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Performance analysis of interconnected
LANs with server/client configuration

Jiangling Du, Robert H. Deng, Chi Chung Ko
Department of Electrical Engineering, National University of Singapore, Kent Ridge, Singapore 0511

Abstract

Du, J ., R.H. Deng and C .C. Ko, Performance analysis of interconnected LANs with server/client configuration, Computer
Networks and ISDN Systems 25 (1993) 1321-1333 .

In this paper, we study the end-to-end performance of interconnected local area networks (LAN) with server/client
configuration . The system uses bridges to connect two token-ring LANs through a high-speed communication link . A server
station located on one LAN receives requests from client-stations on the same LAN as well as on the remote LAN,
processes the requests, and returns responses to the client-stations . The end-to-end connections of the interconnected
network are modelled as single-chain and multiple-chain closed queueing systems, which are solved by an iterative algorithm
based on the MVA (mean value analysis) method. The performance examples are shown in terms of various system
parameters such as the window size, server processing speed and internetwork transmission capacity, and are verified by
computer simulations .

Keywords: Performance evaluation ; token-ring LAN ; interconnected LANs ; mean value analysis .

1 . Introduction

Local area networks (LAN) offer high-speed
communication between distributed system com-
ponents, such as workstations and shared re-
sources ; however, they are limited in geography
and number of stations. With the large number of
LANs now in use in universities and industry,
interconnection of LANs over several to tens of
kilometres is becoming common interests [4] .
Thus, it is useful to study the performance of
interconnected LANs in order to facilitate the
design of such systems. Most of the studies of
LANs and interconnected LANs were concerned
with the system performance at the lower layers
in the context of the OSI sever-layer reference
model . However, a good performance at the lower
layers is only the first step towards high-speed
end-to-end communications . The overhead and
processing delays of the higher layer protocols

Correspondence to: J. Du, Department of Electrical Engineer-
ing, National University of Singapore, Kent Ridge, Singapore .
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may significantly reduce the network transmission
capacity that can be utilized by application pro-
grams. Recently, Murata and Takagi [6] built a
two-layer performance model of a token-ring
LAN. The performance model consists of a MAC
(media access control) layer submodel and trans-
port layer submodels .

In this paper, we generalize the study of [6] by
considering interconnected LANs with server/
client configuration . The interconnected network
under investigation is depicted in Fig . 1 . It uses
bridges to connect two token-ring LANs through
a high-speed communication link . A server sta-
tion (server), which may be a database or a laser
printer, is located on one LAN and is accessed by
local as well as remote user stations (clients) .
There are two types of traffic in the intercon-
nected system. Those messages which originate
from one LAN and are destined for the other
LAN are called inter-LAN messages ; those which
are transmitted over the same LAN are called
intra-LAN messages . Bridges play an important
role in handling the inter-LAN traffic . The basic

ppyeo
Typewritten Text
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Fig. 1 . An interconnected LAN system .
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• It relays inter-LAN messages to the bridge of
the other LAN via the bridge-to-bridge communi-
cation (internet) link .
• It broadcasts inter-LAN messages received
from the remote bridge to the workstations of its
own LAN .

The organization of the paper is as follows . In
Section 2, we first outline the OSI layered proto-
col structure used in LAN and the queueing
model of the token-passing MAC layer . We then
present the end-to-end performance model of the
interconnected network with server/ client con-
figuration. In Section 3, we develop a solution
algorithm to the performance model of Section 2
based on the MVA method [7] . In Section 4,
numerical results obtained from the analysis are
shown, and are compared with simulations . The
impacts of various system parameters on the end-
to-end performance are discussed. Section 5 gives
the conclusion of the study.

2. Internetwork end-to-end performance model

The layered protocol structure used in the
internetwork is shown in Fig . 2. Application pro-
grams on workstations communicate with each
other through three layers, i .e . the transport layer,
the LLC (logical link control) layer and the MAC
layer . The MAC layer employs a token-passing
protocol with limited service . The LLC layer pro-
vides two types of services to the layer above it,
connection oriented services and connectionless
services. In this study we only consider connec-
tionless service for the LLC layer. The connec-
tionless service is a datagram-style of service . It
simply allows for sending and receiving fully ad-
dressed datagrams, with no form of acknowledge-
ment to assure reliable delivery . The responsibili-

Application

Transport

LLC

MAC

Physical

Fig. 2 . LAN protocol structure .
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ties of error recovery, flow control and resequenc-
ing of messages are left to the connection ori-
ented transport layer protocol .

2.1. Modelling of the token passing MAC layer

The queueing model of the token-passing MAC
layer is shown in Fig. 3 . The token serves N
MAC queues (stations and the bridge) in a cyclic
manner. The service discipline is limited service
to one [1] . Message arrive at the ith MAC queue
according to the Poisson process at a rate A ;,
i = 1, 2, . . ., N. Serve times of message at the i th
MAC queue are independent and identically dis-
tributed (i .i.d.) random variables with first and
second moments denoted by h ; and h;2~, respec-
tively. The station walking time, which is the time
required to pass the token from station i to
station i + 1, is i .i.d random variable with mean r
and variance S 2 , respectively. The utilization of
the token at the ith queue is defined as :

Pi = A,h i , i = 1, 2, . . ., N .

	

(1)

The total utilization of the LAN is then given by :

W i -

i=1

This paper deals only with the steady state of the
system . It was shown by Kiihn [3] that the follow-
ing conditions are necessary and sufficient for
stability of the token-passing system:
p < 1 and max(A,) Nr < 1 - p .

Boxma and Meister have given a very good ap-
proximate result for mean message waiting time
for the above model . That is [2]

1-p+pi

	

1-p

1-p-a i r

	

N
(1

	

2
- P)P+ EPj

j=1

p

	

N

	

NPS 2

X
2 1 -

	

E A1h'21 + 2r(

	

P) j=1

(2)

(3)

r

	

N

+ 2( 1 _ P) j=
pj(1 + pj) ,

i = 1, 2, . . ., N,

	

(4)

where w, is the mean message waiting time at the
ith queue . Then the total average message delay
(the sum of the message waiting time, the mes-
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k,

C

sage transmission time and the propagation time
between sender i and a randomly selected re-
ceiver) at the ith MAC-queue is given by :

f, = w; + h ; + Nr/2, i = 1, 2, . . . , N .

2.2. Modelling of end-to-end connections

We assume that the connection-oriented trans-
port protocol operates a window flow control
protocol to control message flow over virtual
channels/ connections among designated sta-
tions. We follow the approach of [6,71 in mod-
elling end-to-end connections . There are unidi-
rectional connections between designated pairs of
stations. Each connection has a source and a
sink, and messages on a connection are individu-
ally acknowledged via message piggyback mecha-

: Server - station

(5)

0

Fig. 3. Queueing model of the token-passing MAC layer .

Client -station

	

: Bridge

Fig. 4. Internetwork used for numerical examples .

hi, hi

i=1,2, . ..,N

nism. The maximum number of messages on a
connection is the window size of the connection .

To facilitate the following discussions, we clas-
sify stations into three types (see Fig. 4): single-
stations, server-stations, and client-stations. A
single-station can only communicate with another
single-station over the same LAN, and single-sta-
tion can support at most one connection . A sta-
tion which communicates with a server is called a
client-station . A server-station can support multi-
ple connections with one connection to each
client-station . A server-station receives service re-
quests from client-stations, processes them ac-
cording to FCFS discipline, and returns responses
to the requested client-stations .

The above assumptions lead to the end-to-end
queueing model of the internetwork shown in
Figs . 5(a) and 5(b). Figure 5(a) shows the sub-

Single -station



(a)
Station i

(b)

Server-station at LAN 1

Transport

L O
LLC

AP

LLC

Transport
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TO

model for a connection between a pair of single-
stations over the same LAN, which is a single-
chain closed-queueing network. Figure 5(b) de-
picts the submodel for connections between a
server-station and client-stations, which is a mul-
tiple-chain closed-queueing networks. There are
two types of connections in this submodel, intra-
LAN connection (corresponding to client-station
located at the same LAN as the server-station)
and inter-LAN connection (corresponding to
client-station located at the remote LAN). The
following features and assumptions are included
in our model :
• No message fragmentation and reassembly
take place throughout the entire transmission
process of a message .
•

	

The service time of the source corresponds to
the interarrival time of messages which an appli-

MAC

MAC

0-01-1

LLC

LLC

0 1 OE

Transport

Transport

Client-station 1 at LAN 1 '

Station j

Client-station 2 at LAN 1

LAN I

	

LAN 2
Fig . 5. End-to-end queueing model in the case of (a) a single-chain submodel, and (b) a multiple-chain submodel .

cation program at the source station can gener-
ate, and a message is generated at the source
only if an acknowledgement is received and pro-
cessed by the source transport layer . This is to
ensure that the number of messages and the
acknowledgements on a chain be equal to its
assigned window size . Since data message piggy-
back acknowledgements are used, the service time
at the sink station corresponds to the interarrival
time of the messages generated by the application
program at the sink station. We assume a FCFS
queue for the application program queue in the
server-station with service time AP-server, while
the application program queues in the client-sta-
tions/single-stations are modeled by IS queues
with service time AP-client/AP-single .
•

	

The LLC layer and the transport layer are
modelled by FCFS queues for all stations with
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service times denoted as LLC-single, LLC-client,
LLC-server, transport-single, transport-client and
transport-server, respectively .
• The chains interact with each other in the
MAC layer. The MAC layer is modelled as IS
queues with service time given by eq . (5) .
• The service time for all single-stations and
client-stations at the same layer (except MAC
layer) are the same .

Moreover, the inter-LAN connection model in
Fig. 5(b) has the following additional features :
• All the inter-LAN communication chains pass
the two bridges and share the same internetwork
link. The internetwork link is full duplex capable
of handling inter-LAN traffic from both direc-
tions .
• The bridging function at the bridge is mod-
elled as a FCFS queue with service time BP
representing the bridge processing time .
• The internetwork link is modelled as a FCFS
queue with service time LT corresponding to the
link transmission time . The propagation delay
between the two bridges is modelled as IS with
service time equal to LP .

3 . Solution algorithm to the end-to-end perfor-
mance model

In this section, we present an algorithm for
solving the single-chain and multiple-chain closed
queueing networks given in Figs. 5(a) and 5(b)
based on the MVA method .

3.1 . MVA algorithm for the single-chain queueing
network submodel

Define for queue j in the single-chain network
of Fig. 5(a) the following equilibrium quantities:
W

	

single-chain population, i .e . the window
size of the chain,

Q

	

a set of queues in the closed chain,
Tj

	

mean service time,
nj(W) mean queue length including message in

service,
tj(W) mean queueing time including message

service time,
A(W) throughput of the single-chain .

W r
W

Q(r)

,jr

Note that unlike the case in Murata and Takagi's
algorithm, eqs. (6) to (8) cannot be solved alone
based on MAC layer submodel given by eq . (5),
because of the unknown arrival rate at the MAC
queue for the bridge which can only be obtained
in association with the MVA algorithm for the
multiple-chain queueing network submodel de-
scribed below .

3.2. MVA algorithm for the multiple-chain queue-
ing network submodel

We now extend our solution method to the
multiple-chain queueing network of Fig . 5(b) . For
the network we define the following notations :
R

	

number of chains in the closed network
submodel (i .e ., number of inter-chains
and intra-chains) ;
window size of chain r, r = 1, 2, . . ., R ;
window size vector, which is (W 1 , . . . ,wR);

R(j)

	

set of chains visiting queue j, j E closed
network submodel ;
set of queues in chain r, r = 1, 2, . . ., R ;
mean service time of a chain r message
at queue j, j e closed network submodel,
rER(j);

ni(W) mean number of chain r messages wait-
ing and being served at queue j, j E
closed network submodel, r E R(j );

M(W) throughput of chain r, r = 1, 2, . . ., R ;
tJ (W) mean queueing time of chain r messages

at queue j, r E R(j ), j e closed network
submodel .

Then from Reiser [7] it follows that :

fi
j = MAC queue at single-station i,

Tj ,

t1(W) = j = AP queue at single-stations,
Tj [1 + nj(W - 1)],

j = Transport or LLC queue
at single-stations,

(6)
W

(7)A(W)
- L tk(W)

keQ

and

(8)n1(W) =A(W) tl (W) .



Then it follows from Reiser [7] that ;

fi,
i for given r, j = MAC queue,

Tjr ,

j = AP queue of
client-stations
or LP queue,

Tj' [l + nr(W - er )],

j = transport or LLC queue
of client-station,

Tjr f1+ E nk(W-e r )~,
L

	

kER(j)
j = BP or LT queue, or AP or
transport or LLC queue
of server-station,
Wr

tJ (W) =

A'(W)

	

E tj (W) ,

	

(10)
j EQ(r)

and
nr(W)=A'(W)tj(W),

	

(11)

where
W-er =(W', . . .,Wr-l, Wr-l, Wr+1 . . .,WR)

(12)

3.3. Solution algorithm for the performance model

Due to the interactions of chains at the MAC
layer in both submodels, the above two MVA
algorithms must be solved simultaneously to eval-
uate the end-to-end performance of the intercon-
nected network. In the above MVA algorithms,
fi 's obtained from eq . (5) are used as the service
times for the MAC queues . In turn, the A's
obtained from the MVA algorithms can be used
as the input values in eq . (5) for the MAC queues
of single-stations and client-stations . In eq. (5),
the arrival rates to the bridge/server-station
MAC queues and the first and second moments
of the message service times at the bridge/

rER'
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where R' is the set of chains in closed network
visiting bridge/ server-station MAC queue and
h r , h(2) are the first and second moments of
service time at MAC-queue of chain r . The above
relations lead us to an iterative solution algorithm
similar to the one proposed in [6] for the end-to-
end performance model :
(1) Set arrival rates A 1 , i = 1, 2, . . ., N, to the

MAC layer submodel to some initial values .
(9)

	

(2) Check A i ' s with the stability condition (3) . If
condition (3) is not satisfied, then modify the
arrival rates small enough to meet the stabil-
ity condition and calculate fi using eq . (5).
Calculate the throughput for each chain of
Figs. 5(a) and 5(b) using the corresponding
MVA algorithms . These values will be used in
the next iteration cycle as arrival rates of each
MAC queue according to eqs . (13)-(15). A
proper modification of these input values may
be needed to guarantee the convergence of
the iterative process (see Appendix) .

The convergence criterion for the iterations is
defined by

(3)

N

do = L.+ I A(in) - kin- ' ) l < E (e .g ., E = 10 6 ),
i=1

for the nth iteration .

4. Numerical results and discussion

In this section, we present numerical results to
demonstrate the end-to-end performance effects
of system parameters (e .g . window size, server
processing power and internet link capacity) .

4.1. System configuration and parameters

In all the numerical examples we consider the
example internetwork depicted in Fig . 4, where
two identical token-rings are interconnected us-
ing bridges via the internetwork link. There are
eight stations attached to each LAN . Among
these stations, there are four single-stations, one
server-station, two client-stations with intra-LAN
connection to the server on the same LAN and
one client-station with inter-LAN connection to
the server at remote LAN .

server-stations are respectively given by :
A = E d'(W), (13)

rER'
1

h = - L Ar(W )h r , (14)
A rcR'

1
h(2)

=- L Ar(W)h;2) , (15)
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The following parameters are used in our nu-
merical examples :
• The LAN speed is kept constant at 4 Mbit/s .
Message size follows the exponential distribution
with an average length of 500 bytes . Then the
message transmission time is also exponentially
distributed with mean of h = 1 ms .
•

	

The station walking time is exponentially dis-
tributed with mean r = 0 .005 ms.

1,000
(a)

I I I

Intra-LAN

4

4

8

• Processing times per message at each layer of
the network depend on the implementation of
the protocols, the processor speed, buffer passing
method, etc. The LLC processing time is assumed
to be 1 ms for all stations . The processing times
at the transport layer and AP layer in single/
client-stations are 6 ms and 25 ms, respectively .
High performance stations are assumed for the
servers with processing time of 3 ms or 6 ms at

12

W-single, W-intra, W-inter

8 12

16

16

20

20

W-single, W-intra, W-inter
Fig. 6 . (a) Average delays with AP-server = 5 ms, transport server = 6 ms, LT = 4 ms ; (b) Throughput with AP-server = 5 ms,

transport-server = 6 ms, LT = 4 ms.

y
E
0
Acd
G).d
4)
cd

d
Q

100
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1
0

0.14

0 .12

0 .1

aa
0.08

2
9 0.06

0.04

0.02



the transport layer and 3 ms or 5 ms at the AP
layer, respectively .
• The bridge processing time BP is assumed to
be comparable with LLC processing time, and is
1 ms .
• The internet link speed can be 1 Mbit/s, 0 .67
Mbit/s, or 0.33 Mbit/s, which corresponds to
mean message transmission time LT = 4 ms, 6 ms
and 12 ms, respectively, for an average message
size of 500 bytes .

h
E

1,000

100

0 .12

0.1

0.08
0az
ao
a
2 0.06
PC

0.04

0.02

0
0

W-single, W-intra, W-inter

Fig. 7. (a) Average delays with AP-server = 3 ms, transport server = 3 ms, LT = 4 ms; (b) Throughput with AP-server = 3 ms,
transport-server = 3 ms, LT = 4 ms .

(a)
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•

	

Propagation delay LP between the two bridges
is 0 .05 ms .

4.2. Numerical and simulation results

Here, numerical results are presented and
compared to the simulation results in order to
validate the accuracy of the modelling approach .
Computer simulation has been carried out based
on smpl simulation program [5] . Throughout the

Intra-LAN

End-to-end

i
4

4

Single-station

Inter-LAN

MAC-client Internetwork link

1

8

8

1

12

W-single, W-intra, W-inter

12

Transport-server

16 20

(b)

Intra-LAN

Single-station

Inter-LAN

	I I	 I

16 20
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following examples, the simulation results are
shown as 'N' and the numerical results are plot-
ted by curves. We use W-single, W-intra, and
W-inter to denote the window sizes of the single-
station connection, intra-LAN connection, and
inter-LAN connection, respectively . Figures 6(a)
and 6(b) show the internetwork performance for
the case of W-single = W-intra = W-inter =
1, 2, . . ., 20, LT = 4 ms, transport-server = 6 ms,

ev
y
T
ad
GJ

4)
GD
CtF.
N

Q

(b)
Intra-LAN

W-inter

AP-server = 5 ms. Figure 6(a) shows the average
delays at MAC queues, transport queues and the
internetwork link queues. Average end-to-end de-
lays for single-LAN, intra-LAN and inter-LAN
connections are also shown in the figure . The
throughput per single-station, intra-LAN and in-
ter-LAN connection are plotted in Fig . 6(b).
These figures indicate that numerical results are
in good agreement with the simulation results .

I	I	I	i	I	i	

5

	

10

	

15

	

20

	

25

	

30

	

35

	

40

W-inter
Fig. 8. (a) Average delays with W-single = W-intra = 8, AP-server = transport server = 3 ms, LT = 6 ms ; (b) Throughput with

W-single = W-intra = 8, AP-server = transport-server = 3 ms, LT = 6 ms .

0.1

0.08

a 0.06rao
0
0

0.04
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From Fig. 6(a) we see that delays at MAC layer
increase monotonically as the window size goes
up. The bottlenecks reside at transport layer of
server-stations . Figure 6(b) shows that the
throughput for single-station connection is much
larger than that of intra-LAN and inter-LAN
connections. This is because the delays at trans-
port layer of the single-stations are much smaller
than those at the server-stations .

N
In
T
cV
0)
b
N
CD

0

Q

1,000

100

10

0.1

0.08

c. 0.06
ena0

0.02

0
0
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5

10

10

1

15

15

Next, we demonstrate the effect of changing
the processing time of server-stations at transport
layer and AP layer. Figures 7(a) and 7(b) show
the average delays and throughput for the case
with W-single = W-intra = W-inter = 1, 2, . . . , 20,
LT = 4 ms, transport-server = AP-server = 3 ms .
In this case, the system bottlenecks still reside at
the transport layer for small window sizes ; how-
ever, as the window sizes reach such values that

i
20

W-inter

1

25

25

30

30 35

35

	

40

(b) Intra-LAN

. .

i i i i

Single-station

i I

40
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20

W-inter
Fig. 9. (a) Average delays with W-single = W-intra = 8, AP-server = transport server = 3 ms, LT = 12 ms; (b) Throughput with

W-single = W-intra = 8, AP-server = transport-server = 3 ms, LT = 12 ms .
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the system throughput becomes saturated (this
happens in Fig. 7(b) for window size larger than
10), the bottlenecks shift to the MAC layer . From
Fig . 7(b) we see that throughput of intra-LAN
and inter-LAN connection increase significantly
compared with the low speed server-station case .

The influence of the internetwork link trans-
mission capacity on system performance is pre-
sented in Figs. 8 and 9, where we compare the
average delays and throughput with variable
transmission capacity of the internetwork link for
LT = 6 ms and 12 ms, and W-single = W-intra =
8, W-inter = 1, 2, . . . , 40, Transport-server = AP-
server = 3 ms . From Figs. 8(a) and 9(a) we can
see that, except for very small values of W-inter,
the internetwork link is the bottleneck. This is
true in almost all practical systems where the
internetwork link capacity is smaller than the
transmission capacity of the LANs . We observe
from Fig. 8(b) that when W-single and W-intra
are fixed, the throughput per inter-LAN connec-
tion can be varied by changing the window size
W-inter, and it is possible for inter-LAN through-
put to exceed the intra-LAN throughput (per
connection), even with the internetwork link as
the bottleneck. However, as we can see from Fig .
9(b) that this situation will change when the
transmission capacity of the internetwork link is
reduced to a certain level . In this case, due to the
increased link processing time, the inter-LAN
throughput per connection is always less than the
intra-LAN throughput per connection, no matter
what values W-inter may take .

The impact of the bridge processing time to
the internetwork performance is similar to that of
the internetwork link transmission capacity .
Therefore, the corresponding curves are not in-
cluded in this paper .

5. Conclusion

In this paper we have investigated the end-to-
end performance of interconnected LANs with
server/client configuration . The end-to-end per-
formance model of the interconnected network
was built based on single-chain and multiple-chain
closed queueing network models. An iterative
algorithm for multiple-chain closed-queueing net-
work was developed based on the MVA method .

Numerical examples and computer simulations
were presented to show the performance charac-
teristics of the interconnected system. Our results
indicated that the window size, server processing
speed and internetwork transmission capacity
have significant influences on the end-to-end in-
terconnected network performance .

Appendix

Solution algorithm for a multiple-chain closed-
queueing network

First, let us start with the algorithm proposed
by Murata and Takagi [6] for a single-chain
closed-queueing network and observe what hap-
pens when it is applied to multiple-chain closed-
queueing network . The algorithm for a single-
chain closed-queueing network is stated as fol-
lows [6] :

Initialize arrival rates A1,° ) and abase for all i .
(Iteration cycle) check A (i") 's with the stabil-
ity condition (3) . If condition (3) is not satis-
fied, then

base + A(n)

2

	

(A.1)

(3) Calculate the mean message waiting times f
using (5).

(4) For all closed-queueing networks do :
(a) solve for the throughput of each chain

using (6) to (8) and denote it A,(") , Vi.

(b) If the derived throughput A,(" ) is greater

(1)
(2)

A(i" ) --=

(5) Let n = n + 1, go to step (2) for continuing
iteration until the criterion is met .
In the above algorithm, Abase is the maximum
value which guarantees the iteration does not
diverge in the current step. Obviously, the itera-
tion cycle will converge to Abase if the derived
throughput A,( " ) is kept smaller than the pervious

than A(;" ) , then let

Abase G A(n) (A .2)

A(i" ) <-.--
A'(" )

`
+ A(">

(A .3)2

Otherwise, let

(A .4)
A(n)

G

Abase + A(n)
i

	

r

2



input, A(," ) . However, in the case of multiple-chain
closed-queueing network, the throughputs for dif-
ferent chains interact with each other at the
MAC layer so that the changes in mean message
waiting times for chains are not consistent, which
may lead to the derived output Al

(n) converge to
some other value when the input A (;" ) converges
to A i's' Therefore, the modification of Abase be-
comes necessary when A,(n) does not converge to
Abase Our iterative algorithm for a multiple-chain
closed-queueing network is then given as follows
based on the above observation :
(1) Initialize arrival rates A(i°) and Ayse for all i .
(2) Follow the steps 2) to 4) as mentioned above .
(3) If

J. Du et al. / Interconnected LANs with server / client configuration

(4) Let n = N + 1, go to step (2).
The numerical examples showed that the itera-

tions which do not converge by using the algo-
rithm proposed by [61 will reach the right points
by using our modified algorithm . It also showed
that the iteration times depends on the system
parameters, such as window size and processing
time. For example, we needed 5 iterations to
converge for the example presented in Fig . 6 with
W-single = W-intra = W-inter = 2 while 32 itera-
tions for W-single = W-intra = W-inter = 20 .
When transport-server = AP-server = 3 ms as in
the case of Fig . 7, 1292 iterations were required
for W-single = W-intra = W-inter = 20 .
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