
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

4-2001

TCP HACK: TCP Header Checksum Option to
Improve Performance Over Lossy Links
Rajesh Krishna BALAN
National University of Singapore, rajesh@smu.edu.sg

Boon Peng LEE
National University of Singapore

Renjish KUMAR
National University of Singapore

Jacob Lillykutty
National University of Singapore

Winston Seah
National University of Singapore

See next page for additional authors

DOI: https://doi.org/10.1109/INFCOM.2001.916713

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BALAN, Rajesh Krishna; LEE, Boon Peng; KUMAR, Renjish; Lillykutty, Jacob; Seah, Winston; and Ananda, A. L.. TCP HACK: TCP
Header Checksum Option to Improve Performance Over Lossy Links. (2001). INFOCOM 2001: Proceedings of 20th Annual Joint
Conference on Computer Communications, 22-26 April 2001, Anchorage, Alaska. 309-318. Research Collection School Of Information
Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1204

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/INFCOM.2001.916713
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1204&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1204&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Rajesh Krishna BALAN, Boon Peng LEE, Renjish KUMAR, Jacob Lillykutty, Winston Seah, and A. L.
Ananda

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/1204

https://ink.library.smu.edu.sg/sis_research/1204?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1204&utm_medium=PDF&utm_campaign=PDFCoverPages

 1

TCP HACK: TCP Header Checksum Option to improve Performance over Lossy

Links

R. K. Balan, B. P. Lee, K. R. R. Kumar
L. Jacob, W. K. G. Seah, A. L. Ananda

Centre for Internet Research,
 School of Computing,

 National University of Singapore,
55 Science Drive 2, Singapore 117599

{rajeshkr, leebp, kaleelaz, jacobl, wseah, ananda}@comp.nus.edu.sg

Abstract

In recent years, wireless networks have become
increasingly common and an increasing number of
devices are communicating with each other over
lossy links. Unfortunately, TCP performs poorly
over lossy links as it is unable to differentiate the
loss due to packet corruption from that due to con-
gestion. In this paper, we present an extension to
TCP which enables TCP to distinguish packet cor-
ruption from congestion in lossy environments re-
sulting in improved performance. We refer to this
extension as the HeAder ChecKsum option
(HACK). We implemented our algorithm in the
Linux kernel and performed various tests to deter-
mine its effectiveness. Our results have shown that
HACK performs substantially better than both
SACK and NewReno in cases where burst corrup-
tions are frequent. We also found that HACK can
co-exist very nicely with SACK and performs even
better with SACK enabled.

Keywords: Protocol Design, Protocol Analysis,
Wireless Networks

1 Introduction

There has been a proliferation in the use of mobile
computing in the last few years. More and more
devices are talking to each other via lossy links.
Lossy environments are characterised by high bit
error rates as opposed to wired networks where the
bit error rate is very low. They are also usually
served by low bandwidth links and experience long
delays during handoff periods. As a result, it has
become vital that the network protocols used to
interconnect these devices understand and operate
well in these lossy environments.

The de-facto network protocol stack used for com-
munications is the TCP/IP stack. This stack couples
a best effort network layer (IP) with either a reli-
able (TCP) or an unreliable (UDP) transport layer.
The majority of applications on the Internet use the
TCP/IP stack as the basis for their transactions.

However, TCP was designed to optimise its per-
formance to deal with packet losses in the network
due to congestion [Jac88]. It is unable to determine
if a packet loss is due to congestion or corruption of
the packet due to errors in the network. As a result,
TCP generally performs poorly in lossy environ-
ments as it interprets packet corruption as conges-
tion in the network. Thus instead of increasing or,
at least, maintaining its sending rate to overcome
these errors due to corruption, TCP will decrease its
sending rate to reduce, what it perceives as, conges-
tion in the network. This reduction in sending rate
results in low throughputs for bulk transfers.

In this paper, we propose a modification to the TCP
[RFC793][RFC2581][S94] protocol that allows it
to perform better in lossy environments. We base
our solution on the premise that when packet cor-
ruption occurs, it is more likely that the packet cor-
ruption occurs in the data and not the header por-
tion of the packet. This is because the data portion
of a packet is usually much larger than the header
portion for many applications over typical MTUs.
With this knowledge, we have devised an algorithm
by which TCP is able to recover these uncorrupted
headers and thus determine that packet corruption
and not congestion has taken place in the network.
TCP can then react appropriately. We do this by
introducing two TCP options: the first option is for
data packets and contains the 1’s-complement 16-
bit checksum of the TCP header (and pseudo-IP
header) while the second is for ACKs and contains

 2

the sequence number of the TCP segment that was
corrupted.

The rest of this paper is organised as follows. We
discuss some related work in Section 2, followed
by a description of the details and dynamics of our
extension to the TCP protocol in Section 3. Section
4 will describe our implementation while Section 5
presents the results of our experiments. We discuss
some possible deployment strategies of our proto-
col in Section 6. Section 7 will detail our future
plans and we conclude with a summary in Section
8.

2 Related Work

There has been an incredible number of techniques
developed for TCP over the past decade facilitating
fast and efficient recovery from packet losses in
general.

The fast retransmit algorithm [RFC2581] interprets
incoming duplicate acknowledgements as an indi-
cation of packet loss and retransmits the packet in-
dicated by the ACKs while avoiding timeouts.
However, if two or more packets have been lost
from a window, the fast retransmission will not be
able to recover the losses without waiting for a
timeout. NewReno [Hoe95][Hoe96][RFC2582]
introduces the concept of fast retransmission phase,
which starts on detection of a packet loss and ends
when the receiver acknowledges reception of all
data transmitted at the start of the retransmission
phase. The sender assumes reception of a partial
ACK during the fast retransmission phase as an
indication that another packet has been lost within
the window, and retransmits it immediately. With
the Selective Acknowledgement (SACK) option
[RFC2018] enabled, the receiver sends duplicate
ACKs containing the segment numbers of the
packets it has received. This allows the transmitter
to selectively retransmit only lost packets, without
retransmitting already SACKed packets.

Packet loss due to corruption is more common over
satellite and wireless networks than wired networks
and there have been a number of initiatives in tack-
ling this problem.

A common solution is to add Forward Error
Correction (FEC) to the data being sent over lossy
links. [RFC2488] covers the issues in using FEC to
improve the performance of satellite links. The In-
direct-TCP (I-TCP) protocol [BB] splits a TCP

connection between a fixed and mobile host into
two separate connections and hides TCP from the
lossy link by using a protocol optimised for lossy
links. The SNOOP protocol [BSAK] caches pack-
ets at the base station and performs local retrans-
missions over the lossy link.

The use of Explicit Congestion Notification (ECN)
[Flo94][RFC2481] in the TCP/IP protocol enables
routers to inform TCP senders about the onset of
congestion and may assist in distinguishing packet
losses due to congestion and corruption. Other ex-
plicit notification schemes include Explicit Loss
Notification (ELN) [BPSK] and Explicit Bad State
Notification (EBSN) [BKVP].

3 TCP Header Checksum Option

We extended TCP by including two additional TCP
options. The first (see Fig. 1) is both an enabling
option used in SYN segments as well as the Header
Checksum option used in data segments. When the
option is used in a SYN segment, it is an indication
that the Header Checksum option can be used once
the connection is established (the value of the op-
tion field is ignored in this case). When used in
data segments, the option field contains the 16 bit
1’s complement checksum of the TCP header and
the pseudo-IP header. The second option (see Fig.
2) is the Header Checksum ACK option which is
included in ‘special’ ACKs generated in response
to packet corruption.

Kind=14

Length=4

1’s complement checksum
of TCP header and
pseudo-IP header

Kind=15

Length=6

32-bit sequence number of
corrupted segment to re-
send

Normally, TCP carries only one checksum, which
is for the entire TCP segment. If this checksum
fails due to packet corruption, the entire segment is
discarded. However, in many cases, the headers of
the corrupted TCP segment are still recoverable as
the corruption might have occurred in the data por-
tion alone. Hence, by adding a separate checksum

Fig. 2: TCP Header Checksum ACK option

Fig. 1: TCP Header Checksum option

 3

for the header portion of the TCP segment, the TCP
receiver will be able to check the integrity of the
header. By recovering this header, the receiver is
able to send a ‘special’ ACK back to the TCP
sender indicating packet corruption. This ACK will
contain the sequence number of the corrupted
packet in the option field. This ACK is identical to
normal ACKs except for the additional option.

We modified the data processing algorithms of the
TCP sender and receiver and the ACK processing
algorithm of the TCP sender to incorporate our new
Header Checksum options, which are explained in
the following subsections.

3.1 Modifications to the TCP sender

When sending out data segments, our modified
TCP stack first checks if the Header Checksum op-
tion has been negotiated. If the option has not been
negotiated, the TCP sender proceeds as per normal.
Otherwise, it will compute the header checksum for
that data segment and place it into the option field

of the Header Checksum option. The rest of the
data sending algorithm is as per normal.

3.2 Modifications to the TCP receiver

When the TCP receiver receives a packet, it verifies
the integrity of the segment using the standard TCP
checksum. If the segment is uncorrupted, it is proc-
essed as per normal. However, if it is corrupted, the
modified TCP stack does the following:

1) Verify the integrity of the header of the cor-
rupted segment using the value of the header
checksum contained in the option field.

2) If the header is corrupted, the segment is dis-
carded and no further processing is done.

3) If the header is intact, the ‘special’ ACK is sent
to the sender of the corrupted packet. This
ACK will contain the Header Checksum ACK
option indicating to the sender that this ACK
was generated in response to packet corruption.
It contains the sequence number of the cor-
rupted segment in the option field, thus allow-
ing the sender to selectively retransmit only the
segment that was corrupted.

3.3 Modifications to the ACK processing

When the TCP sender receives an ACK, it checks if
the Header Checksum ACK option is present. If the
option is not there, it indicates that this is a normal
ACK and the sender processes it as per normal.
However, if the option field is set, the stack does
the following:

 TCP segment cor-
rupted?

Continue as per normal

1) Recover sequence number of corrupted segment from
header.

2) Generate ‘special’ ACK (option 15) containing the
sequence number of the corrupted segment.

Yes

No

Data segment
received

 Header portion
corrupted?

Discard Packet
Yes

No

Fig 4. Modifications to the TCP receiver

 Header checksum
option enabled?

Continue as per normal

1) Calculate header checksum of segment
2) Continue as per normal

Yes

No

Data segment
to be sent

Fig 3. Modifications to the TCP sender

 4

1) The sequence number of the corrupted segment
triggering this ACK is obtained from the
Header Checksum ACK option field.

2) The TCP retransmission algorithm is called to
selectively retransmit the corrupted segment.
These retransmissions are done at rates permit-
ted by the current congestion window (cwnd).

3) No further processing is done unlike the case of
normal TCP ACKs.

These ‘special’ ACKs do not indicate congestion in
the network. Hence, the TCP sender does not halve
it’s cwnd if it receives multiple ‘special’ ACKs
with the same value in the ACK field (for e.g.,
ACKs generated in response to corruption in con-
secutive segments. These ACKs will have the same
value in the ACK field but different values in the
Header Checksum ACK option field).

4 Implementation and Experimental Setup

We incorporated our Header Checksum options and
the necessary changes to the TCP algorithm in the
Linux kernel version 2.2.10. This modified version
of the Linux kernel was installed on our experimen-
tal testbed consisting of Celeron 300A machines
with 128 megabytes of RAM each. The machines
were connected using Intel Ether-Express Pro 100
(set to 10 Mbps) network cards. The experimental
testbed is shown in Fig. 6.

We ran our experiments by sending TCP bulk data
from the client to the server. We used iperf [BC98]
to generate this data. The error / delay box was
used to corrupt and delay packets in the network to
simulate lossy and long latency environments,

respectively. Random as well as bursty packet er-
rors were generated using packet corruption soft-
ware and the amount and location of the corrup-
tions within a packet were all randomised. For our
experiments, errors were generated only to packets
travelling on the forward path. Packets on the re-
verse path (the ACK packets from the server to the
client) were not corrupted.

We modified the device drivers of the ethernet
cards to stop them from discarding packets that
failed the packet CRC checks. As a result, cor-
rupted packets arriving at the network cards were
passed up to the TCP/IP stack without being dis-
carded.

5 Results and Discussions

To test the effectiveness of HACK, we ran a variety
of test scenarios. These scenarios were designed to
test the performance of HACK under various lossy
environments. We chose NewReno and SACK for
comparison as Linux implements both of them and
they are acclaimed as the “best” basic and extended
commodity TCP implementations, respectively
[BHZ][FF96][RFC2582].

5.1 Random Bit Errors

In the first experiment, we compare the perform-
ance of HACK with SACK (on top of NewReno)
and NewReno (default TCP stack in Linux 2.2.10)
in the presence of white noise, i.e., in a scenario
where the error condition is characterized by sharp
spikes causing single bit corruptions. We have
translated this bit error profile into packet errors
(Our packet corruption probabilities range from
2% to 15% corresponding to a bit error range of
1x10-6 to 1x10-5). We ran the experiment over a low
latency link (10 ms end-to-end delay) by sending 2
MB of TCP bulk data from the client to the server
and over a long latency link (300 ms end-to-end
delay, e.g., satellite link) by sending 256 KB of
TCP bulk data from the client to the server. In the

Client

Server

Error / Delay Box

Fig 6. Experimental testbed

 Option 15 present
in the segment?

Continue as per normal

1) Extract sequence number of corrupted segment
2) Selectively retransmit the segment
3) ACK is discarded without further processing

Yes

No

ACK segment
received

Fig 5. Modification to the ACK processing

 5

later case, we used 256KB to reduce experiment
time as 2 MB was taking too long to complete. We
repeated the experiment five times for each TCP/IP
stack and for each packet corruption probability.
The TCP window size was set high enough that it

was not a limiting factor for either latency. The
results of this experiment are shown in Fig. 8 for
the low latency link and in Fig. 9 for the long la-

tency link. Fig. 7 shows the average number of
slow starts experienced by the various TCP imple-
mentations over the long latency link.

As can be seen, both SACK and HACK perform
better than NewReno for both latencies. They also
experience less slow starts than NewReno. These
results were due to the selective ACK feature of
SACK (which enabled SACK to do more intelli-
gent and efficient retransmissions of lost packets)
and the ability of HACK to recover useful informa-
tion from corrupted packets. Hence, we exclude
NewReno from all further experiments and only
show the comparison between SACK and HACK.
The performance of both SACK and HACK are
comparable in the situation where white noise is
prevalent. The best performance is achieved when
we combine both HACK and SACK together. This
will be discussed further later.

5.2 Burst Errors

We next ran experiments to compare the perform-
ance of SACK and HACK in bursty error condi-
tions. Multi-packet random burst errors with burst
lengths ranging from 2 to 10 packets were consid-
ered. We ran this experiment over the long latency
link with the window size set high enough not to be
a limiting factor

Figs. 10 – 13 show the results of the various TCP
schemes under different burst error lengths for 2%,
5%, 10% and 15% burst error probabilities respec-
tively. From the graphs, it can be seen that HACK
performs substantially better than SACK in the

Fig. 7: Average number of slow-starts for long latency link with random
single packet errors

0

10

20

30

40

50

60

70

0 3 6 9 12

Percentage Packet Loss (%)

A
ve

ra
ge

 N
u

m
b

er
 o

f
S

lo
w

-S
ta

rt
s newreno

sack

hack

hack+sack

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Percentage Packet Loss (%)

Th
ro

ug
hp

ut
 (

K
B

yt
es

/s
)

sack

hack+sack

hack

newreno

1

2

3
4

1

2

3

4

Fig 8. Throughput versus percentage packetlposs for short latency (10 ms) link with random single packet errors

 6

presence of bursty errors. This is because SACK is
unable to respond when it loses too many packets
in a row and thus it times out frequently. HACK is
better in this respect as it can recover some of the
headers of the corrupted packets and use those
headers to generate ACKs and keep the pipe flow-
ing. As expected, HACK performs better with
SACK activated than without SACK. This is be-

cause HACK is able to leverage upon the out of
order packet retransmission algorithms in SACK.
HACK creates these out of order situations as it
may not be able to recover the headers of all the
packets corrupted in a burst due to the random na-
ture of the bit errors within each packet. For exam-
ple, if say 5 packets are corrupted, HACK may only
be able to recover the headers of packets 2, 4 and 5
with packets 1 and 3 being irretrievable. This cre-
ates gaps in the receiving window, as HACK will
only ask for retransmissions of the packets whose
headers it can recover. However, if SACK is acti-
vated, these gaps will be detected and handled ac-
cordingly. Another example would be as follows;
suppose the TCP receiver receives segments x+1,
x+2 and x+3 correctly but segment x is corrupted.
In this case, the receiver will generate one ‘special’
ACK in response to segment x and three normal
ACKs in response to segments x+1, x+2 and x+3.
However, the three normal ACKs will appear to the
TCP sender as dupacks as they all will be acknowl-
edging segment x (the next segment expected by

the receiver). Hence, the sender will needlessly go
into fast retransmit. SACK eliminates this problem
as it will be able to inform the TCP sender about
the gaps in the receiving window. This leveraging
is possible because the HACK and SACK have dis-
joint sets of operations, thus preventing any con-
flicts during packet processing. However, it must
be re-emphasised that HACK without SACK is still

much better than just SACK alone (albeit with po-
tentially more out of order packets being gener-
ated). Thus both SACK and HACK can benefit
very nicely from each other’s properties.

To clearly show how well HACK performs in
bursty error conditions, we compared the time se-
quence graphs (TSG) of HACK, SACK and
HACK+SACK for 5% error probability with a
burst error length of 5 packets. Tcptrace [Ost97]
was used to generate the TSG graphs (as xplot
[She97] data files) from our tcpdump capture files
of the data transferred between the server and the
client during the experiment. Xplot was used to
display the TSG graphs and we captured the output
on the screen using a screen capture utility. The
TSG for HACK+SACK is shown in Fig. 14, HACK
in Fig. 15 and SACK in Fig. 16. It can be seen that
HACK and HACK+SACK perform much better
than SACK in keeping the data pipe flowing in the
presence of burst errors as they do not have long
periods of idle activity / timeouts (shown as long

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Percentage Packet Loss (%)

Th
ro

ug
hp

ut
 (

K
B

yt
es

/s
)

sack

hack+sack

hack

newreno

1

2

3

4

1

2

3

4

Fig 9. Throughput versus percentage packet loss for long latency (300 ms) link with random single packet errors

 7

horizontal lines in the TSG indicating that the
sequence number for the TCP connection has not
increased during that time period). HACK+SACK
works better than HACK due to the reasons men-
tioned previously. It must be noted that the time

scale of the various TSG graphs are different and
that SACK takes a much longer time to finish than
both HACK and HACK+SACK. This is shown in
Fig. 17 which displays the instantaneous through-
put versus time. As can be seen, SACK takes about
2600 seconds to finish as compared to about 430
seconds for HACK and 140 seconds for
HACK+SACK. Thus HACK and HACK+SACK
enjoy a much higher throughput than SACK in
bursty error conditions.

5.3 Effect of Window Sizes

So far in our experiments, we kept the window size
large enough not to be a bottleneck. Next, we con-
sider the effect of smaller window size on the per-
formance of HACK and SACK. It is clear that
when there are a number of errors and window size
is small, more timeouts and hence slow starts are
likely to occur, resulting in throughput degradation.
However, HACK will keep the pipe flowing be-
cause of the `special' ACKs, and hence will result
in better throughput. To confirm this, we compared
the effects of various window sizes on SACK and

HACK. We ran this experiment over long latency
links for burst errors with burst lengths ranging
from 1 to 10 packets. We transferred 256 KB of
data from the client to the server with two distinct
window sizes: 16KB and 64KB. Figs. 18 – 20 show

the throughput of the various TCP schemes under
different burst error lengths for burst error prob-
abilities of 2%, 5%, and 10%, respectively, for a
window size of 16 KB. As can be seen, HACK per-
forms better than SACK even when the window
size is small (thus becoming a limiting factor in
determining the amount of data that can be sent
over a link), and HACK+SACK performs better
than HACK. The reasons for these improvement
are as stated previously. Figs. 21 - 23 show the re-
sults for the same error probabilities and burst
lengths but for a window size of 64 KB. In this case
as well, HACK performs much better than SACK
and HACK+SACK performs better than HACK.

These results clearly show that HACK performs
better than SACK in bursty error conditions for
window sizes which are typically used by many
TCP stacks (without the optional window scaling
option enabled). Note that the superior performance
of HACK over SACK is more prominent for
smaller window size.

1 2 . 9 8 8

2 0 . 0 8 3 8 1 9 . 7 5 9 5

1 5 . 5 9 5 8

3 . 5 4 0 6

1 6 . 4 3 6

1 9 . 9 4 8 6

0 . 5 4 0 2

4 . 6 4 2 8

0

5

10

15

20

25

2 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (

K
B

/s
)

hack+sack
hack
sack

Fig 10. Throughput for 2% burst error for various burst lengths

1 1 . 0 1 6 2

1 1 . 6 9 3 4

8 . 5 3 1

5 . 9 5 8 2
7 . 6 9 6 4

1 . 4 0 2 2

0 . 2 1 1 20 . 7 4 5 4

8 . 5 6 0 8

0

2

4

6

8

10

12

2 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (

K
B

/s
)

hack+sack
hack
sack

Fig 11. Throughput for 5% burst error for various burst lengths

4 . 8 5 4 4

0

1 . 6 5 3 2
2 . 0 1 1 2

0 . 7 8 8 6

3 . 1 5 1 8

2 . 1 0 9 41 . 0 7 1

0 . 0 3 5

0

1

2

3

4

5

6

2 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (

K
B

/s
)
hack+sack

hack

sack

Fig 13. Throughput for 15% burst error for various burst lengths

7 . 1 9 3 8
5 . 9 9 2 2

2 . 7 7 2 44 . 4 4 0 2

2 . 9 3 1 6

1 . 4 0 2 2
2 . 9 4 9 4

0 . 1 4 2 0 . 0 3 6
0

2

4

6

8

10

2 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (

K
B

/s
)

hack+sack

hack

sack

Fig 12. Throughput for 10% burst error for various burst lengths

 8

Fig 15. Time Sequence Graph for HACK

0

100

200

300

400

500

0 400 800 1200 1600 2000 2400 2800

Time (s)

T
h

ro
u

g
h

p
u

t
(K

b
/s

)

hack+sack

hack

sack

Fig 17. Throughput versus Time graph for various TCP implementations

Fig 14. Time Sequence Graph for HACK+SACK

Fig 16. Time Sequence Graph for SACK

1 0 . 7 0 5

4 . 6 5 6

1 4 . 3 2 6 4

1 2 . 0 4 51 3 . 7 4 2 4

1 2 . 3 9 3

6 . 2 7 5

0 . 2 6 7

1 5 . 2 3 0

0
2
4
6
8

10
12
14
16
18

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (

K
B

/s
)

hack+sack
hack
sack

Fig 18. Throughput for 2% burst error for various burst lengths
 (window size of 16KB)

2 . 4 6 7

5 . 9 7 5
6 . 8 2 6

8 . 8 3 4

4 . 9 2 8

9 . 4 3 5

0 . 8 2 4
0 . 1 0 6

8 . 8 5 1

0

2

4

6

8

10

12

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (

K
B

/s
)

hack+sack
hack
sack

Fig 19. Throughput for 5% burst error for various burst lengths
 (window size of 16KB)

 9

6 Deployment

In scenarios where it may be difficult to determine
if HACK is necessary (e.g., if the end user is un-
aware of the existence of any lossy links within the
network), a feasible solution would be to place TCP
tunnels (similar to IP tunnels except that TCP is
used for the encapsulation) across those links and
enable HACK for those tunnels.

These tunnels would be deployed by the network
administrators of the lossy links. Traffic entering
these lossy links will be encapsulated within TCP
tunnels and these tunnels can then use the Header
Checksum option to maximise their throughput
over these lossy links. In this scenario, the end us-
ers do not have to change any of their software or
even be aware of the presence of lossy links in the
network to benefit from the use of the Header
Checksum option. The properties of TCP tunnels is
described in [LBJSA] and a complete system which
provides quality of service (QoS) guarantees while
using TCP tunnels is described in [BLJSA].

7 Conclusions

In this paper, we have presented the TCP Header
Checksum extensions to TCP to recover from
packet loss due to corruption in lossy environments.
HACK allows TCP to detect packet loss due to
corruption and recover the necessary information so
that the sender may be notified of this corruption
allowing it to retransmit the corrupted segment
immediately. The sender avoids throttling its send-
ing rate as the loss is not indicative of congestion.

Our experiments have shown that HACK performs
substantially better than SACK in environments
where burst corruptions are prevalent. In these en-
vironments, SACK will time out incessantly
whereas HACK manages to keep the data pipe
flowing somewhat. The optimal level of perform-
ance is achieved when HACK is run together with
SACK.

Work is being done to test the effectiveness of
HACK and HACK + SACK in situations where
ACKs are also susceptible to packet corruption, and

Fig 22. Throughput for 5% burst error for various burst lengths
 (window size of 64KB)

4.458

7.118

2.825

11.81111.900

7.908

8.565

0.750 0.211
0
2
4
6
8

10
12
14

1 5 10
Length of Burst Error (packets)

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

hack+sack
hack
sack

4 . 2 9 4
4 . 2 5 2

5 . 4 4 6

2 . 8 2 8

5 . 1 6 7

3 . 9 2 5

1 . 9 0 3

0 . 0 4 50 . 2 5 1

0

1

2

3

4

5

6

7

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (

K
B

/s
)

hack+sack
hack
sack

Fig 20. Throughput for 10% burst error for various burst lengths
(window size of 16KB)

Fig 21. Throughput for 2% burst error for various burst lengths
(window size of 64KB)

1 3 . 7 0 1

1 0 . 8 1 2

3 . 7 4 6

1 8 . 7 7 5

2 1 . 0 8 0

1 7 . 8 5 8

1 3 . 7 3 2

2 . 3 6 5
0 . 4 8 9

0

5

10

15

20

25

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (

K
B

/s
)

hack+sack
hack
sack

Fig 23. Throughput for 10% burst error for various burst lengths
(window size of 64KB)

1 . 4 5 5

7 . 2 6 4

4 . 4 6 0

3 . 7 6 5

5 . 2 6 5

2 . 5 9 6

6 . 8 3 4

0 . 1 2 1 0 . 0 1 5
0
1
2
3
4
5
6
7
8
9

1 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (

K
B

/s
)

hack+sack

hack

sack

 10

where congestion occurs along with corruption. We
also plan to extend our test and measurements of
HACK to real wireless and satellite links.

References

[BLJSA] R. K. Balan, B. P. Lee, L. Jacob,

W. K. G. Seah, A. L. Ananda,
“Adaptive QoS Provisioning for
Traffic between Border Routers”,
Submitted to ICNP 2000.

[BB] A. Bakre, B. R. Badrinath, “Hand-

off and System Support for Indirect
TCP/IP”, Proceedings of Second
Usenix Symposium on Mobile and
Location-Independent Computing,
April 1995.

[BC98] P. Barford and M. Crovella, “Gen-

erating Representative Web Work-
loads for Network and Server Per-
formance Evaluation”, Proc. ACM
SIGMETRICS ’98, June 1998

[BHZ] R. Bruyeron, B. Hemon, L. Zhang,

“Experimentations with TCP Se-
lective Acknowledgement”, ACM
SIGCOMM

[BKVP] B. S. Bakshi, P. Krishna, N. H.

Vaidya, D. K. Pradhan, “Improving
Performance of TCP over Lossy
Networks”, Texas A&M Univer-
sity.

[BSAK] H. Balakrishnan, S. Seshan, E.

Amir, R. H. Katz, “Improving
TCP/IP Performance over Lossy
Networks”, Proc. 1s t ACM Int’l
Conf. On Mobile Computing and
Networking (Mobicom), Nov
1995.

[BPSK] H. Balakrishnan, V. N. Padmanab-

han, S. Seshan, R. H. Katz, “A
Comparison of Mechanisms for
Improving TCP Performance over
Lossy Links”, IEEE/ACM
Transactions on Networking, Dec
1997.

[FF96] K. Fall, S. Floyd, “Simulation-
based Comparisons of Tahoe,
Reno, and SACK TCP”, Computer
Communications Review, July
1996.

[Flo94] S. Floyd, “TCP and Explicit Con-

gestion Notification”, ACM CCR,
October 1994.

[Hoe95] J. Hoe, “Startup Dynamics of

TCP’s Congestion Control and
Avoidance Schemes”, Master’s
Thesis, MIT, 1995

[Hoe96] J. Hoe, “Improving the Startup Be-

haviour of a Congestion Control
Scheme for TCP”, ACM SIG-
COMM 1996.

[Jac88] Van Jacobson, “Congestion Avoid-

ance and Control”, ACM SIG-
COMM 1988.

[LBJSA] B. P. Lee, R. K. Balan, L. Jacob,

W. K. G. Seah, A. L. Ananda,
“TCP Tunnels: Avoiding Conges-
tion Collapse”, Submitted to LCN
2000.

[MM96] M. Mathis, J. Mahdavi, “Forward

Acknowledgement: Refining TCP
Congestion Control”, ACM SIG-
COMM 1996.

[Ost97] S. Ostermann, “tcptrace”,

http://jarok.cs.ohiou.edu/software/t
cptrace/tcptrace.html, Dec 1997

[RFC793] J. Postel, “Transmission Control

Protocol”, RFC793

[RFC2488] M. Allman, D. Glover, L. San-

chez, “Enhancing TCP Over
Satellite Channels using Stan-
dard Mechanisms”, RFC2488

[RFC2581] M. Allman, V. Paxson, W. Ste-

vens, “TCP Congestion Control”,
RFC2581

[RFC2018] M. Mathis, J. Mahdavi,S. Floyd, A.

Romanow , “TCP Selective Ac-
knowledgment Options”, RFC2018

 11

[RFC2481] K. K. Ramakrishnan, S. Floyd, “A

Proposal to add Explicit Conges-
tion Notification (ECN) to IP”,
RFC2481

[RFC2582] S. Floyd, T. Henderson, “The

NewReno Modification to TCP's
Fast Recovery Algorithm”,
RFC2481

[She97] T. Sheppard, “xplot”, ftp://mer-

cury.lcs.mit.edu/pub/shep, Aug
1997

[S94] W. R. Stevens, "TCP/IP Illustrated,

Volume 1", Addison-Wesley Pub-
lishing Company, 1994.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	4-2001

	TCP HACK: TCP Header Checksum Option to Improve Performance Over Lossy Links
	Rajesh Krishna BALAN
	Boon Peng LEE
	Renjish KUMAR
	Jacob Lillykutty
	Winston Seah
	See next page for additional authors
	Citation
	Author

	cksum.PDF

