure of 

a reviewer, the information environment, and the age of a product. We use a “market reaction” lens to 

assess the ef fectiveness of online reviews. Tre ating the online review environm ent as a “market,” we 

argue that online reviews are like market signals that  contain information about the quality of an item. 

This analogy helps us to use a portfolio methodology, typically used in the finance literature, to assess the 

effectiveness of the online reviews. W e show that  consumers use the information em bedded in o nline 

reviews to reduce the unc ertainty involved in purc hase decisions, thereby enabling them to choose the  

item with the lowest transaction cost.  

The paper makes three pri mary contributions to th e research literature. First, we show that the 

online review market behaves as an “efficient market” that un derstands the value differ ence between 

favorable news and unfavorable ne ws and responds  accordingly. By demonstrating the effectiveness o f 

the online review market, this research sensitizes managers to the importance of improving the underlying 

quality of items for sale and investing the necess ary effort in managing customer expectations and 

reactions to products. Second, we sh ow that co nsumers pay attention to elements other than  review 

scores, such as reviewer quality, reviewer exposure, and product coverage. The market is more responsive 

to a review written by someone with a better reputati on and more exposure, while it responds less to an 

item that is more extensively covered by  reviewers; prior resea rch that ignored these dimensions may 

potentially overestimate the impact of review scor es. Our paper explicitly  considers these factors and 

demonstrates the roles they play. Consequently, it provides a more complete understanding of how online 

reviews influence the sale  of an item . Third, over  time, online reviews do not affect sal es equally. The 
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relationship between online reviews and sales depends on the “age” of a produ ct; the longer an item has 

been on the market, the smaller the impact online reviews will have on its sales. 

The paper proceeds as follows. S ection 2 summarizes the related literature. Section 3 describes 

the theoretical fram ework and research hypotheses. Section 4 d escribes the research  setting and  

methodology. Section 5 provides data analysis and results. Section 6 contains a discussion of the findings, 

their implications, and some concluding remarks.  

2. Literature Review 

While word-of-mouth has been studied extensively in the marketing literature, it is only recently that 

online product reviews have begun to draw the attention of marketing and information systems 

researchers. We summarize a cross-section of research in Table 1. As stated above, previous studies focus 

on the quantitative aspects of online reviews by linking the level of online reviews to the level of sales. In 

this study, we link the change in reviews to the change in sales by considering both quantitative and 

qualitative aspects of online reviews. 

Author(s) Data sources Findings 

Basuroy, Chatterjee, 
and Ravid (2003) 

[4] 

200 films released 
between late 1991 
and early 1993 from 
Baseline Services in 
California and 
Variety magazine  

- Both positive and negative reviews are correlated with 
weekly box office revenues over an eight-week period. 
However, the impact of negative reviews (but not that of 
positive reviews) diminishes over time.  
- Negative reviews hurt more than positive reviews help 
box office performance, but only in the first week of a 
film’s run.  

Liu (2006)  

[33] 

Yahoo! Movies 
website 

- WOM information offers significant explanatory 
power for both aggregate and weekly box office 
revenue, especially in the early weeks after opening.   

- However, as measured by the percentages of positive 
and negative messages, most of this explanatory power 
comes from the volume of WOM, not its valence. 

Godes and Mayzlin 
(2004) 

[26] 

Viewership data from 
Nielsen ratings and 
conversation 
observed in Usenet 
newsgroup 

The dispersion of conversations about weekly TV shows 
across Internet communities is positively correlated with 
the evolution of viewership for these shows. 
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Eliashberg and 
Shugan (1997) 

[30] 

Box office sales data 
from Baseline, Inc. 
and Entertainment 
Data Incorporated 
(EDI) 

Critical reviews correlate with late and cumulative box 
office receipts but do not have a significant correlation 
with early box office receipts. 

Chevalier and 
Mayzlin (2006) 

[15] 

Book characteristics 
and user review data 
collected from the 
public web sites of 
Amazon.com and 
BarnesandNoble.com 

- Reviews are overwhelmingly positive at both sites. 

- An improvement in a book’s reviews leads to an 
increase in relative sales at that site. 

- The impact of 1-star reviews is greater than the impact 
of 5-star reviews. 

Clemons, Gao, and 
Hitt (2006) 

[19] 

Sales data from the 
craft beer industry 
and review data from 
Ratebeer.com 

The variance of ratings and the strength of the most 
positive quartile of reviews play a significant role in 
determining which new products grow fastest in the 
marketplace. 
 

Dellarocas, Awad, 
and Zhang (2004) 

[21] 

User reviews posted 
on Yahoo! Movies 
website 
 

A newly-derived revenue forecasting model that 
incorporates the impact of both publicity and word-of-
mouth on a movie’s revenue trajectory predicts the 
movie’s total revenues accurately. 
 

Duan, Gu, and 
Whinston (2005) 

[22] 

Variety.com,  
Yahoo! Movies 
website, and 
Box-Office Movies 
website 

- Box office sales are significantly influenced by the 
number of online postings. 

- Ratings of online user reviews have no significant 
impact on box office sales.  
 

Chatterjee (2001) 

[13] 

Survey Consumers who are more familiar with a specific 
retailer are less likely to be affected by negative reviews 
of that retailer. 
 

Chen, Wu, and Yoon 
(2004) 

[16] 

Review and sales 
data from 
Amazon.com 

More recommendations are associated with higher sales, 
while consumer ratings are not found to be related to 
sales. 
 

Chen, Fay, and 
Wang (2003) 

[17] 

Consumer reviews 
from Epinions.com, 
Consumer Reports, 
and J.D. Power & 
Associates 

Controlling for price and quality, number of online 
postings is positively related to automobile sales. 
 

Hu, Pavlou, and 
Zhang (2006) 

[28] 

A field study and data 
collected from 
Amazon.com 

The most satisfied and the most disgruntled consumers 
are the most likely to post reviews. Therefore, the 
average rating may not be a fair evaluation of the 
product. 

 
Table 1. A Summary of the Related Literature. 
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3. Theoretical Background and Development of Hypotheses 

Building on earlier work by Nobel prize winner Rona ld Coase, Williamson [38] developed the theory of 

Transaction Cost Economics (TCE).  TCE speci fies variables (asset specificity , uncertainty, and 

transaction frequency) that determine why a certain transaction is conducted in a particular form (market, 

hierarchy, or hybrid) and whether the market or the hierarchy has a lower transaction cost under the two 

main assumptions of hum an behavior (bounded rationality and opportunism). Williamson argues that 

firms will choose a channel that minimizes their total cost, which is com prised of both production and 

transaction costs. Transaction cost s occur because decision makers have li mited cognitive processing 

power and cannot consider all possible scenarios (bounded rationality). Also, people may  not be truthful 

about their intentions all the time and may act in a self-interested manner to take advantage of unforeseen 

circumstances (opportunism attributable to information asymmetry). 

TCE has been succes sfully used to analyze issues such as internal organization, vertical  

integration and contracting, resource allocation, o utsourcing decisions, etc. In the area of E-commerce, 

researchers have adopted TCE to explain both firm -level and individual-level issues. For example, Liang 

and Huang [31]  proposed that consum ers will choose a channel that has a lower transact ion cost in 

deciding whether to buy from online stores or traditional stores. TCE is also a viable theory for explaining 

online consumer behavior. 

When consumers decide which items to purchase on a given E-commerce website, they must go 

through a transaction process. It starts with searching for relevant products, followed by comparing prices, 

evaluating product quality, ordering, delivering, and post-sales services such as customer service and 

support. Online transactions of experience goods can involve product, process, and psychological 

uncertainties because the product descriptions might not provide sufficient information and the quality of 

the product can only be evaluated after trying or inspecting it. Product uncertainty refers to the situation in 

which consumers find after consuming a product that what they bought is different from what they 

perceived it to be at the shopping stage. Process uncertainty refers to the case in which consumers 
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purchase products from undesired vendors, while psychological uncertainty refers to all of the emotional 

costs associated with the uncertainty. Overall, uncertainty refers to the costs associated with unexpected 

outcomes tied to information asymmetry. Therefore, a higher level of uncertainty implies a higher 

transaction cost, which will result in lower sales.  

The goal of an E-commerce participant is to identify the intrinsic quality of a product based on all 

available information, and then to purchase the product with the lowest transaction cost or with the lowest 

uncertainty. To begin, a consumer may or m ay not possess any prior quality inform ation about the  

product, and may or may not have previously conducted business with  the online vendors involved. In 

such a scenario, there are both financial and ps ychological uncertainties associated with the product and 

the online vendors. According to Uncertainty Reduction Theory [5], whenever consumers lack knowledge 

of a product or of the out comes of co nsuming that product, they will engage in uncertaint y reduction 

efforts to mitigate and eliminate th e risk associated with the unc ertainty and to maxi mize the outcome 

value. Consumers can reduce the quali ty uncertainty by drilling down to obtain m ore details about t he 

product’s author, publishers, and subject. Consumers can then try to understand the returns policy and 

product warranty to further reduce uncertainty. For search goods, consumers may stop here because they 

are already informed about the value of the products. However, for experience goods, product uncertainty 

may still be high. To reduce this uncertainty, consum ers will actively seek other information, such as 

online reviews written by previous customers. Overall uncertainty reduction theory provides a framework 

through which we can understand how  individuals use different online inf ormation, such as online 

reviews, to: 1) infer product quality; 2) reduce product uncertainty; and 3) make a final purchase decision.   

In this study , we investigate how consumers utilize online reviews to reduce the uncertai nties 

associated with online purchases. Figure 1 provides an overview of the key conceptual constructs that we 

examine in this study. As Figure 1 illus trates, we focus on three sources that may influence a consumer’s 

interpretation of online reviews and sub sequent purchase decisions. We discuss each one in detail in the 

following subsections. 
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Insert Figure 1 about here 

3.1 The Information Content of Online Reviews 

Extending the market metaphor to online reviews, we suggest that when consumers purchase experience 

goods such as music CDs through t he Internet, they  first for m a quality evaluation based on the 

combination of product information, their own pe rsonal tastes, and recommendations fro m friends o r 

relatives. Due to the nature of experience goods, they  will read reviews written by previous customers to 

help determine the value and quality of a product and to reduce the uncertainty associated with consuming 

that product. Reduced uncertainty should result in decreased transaction costs. Out of all the products that  

meet a consumer’s requirements, the consumer will then select the one with lowest transaction cost.  

Online reviews written by previous customers pr ovide information about a n item’s perceived 

value. These reviews are helpful for making purchase decisions because they provide new customers with 

indirect experiences and help prospective customers reduce the uncertainties involved in inferring product 

quality. Product quality, which is the aggregate of a ll consumers’ perceived values, reflects a product ’s 

intrinsic value.   

In this paper, we use the term  favorable news if a newly released review for a ny single item is  

better than its prior average (prior consensus reviews) . On the other hand, if the newly released review is 

worse than the prior average for that product, we call it unfavorable news. Both types of news can change 

consumers’ expectations about  product quality. Favorable news ma y convert a consum er from “not 

buying” to “buying” because it reduces the quality uncertainty and, hence, the total transacti on cost for a 

new customer. On the other hand, unfavorable news  may convert a consu mer from a potential “buying” 

consumer to a “not bu ying” one. In o ther words, favorable news and unfavora ble news contain different 

information about product quality.   

Hypothesis 1: Products with favorable reviews enjoy better sales than products with unfavorable 

reviews. 
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In this study, we investigate whether the marginal change in sales associ ated with the favorabl e 

news group exceeds that o f the unfavorable news group. This is a more conservative test than testing the 

impact of each grou p of news on sales separately , in that t he former method controls for  the potential 

differences in risk-return relations for item s included in our study. B y controlling for the unobserved 

heterogeneity of items, we can ensure that our result s are less likely to be distorted by  sample selection 

bias.   

3.2 The Role of Reviewer Quality 

When consumers read online reviews, they  will not limit themselves to the num erical scores alone. 

Consumers are likely to pay attention to reviewer cr edibility as well. To som e degree, online reviews are 

not verifiable and may not be objective and credible to potential customers. Consumer reviews are user-

generated and they measure product quality and valuation from a user’s perspective [34]. Review scores 

are based more on reviewers’ own experiences rather than on underlying characteristics of the product. In 

such cases, the reviews should have limited influence on other consumers’ evaluations because consumers 

might think the reviewers have not provided unbiased quality assessments for the product. In other words, 

not all reviews have the same influence on consumers and consumers might selectively pay attention to 

the reviews written by  reviewers wit h better qua lity reputations because such reviews are m ore 

trustworthy and reliable. 

 Trust can be defined as the expectation that an  engaging partner will forgo short-term outcomes 

obtained through opportunistic behavior even when t here is uncertaint y about long-term benefits [ 11]. 

Chiles and McMackin [18] examined ways to incorporate trust and reputation into TCE. The honoring of 

moral obligations generates trust, and tr ust leads to the constraining of opportunistic behavior by way of 

reputation [18]. An entit y builds its reputation by consistently engaging in tr ustworthy behavior. Trust 

reflects all of the historical trustworthy behaviors exerted by the entity and is a strong signal of reliability 
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to third parties, no matter whether they  have or ha ve not conducted transactions with the entit y before 

[18].   

Without trust, information-exchanging parties need to constantly monitor the information being 

provided to guard against opportunistic behavior. Trust alleviates the m onitoring and safeguarding costs 

associated with a contract because each party believes that the other party  will act in a proper way  to 

generate long-term benefits. Reputation about such trustworthiness decreases the cost of finding a 

contract partner [18]. Trust and reputation will thus lead to reduced behavioral uncertainty and decreased 

transaction costs because  trust in a c ontractual relationship can result in more accurate  and tim ely 

exchange of information and greater influence on the information receiver.  

In an online review environm ent, there is enormous information asymmetry between o nline 

reviewers and new customers. Consumers may be inclined to give more weight to reviews written by  

reviewers with higher quality reputations because they  perceive these reviews to be m ore credible and 

trustworthy. Reviewers with better reputations will help decrease a product’s quality uncertainty because: 

1) the market has previously  found that these r eviewers have the necessary expertise to assess product 

quality; and 2) they are less likely to e ngage in opportunistic behavior such as  accepting payment from 

vendors for writing fake reviews that simply promote product sales. Thus, consum ers might ignore the 

reviews written by lower quality  reviewers because consumers perceive t hat the background and 

motivation of these reviewers prevents them from writing high quality reviews.  

Hypothesis 2: The difference in sales between favorable news and unfavorable news is significantly 

different from zero for reviews written by higher quality reviewers, but not for reviews written by 

lower quality reviewers. 

3.3 The Role of Reviewer Exposure 

To some degree, reviews written by  consumers on E-commerce websites are similar to reports written by 

analysts about market sec urities. The former expres ses a revie wer’s evaluation of product quality, the 
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latter reveals an analyst’s assessment of a company’s valuation. In the finance literature, analyst quality is 

measured in two way s: analyst reputation [7, 20, 25, 34] and analy st exposure to the comm unity [8]. 

Analysts’ reputation and  exposure affect both  the in formation content of t he signals they send to the  

market and the efficiency of the price discovery process for a market security.  

Prior studies show that superior anal ysts elicit stronger market responses f or their forecast  

revisions because their re putations affect the way  that market participants perceive those forecas t 

revisions [37]. In the analyst forecast literature, Bonner, Hugon, and Walther [8] documented that market 

participants react more strongly to forecast revisions issued by celebrity  analysts (i.e., analy sts with 

greater media exposure). Following B oorstin [9], they defined a celebrity  as a famous person who is 

known for his name recall instead of performance-related qualities.  

Conceptually, exposure is different from  quality reputation. E xposure here refers to media 

exposure of a reviewer in the online  review community. It can be measured by how many times a 

reviewer writes reviews o n an online community website. In addition to be ing influenced by hi gher 

quality reviewers, consumers may pay more attention to higher exposure reviewers for reasons similar to 

those outlined above. Because consumers might ignore the reviews issued  by reviewers with lower  

exposure, favorable (unfavorable) news written by  such reviewers might not change the uncertainties 

associated with the consum ption of a product or consumers’ transaction costs for buying such products.  

Thus, favorable news might not solicit  a different market response from unfavorable news if written by 

low-exposure reviewers. 

Hypothesis 3: The difference in sales between favorable news and unfavorable news is significantly 

different from zero for reviews written by higher exposure reviewers, but not for reviews written by 

lower exposure reviewers. 

3.4 The Role of Product Coverage and Age of an Item 
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Empirical research shows that security  price react ions to unanticipated infor mation conveyed to the  

market by actual earnings and earning forecasts are more substantial for smaller firms because the amount 

of private pre-disclosure information is an increasing function of firm size [1, 25]. For items with lower 

product coverage, that is, items with a sm aller number of reviewers, there is an often lim ited amount of 

quality information about that item  other than onli ne reviews written by these reviewer s. Therefore, 

reviewers play a very important role in  terms of informing consumers of product quality and reducing 

uncertainty for such products. Each new reviewer might reveal additional product quality information to a 

new customer. The i ncremental impact of the review s issued by a reviewer will be bigger w hen an item 

has fewer pre-existing reviewers that covered it before. After a product receives a cri tical mass of 

reviewers, new reviewers generally disseminate only a limited amount of new inform ation. Thus, a new 

reviewer can not significantly  reduce the uncertainty and h as little or no impact on the tra nsaction cost 

associated with buying that product.   

One way of characterizing the product  information environment is by counting the total nu mber of 

reviewers that have co mmented on that product, whi ch is similar to the number of analy sts covering a  

firm. We classify products into two categories: high-coverage products and low-coverage products. High-

coverage products are products whose total number of reviewers is above the median of our sam ple in a 

given batch; low-coverage products are ones whose total number of reviewers is below the  median of our 

sample in a given batch. 

Hypothesis 4: The difference in sales between favorable news and unfavorable news is significantly 

different from zero for reviews issued about low-coverage products but not for reviews issued about 

high-coverage products. 

Besides product coverage, another factor that may  affect the impact of online reviews on sales is 

the age of the item, that is, how long an item has been selling on the market. Although product coverage 

is likely to co-vary with the age of an item (a product is likely to have more reviewers if it has been on the 
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market longer), conceptually these are distinct notions . While age refers to th e time period an item  has 

been in existence, product coverage refers to the number of reviewers for that item. In the initial phase of  

a product’s introduction, there is a lim ited number of sources of product quality information. Hence, the 

market is likely to rely heavily on online reviews for purchase decisions during this time. However, as the 

market gains experience with the product with the passage of  time, consumers can obtain product 

information from other s ources such as recommendations from friends, n ewspapers, and magazine 

comments. Therefore, we posit that online reviews will have greater i mpact in the initial phase of a 

product lifecycle than in later phases. In other words, the impact of online reviews on sales will decrease 

with time.  

Hypothesis 5: The market’s reaction to favorable news and unfavorable news is significantly 

different from zero ONLY for a newly released product; as the age of a product increases, the difference 

will fall to zero.   

4.  Method and Measurement Development 

4.1 Data 

We collected our data from Amazon.com’s Web Serv ice (AWS). These data allow us to examine the 

effectiveness of online reviews and how consumers react  to contextual elements such as reviewer quality , 

reviewer exposure, product coverage, and the impact of online reviews on sales over tim e. A panel of  

books, DVDs, and videos was randomly chosen in July 2005. We used panel data because compared with 

cross-sectional data, panel data are m ore suitable for studying the dynamics of adjustments because they 

control for unobserved he terogeneity [2, 10] . For each  item, we collected its price, sales, and review  

information for several months at approxim ately three-day intervals. We iden tified each s ession by a 

unique sequence number. Because of some techn ical glitches in AWS, we had to exclude certain 

sequences in which only partial data were collected . For example, during several sessions, AWS did not 

respond to our queries or was offline and we were t herefore only able to process partial or no data during 

these sessions. In total, we obtained 26 batches of review and item-level data.  
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Table 2 provides summary statistics for our panel data. The data include some very popular books, 

such as The World Is Flat: A Brief History of the Twenty-first Century by Thomas L. Friedman (sales rank 

fluctuates between No. 1 to No. 7), Freakonomics: A Rogue Economist Explores the Hidden Side of 

Everything by Steven D. Levitt (sales rank fluctuat es between No. 3 to No. 11);  popular DVDs, such as 

The Simpsons (sales rank fluctuates between 26 to 236) and Star Wars (sales rank fluctuates between 27 to 

141); and videos, such as Shall We Dance, Cinderella and John Wayne: American Hero: The John Wayne 

Story. On Amazon.com, consumers can only report an integer product review on a 1-star to 5-star scale, 

where 1-star = least satisfi ed and 5-star = most satisfied. The average review scores for books, DVDs, and  

videos are 3.87, 4. 07, and 4.02, respectively. This o bservation is consistent with  Chevalier and May zlin’s 

[15] finding that for bo oks in both Amazon.com and BarnesandNoble.com websites, product reviews are 

overwhelmingly favorable. 

Insert Table 2 about here 

4.2 The Portfolio Approach 

We adopt a portfolio appro ach to our investigation of whether customers of Amazon.com understand the 

difference between favorable news and unfavorable news and respond accordi ngly. The meaning of  a 

portfolio in this context is different from  a trad itional finance context, where a portfolio represents a  

basket of securities, t ypically designed to reduce risk. Here our portfolio comprises products and events  

(favorable and unfavorable) that share similar characteristics. Our favorable (unfavorable) news group 

includes events where a newly  released review for a product has a higher (lower) score than its previous 

average review score. Conceptually this is si milar to Sloan’s [36] study where he tested whether market 

valuations incorporated fully the information provided by different earnings components. Our method can 

also be viewed as a variation of matching sample techniques where variables of interest across treatment 

(in our case favorable news group) and control groups (in our case unfavorable news group) are  

compared. Matching sa mple techniques have been widely used across differ ent disciplines including 

psychology, economics, and management science [23, 27, 29, 32]. 
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We next define how we measure the change in  sales, reviewer qualit y, reviewer exposure,  

product coverage, and the age of an item. 

4.3. Sales Change 

There are tw o types of events of interest in this study: favorable news even ts and unfav orable news 

events. A favorable (unfa vorable) news event occurs  when a newly  released review for an item  has a 

higher (lower) score than the previous average revie w score for that item. We are interested in knowing 

whether customers at Amazon.com understand the info rmation value difference between favorable news 

and unfavorable news and respond accordingly by either buying or refusing to buy the product. 

Because we can precisely  pinpoint the review date of each item , we limit our event window t o a 

starting point (day 0) to estimate the sales change associated with favorable (unfavorable) news. We st art 

at day 0 because it is unlikely  that a consu mer discloses a review to the Amazo n community before it is 

actually posted online.  

In the Amazon m arket, even when the re is no ne wly released review for a product, the sal es of 

that product still fluctuate. In order to co mpute the actual marginal change in sales associated with 

favorable news or unfav orable news, we need to  adjust the actual change in sales by a m arket 

performance factor and as sociated risk factors, as  is co mmon in portfoli o approaches in the finance 

literature. We, therefore, adopt a variation of the Fama and French [ 24] model to adjust for the overall 

performance of the Amazon.com marketplace and for risk factors that might affect the sales of individual 

items. Fama and French [24] use the average return from a benchmark portfolio, using s ize (market 

equity) and book-to-market (the ratio of book equity to market equity) to adjust actual firm returns and 

produce a measure of abnormal return. In the context of Amazon.com, we believe that each item has some 

“normal” changes that are driven by the  product sub-category and its list price. These are the  factors that 

can explain the cross-s ectional variance of expected “normal” sales change. Any extra changes over and  

above the “normal” changes are classified as “abnormal.” 
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We estimate the average normal change in sales for a benchmark portfolio of products comprising 

all products within the same product sub-categor y and with similar Amazon list prices. For product sub-

categories, we use the classification sc heme provided by Amaz on.com. For example, within the book 

category, sub-categories include history, children, diet, etc. The difference bet ween the change in actual 

product sales and the change in sales of the benchmark portfolio signifies the abnormal sales related to  

that event.  

We describe below how we estimate the abnormal sales associated with each review event:  

1) In step one, we estimate the change in sales by subtracting sales at time t-1 from sales at time 

t (i.e., actual Sales Change t = Sales t – Sales t-1 ).  

2) In step two, for every  data collection batch, we estimate the average change in normal sales 

for each benchmark portfolio formed ba sed on product sub-catego ries and the Amazon.com 

list price.   

3) Finally, we compute the “abnormal” sales at time t by subtracting the figure obtained in step 

two from that in step on e (i.e., the Abnorm al Salest = Actual  Sales Chan get – Average 

Change in Sales for the Benchmark Portfolio t ).  

Instead of providing the actual sales number, Amazon.com provides the sales rank information of 

the item. Product sales rank is shown in descending order where 1 represents the best sel ling product. 

Consequently, there is a negative correlation between product sales and sales rank. We use SalesRank as a 

proxy for product sales (with the opposite sign). Henceforth, unless stated differently, whenever we refer 

to change in sales, it represents an “abnormal” change in sales rank. 

4.4 Reviewer Quality 

Reviewer quality is measured by the overall quality of the reviews written by  reviewers. For each review 

posted online, Amazon.com also reveals how many customers read it and how many consider it “useful.” 
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To assess the quality of a reviewer, we retrieve all the reviews ever written by that reviewer using AWS. 

Then, we estimate the mean of the number of “usefu l” votes divided by  the number of total votes of all 

the reviews ever written by that reviewer.  

Based on thi s measure, we classify  a reviewer into a high-qualit y or l ow-quality group. High-

quality reviewers are those whose av erage up-to-date quality score is above the median, while the low-

quality reviewers are those whose average up-to-date quality score is below the median.  

4.5 Reviewer Exposure 

To test the  conjecture tha t consumers indeed pay more attention to  high-exposure reviewers, one can 

classify reviewers into two categories – higher exposure and lower exposure. Higher exposure reviewers 

are those whose up-to-date total number of reviews is  above the median for our sample, while the lower 

exposure category includes those whose total number of reviews is below the median. 

Due to limitations in AWS, we could not get reviewer quality and reviewer exposure information 

for all items.  Hence, from the panel da ta, we select a sample of i tems for which we are ab le to get the  

necessary reviewer quality information. To make sure these items are representative of the original panel 

data, we compare the means of the average rating, reviewer quality, reviewer exposure, and prod uct 

coverage for this gr oup to those of t he panel dat a. Our analysis shows that there is no significant 

difference between these two groups.2  

4.6 Product Coverage 

Product coverage measures the total number of consumers that have reviewed a product. A high-coverage 

(low-coverage) product is a product whose total number of reviewers is above (below) the median of our 

sample. 

4.7 Age of an item 
                                                           
2 We also evaluate hypothesis 1 using all of the panel data as well as the sub-sample. These analyses yield consistent 
results, as we discuss later. 
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To examine the dynamics of review scores, we first define a concept of “age” for an item , which is the  

number of days between the publishing date of an ite m and our data collection date. Then for each item , 

we divide all the available reviews into three stages of equal duration based on the age of the  item. Stage 

1 is the earliest stage start ing right after an item  is released to the A mazon market; while stage 3 is the 

most recent period. We choose the relative age instead of absolute age because each item sold on Amazon 

has its own release date and, therefore, its own absolute age. This absolute age varies from several months 

to several years with a very large variance. Thus, it is difficult to compare the review scores based on an 

absolute age of an item. Since we are interested in the tem poral properties of online reviews, using the 

relative age of the item allows us to pool items with different absolute ages together under the assumption 

that reviews of different items have similar trends over each stage. 

5. Results 

5.1 Results: Are Changes in Online Reviews Associated with Changes in Sales? 

We find sup port for hypothesis 1, which argues that  sales respond  differently to “favorable” versus 

“unfavorable” reviews. Panel A of Tabl e 3 presents the results of our analysis of differences in abnormal 

changes in sales rank when we pool books, DVDs, and vi deos together. The change in the mean sales 

rank for unfavorable news exceeds that of favorable news by 1196.4 (p-value = 0.06).3   

Insert Table 3 about here 

Panel B of Table 3 presents the results for diffe rent product categories. For books, the diffe rence 

in mean abnormal sales for favorable news events  and unfavorable news events is insignifican t 

(difference in sales rank = 3810, p-value = n.s.).  However, for DVDs, unfavorable news increas es the 

sales rank of an item by 165.37, while favorable news decreases the sales rank by 195.70. The difference 

in sales rank associated with unfavorable news and favorable news is 361 ( p-value = 0.035). For videos,  

                                                           
3 Recall that we use sales rank to approximate sales. Sales rank is a function of actual sales so that an increase in 
sales rank is associated with decreasing sales. 



                                                    

20 
 

unfavorable news increases the sales r ank by 301.05, while favorable news decre ases the sales rank by 

236.60. Similarly, for videos, the difference in sales rank of 537 between those items that have received  

unfavorable versus favorable news is statistically significant (p-value = 0.015).  

As a way  to assess the r obustness of our results, we also esti mate the difference between  

unfavorable and favorable news using Wilcoxon Z-statistics4. The results based on splitting our sample at 

the median are consistent with results obtained usi ng means. Overall, except for the book category , the 

sales of the unfavorable news group decreased, while sales of the favorable news group increased. In 

addition, the difference in sales between the favorab le and unfavorable news groups is significantly 

different from zero, consistent with hypothesis 1.  

5.2 Results: Role of Reviewer Quality in Sales Change  

Because reviewer quality information is not available for the entire panel, we use a sub-sam ple of the 

panel data to evaluate hypotheses 2, 3, and 4. We first validat e whether the sales chan ge difference 

between favorable and unfa vorable news holds in this reduced sub-sa mple. Panel A of Table 4 present s 

the results of our analysis of the differences in sales change between favorable and unfavorable news for 

the sub-sample panel. As before, the market reacts to favorable  and u nfavorable news differently ; on 

average, the market responds m ore favorably to favorable news. The difference in the average change in 

sales for unfavorable and favorable news events is 6312.7 (p-value < 0.01).   

Insert Table 4 about here 

Panel B of Table 4 presents the results disaggr egated by reviewer quality. We find su pport for 

hypothesis 2, which predicts that the impact of reviews on sales between favorable and unfavorable news 

is different when the reviews we re written by higher quality reviewers. We fin d that for books, DVDs, 

and videos, the difference in mean sales for the unf avorable and favorable news events is 8950 for the 

                                                           
4 The skewness of the change in sales is approxim ately -0.60; the kurtosis is approximately 7.38, which might also 
indicate that the data are slightly skewed. 
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higher quality reviewer group (p < 0.001), while the difference is not significantly different from zero (p-

value = 0.129) for the lower quality group.5 This shows that consumers react to favorable and unfavorable 

news differently when the review is written by a hi gher quality reviewer, but c onsumers feel indifferent 

between favorable and unfavorable news when the review is provided by a reviewer of lower quality.  

5.3 Results: The Role of Reviewer Exposure in Changes in Sales  

We find support for hypothesis 3, which predicts that  consumers will react d ifferently to favorable and 

unfavorable news depending on whether the review is  written by a higher or lower exposure reviewer. 

Panel C of T able 4 shows that consumers value unfa vorable and favorable news differently when the  

review is written by  a higher exposure reviewer (difference = 7712.2,  p-value = 0.00 3), but that 

difference is only moderate for a lower exposure reviewer (difference = 4876,  p-value = 0.075).  

5.4 Results: The Role of Product Coverage in Changes in Sales 

We present the results for the effect of product cove rage in Panel D of Tabl e 4. We find support  for 

hypothesis 4 that predicts  that consum ers value fa vorable and u nfavorable news differently when t he 

items have lower product coverage. Under a low-coverage scenario, a newly created review is more likely 

to reveal ad ditional information and change cons umers’ quality expectations regarding a product.  

However, when there are many pre-existing online reviewers, a new review, regardless of its favorable or 

unfavorable content, is unlikel y to introduce enou gh additional information to change consumers’ 

behavior.  

Because tabular classifications do not control for other item char acteristics and potential  

interaction effects that can affect expected sales, we specify the following model and estimate the results 

using multiple regression.  

t
DummyDVDDummyBookExposureSignal

CoverageSignalExposureCoverageSignalChangeSales
εααα

ααααα
++++

++++=
_*_**

*_

765

43210
 

                                                           
5 The median Z-test results are very similar to the mean difference results.  
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In this model, the dependent variable is the change  in sales. To capture the effect of the lev el of 

reviewer quality and the t ypes of revie ws (favorable or  unfavorable), we define a categorical variable  

called Signal with the following values: +1 represents  favorable news written by a high quality  reviewer, 

0 is a review written by a low-quality reviewer, and -1 represents unfavorable  news written by a high 

quality reviewer. The signal variable represents a qualitative feature of the signal sent to the Amazon.com 

market by the reviews. T o assess the impact of a r eviewer’s exposure on A mazon.com, we define an 

indicator variable called Exposure. This variable equals 1 if a revi ew is written by a reviewer with m ore 

than the median number of exposures, and 0  otherwise. We further include a d ummy variable to capture  

the level of reviewer cove rage an item receives (Coverage). It equals 1 if an i tem is followed by  more 

than the m edian number of reviewers, and 0 ot herwise. We al so allow for interactions of the signal 

variable with the exposure and coverage variables by including interaction terms: Signal x Exposure, and 

Signal x Coverage. Product category dummies are also included to represent f ixed effects due to item-

level characteristics.  

Table 5 presents the results. The coefficient for Signal in this table is negative and statistically 

significant (coeff. = -3106 , p-value = 0.006). T his confirms the importance of reviewer qu ality and the 

types of reviews as a determ inant of abnor mal product sales. The interaction between Signal and 

Reviewer Exposure is negative and signi ficant, indicating that a review has greater information content if 

it comes from a high exposure reviewer. In contr ast, the coefficient of the interaction between Signal and 

Product Coverage is posi tive and significant, suggesting that the reaction to Signal is higher for items 

with low product coverage. Overall, these results are consistent with the ones reported in Table 4 and lend 

further credence to those findings. Fu rthermore, Coverage has a direct and indirect (through Signal) 

impact on product sales, while Exposure only influences sales through Signal. 

Insert Table 5 about here 
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To summarize, the evidence thus far supports th e view that reviews written by  high quality 

reviewers, high exposure reviewers,  and for products w ith less reviewer coverage, have a greater i mpact 

on sales than reviews written by lower quality reviewers, lower exposure reviewers, or for products with 

already significant reviewer coverage.  

5.5 Results: The Role of Time  

In this section, we examine the temporal effects of reviews on sales  when a  review contains favorable 

news or unfavorable news (hypothesis 5). Based on the age of an item, for each product category (Books, 

DVDs, and Videos), we classify favorable and unfa vorable news into three sub-groups : early stage, 

medium stage, and later stage. Then for each s ub-group, we com pare the mean ( median) abnormal 

difference in sales bet ween the favorable and unfavor able news portfolio. The results ar e presented in 

Table 6. 

Insert Table 6 about here 

Overall, except for bo oks, the abnormal difference in sales between favorable and unfavor able 

news reviews is significan t only for items in the early stages of the product lifecy cle. For books, the  

difference in sales for the unfavorable and favorable news event is significantly different from zero for the 

medium stage (difference = 8679.8, p-value = 0.045), but not significant for the early stage (difference = 

3175.7, p-value = 0.441) and later stage (difference = -1428, p-value = 0.792). For DVDs, the difference 

in sales between the unfavorable and favorable news portfolio is significantly different from zero for the 

early stage only (difference = 621.93, p-value = 0.013). Videos behave similarly to DVDs; the difference 

between the unfavorable and favorable portfolio is significant for early stage only (difference = 839.11, p-

value = 0.027). 6 

                                                           
6 We also estimate the diff erence between favorable and unfavorable news using Wilcoxon Z-statistics. The median testing 
results are consistent with the mean testing results. 
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These results are consistent with hypothesis 5. Th e impact of a review on sales is a decre asing 

function of age. As ti me elapses, the difference between the information provided by favorable and 

unfavorable reviews declines to zero. Consequently, hypothesis 5 is supported.  

6. Discussion 

6.1 Findings 

Our goal in this study is to assess the quantitative and qualitative impact of online reviews on product 

sales. We w ant to assess  the effectiveness of online reviews and the extent to which s ales react to 

contextual information regarding reviewer quality, reviewer exposure, and product coverage. We use data 

from a popular online retailer, Amazon.com, to test our hypotheses.  

Consistent with our argu ments, we find that changes in online review s are associated with 

changes in sales. We also find that, besides the quantitative measurement of online reviews (i.e., review 

scores), consumers pay  attention to other qualitative aspects of online reviews such as revi ewer quality 

and reviewer exposure. Furthermore, we find that a consumer’s reaction to online reviews is stronger for 

the items that have less pr oduct coverage; that is, new online reviews are more informative when items 

have fewer pre-existing reviewers. Finally, we find that the review  signal moderates the im pact of 

reviewer exposure and pr oduct coverage on product sales. Consumers are fu lly able to  appreciate the 

differential impacts of high-quality signals vs. low-quality signals. Lastly, the impact of online reviews on 

sales is a decreasing function of the age of the product. 

Taken together, our study integrates econometric data with insights from a portfolio approach to 

reveal how consumers use online review information. Unlike previous studies that focus on linking levels 

of review scores with lev els of product sales, we study how consumers use quantitative and qualitative 

aspects of online reviews to make purchase decisions. We show that online reviews reduce the uncertainty 

and decrease the transacti on costs of online transactions. In essence, consumers respond through their  

purchase behavior to quality information embedded in online reviews.  
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6.2 Implications for Research 

The paper has implications for online WOM communication and online consumer behavior, as described  

below: 

6.2.1 Implications for Online WOM Communication  

Online WOM communication is becoming a popul ar informational source for consu mers and marketers. 

As researchers focus on the im pact of averag e online review ratings on consum er relationship 

management and product success, ther e is a need to understand how consumers use online reviews, 

whether they understand the informa tion embedded in reviews, whether they rely  on online reviews to  

make purchase decisions, and under w hat circumstances a review is likely  to impact sales. This paper 

contributes to this emerging literature by addressing these fundamental but largely neglected questions.   

6.2.2 Implications for Online Consumer Behavior and Practice 

The econometric results in our study suggest that over time, the impact of online reviews on sales 

diminishes as consumers begin to receive quality related information from other channels. For the 

medium and later stages in the life of a product, online reviews may still influence sales, but there is no  

abnormal sales difference between favorable and unf avorable news except in t he case of books. Online 

retailers, product manufacturers, and companies that specialize in collecting and disseminating product 

quality information may need to pay more attention to early stage reviews and to find a way  to promote 

favorable reviews at that stage, when consum ers pay more attention to online reviews. After this stage, 

the impact of online reviews on sales begins to decline. Also, online retailers and product manufacturers 

should encourage and nur ture high quality and high exposure r eviewers, since the actions of these 

reviewers have a direct impact on product sales. 

6.3 Managerial Implications 

Our results suggest that the market for reviews is effi cient and that consumers are rational. Over the long 

run, a strategy of recruiting reviewers to write good  reviews of a vendor’s own products and bad reviews 
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of competitors’ products is unlikely to succeed. Consumers are able to tell the authenticity of a review and 

differentiate a good reviewer from a bad reviewer. Firms should identify reviewers with better reputations 

and higher exposure and try to promote new products to them in the hopes that they will respond with 

favorable reviews. Those reviewers usually act as ear ly adopters and opinio n leaders in the consumer 

community. Their tastes and j udgments will determine which items other consumers are more likely to 

adopt in the future. 

6.4 Limitations and Suggestions for Future Research 

This study has sever al limitations that create inter esting opportunities for future resear ch. First, even  

though our results hold for our sample of DVDs and videos, we did not observe a similar set of results for 

books. Future research could examine this result by considering heterogeneous properties among different 

product categories. Second, this paper does not co nsider the textual content o r length of the reviews, 

factors that may also indicate review quality. Future research could take these factors into consideration in 

an attempt to document how consumers respond to newly released reviews.  

To conclude, online WOM communication in the form of online product reviews has become a 

major informational source for consumers and marketers. In large part, by linking the average rating of an 

item to its sales, the literature h as assumed that consu mers use only  quantitative information aspects of  

online reviews to make purchase decisions. To overco me this problem, this study proposes a portfolio 

approach to dem onstrate that consumers unde rstand and use both the quantitative and qualitative 

information embedded in online reviews. This study encourages further research in this area a s a way to 

derive deeper insights into the broader implications of online WOM communication.  
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Figure 1: Factors Contributing to Consumers’ Reactions to Online Reviews  
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Note:  Variable definitions are in Sections 4.4, 4.5, 4.6, and 4.7 
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Table 2: Summary Statistics  

Amazon Longitudinal Data (July 2005 – Jan 2006)  

Category #Reviews #Amazon Items #Distinct Items Avg_Rating 
Book 6,759,764 261,187 10,052 3.87 
DVD 4,056,340 258,736 9,988 4.07 
Video 4,371,833 259,736 10,000 4.02 

 
 
 
 
Table 3: Abnormal Sales Change Difference between Favorable News and Unfavorable News 
Portfolio 

  

Abnormal 
Sales Change 
associated 
with 
unfavorable 
news (1) 

Abnormal Sales 
Change associated 
with favorable news 
(2) 

Abnormal Sales 
Change 
Difference 
(unfavorable news 
- favorable news) 
(1) - (2) 

Wilcoxon 
Z-statistics 
(p-value) 

Panel A      

Mean 1286 89.65 1196.4 -2.940 Book, 
DVD, 
and 
Video N 162561 16226 (0.059) (0.003) 

Panel B      
Mean 4828.4 1017.8 3810.6 1.0173 

Book 
N 3742 4000 (0.146) (0.3090) 
Mean 165.37 -195.7 361.02 -1.9353 

DVD 
N 6857 6727 (0.035) (0.053) 
Mean 301.05 -236.6 537.62 -2.543 

Video 
N 5657 5499 (0.015) (0.011) 

All p-values are based on 2-tailed tests.  
1 Note that the number of items in this table is fewer than reported in Table 2 for longitudinal data 
because the items that do not have any ratings change associated with them are not relevant for our 
analysis.  
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Table 4: Abnormal Sales Change Difference between Favorable and Unfavorable News 
Portfolios: The Role of Reviewer Quality, Reviewer Exposure, and Product Coverage 

 Group  
 

Abnormal 
Sales 
Change 
associated 
with 
unfavorable 
news (1) 

Abnormal 
Sales Change 
associated with 
favorable news 
(2) 

Abnormal 
Sales Change 
Difference 
(unfavorable 
news -
favorable 
news) 
(1) - (2) 

Wilcoxon 
Z-statistics 
(p-value) 

Panel A  

Mean 2524.8 -3788 6312.7 -2.3883 Book, DVD 
and Video 

 
N 1713 1446 (0.001) (0.017) 

Panel B  

Mean 5675.1 -3276 8950.9 -2.3182 High 
Quality N 796 784 (0.001) (0.020) 

Mean -209.9 -4394 4184.5 -1.1946 

Book, DVD 
and Video 
 Low 

Quality N 917 662 (0.129) (0.232) 

Panel C  
Mean 2555.2 -5157 7712.2 -2.2412 High 

Exposure N 886 732 (0.006) (0.0250) 
Mean 2429 -2384 4876 -1.1474 

Book, DVD 
and Video 
 

Low 
Exposure N 827 714 (0.075) (0.251) 

Panel D  

Mean -307.9 -3889 3581.5 0.7563 High 
Coverage N 900 741 (0.120) (0.449) 

Mean 5660.6 -3681 9341.7 -3.8836 

Book, DVD 
and Video 
 Low 

Coverage N 813 705 (0.002) (0.000) 
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Table 5: Regression Results of Impact of Review on Abnormal Sales 

  Abnormal Sales 
Intercept α0 772.42 
  (0.335) 
SIGNAL α1 -3106.16*** 
  (0.006) 
COVERAGE α2 -2026.98** 
  (0.031) 
EXPOSURE α3 203.76 
  (0.828) 
SIGNAL X COVERAGE α4 3696.72*** 
  (0.005) 
SIGNAL X EXPOSURE α5 -1711.95** 
  (0.02) 

N  
N=3159 
Adj R-Sq = 0.0070 
F=5.15*** 

 
Notes:  

1) The variable definitions are in Section 3.4.  
2) All of the p-values are based on two-tailed test. * indicates significance at 10%; ** indic ates 

significance at 5%; and *** indicates significance at 1%. 
3) The model also includes book and DVD dummies (not shown).  
4) The small adjusted R-square is consistent  with the abnorm al returns in accounting and 

information systems literature.  
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 Table 6: The Role of Item Age in Abnormal Sales Change Difference between Favorable and 
Unfavorable News Portfolio   

 

   

 
Abnormal 

Sales Change 
associated 

with 
unfavorable 

news 
(1) 

 
Abnormal 

Sales 
Change 

associated 
with 

favorable 
news 
(2) 

Abnormal Sales 
Difference 
(unfavorable 
news - 
favorable news) 

(1) - (2) 

Wilcoxon 
Z-

statistics 
(p-value) 

Mean 7371.5 4195.8 3175.7 -0.2602 Early 
Stage N 1633 1733 (0.441) (0.795) 

Mean 7955.5 -724.4 8679.8 1.1083 Medium 
Stage N 1183 1228 (0.045) (0.268) 

Mean -3651 -2224 -1428 1.1085 

Book 

Later 
Stage N 926 1039 (0.792) (0.268) 

Mean 373.74 -248.2 621.93 -2.6407 Early 
Stage N 3376 3294 (0.013) (0.008) 

Mean 40.93 -170.4 211.32 -0.2262 Medium 
Stage N 2097 2035 (0.501) (0.821) 

Mean -154.4 -108.7 -45.72 -0.284 

DVD 

Later 
Stage N 1384 1398 (0.896) (0.775) 

Mean 497.53 -341.6 839.11 -3.9013 Early 
Stage N 2685 2347 (0.027) (0.000) 

Mean 102.8 -272.6 375.38 -0.6715 Medium 
Stage N 1515 1708 (0.323) (0.502) 

Mean 145.1 -23.32 168.42 1.033 

Video 

Later 
Stage N 1457 1444 (0.619) (0.302) 

              * For Table 6, we use the full sample as in Table 3. 
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