View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Knowledge at Singapore Management University

Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2008

Matrix: Adaptive Middleware for Distributed
Multiplayer Games

Rajesh Krishna BALAN
Carnegie Mellon University, rajesh@smu.edu.sg

Maria Ebling
IBM Research Watson

Paul Castro
IBM Research Watson

Archan MISRA
IBM Research Watson, archanm@smu.edu.sg

DOI: https://doi.org/10.1007/11587552_20

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Software Engineering Commons

Citation

BALAN, Rajesh Krishna; Ebling, Maria; Castro, Paul; and MISRA, Archan. Matrix: Adaptive Middleware for Distributed Multiplayer
Games. (2005). Middleware 2005: ACM/IFIP/USENIX 6th International Middleware Conference, Grenoble, France, November 28 -
December 2, 200S: Proceedings. 3790, 390-400. Research Collection School Of Information Systems.

Available at: https://ink library.smu.edu.sg/sis_research/1207

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized

administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://core.ac.uk/display/13247826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/11587552_20
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Matrix: Adaptive Middleware for Distributed
Multiplayer Games

Rajesh Krishna Baldn Maria Ebling, Paul Castré, and Archan Misra

1 Carnegie Mellon University, 5000 Forbes Avenue, PittshuRA 15213, USA
2 |IBM Research Watson, 19 Skyline Drive, Hawthorne, NY 10333A

Abstract

Building a distributed middleware infrastructure that pides the low latency required for
massively multiplayer games while still maintaining cstesicy is non-trivial. Previous attempts
have used static partitioning or client-based peer-torpeehniques that do not scale well to
a large number of players, perform poorly under dynamic Wwaalls or hotspots, and impose
significant programming burdens on game developers. We shatit is possible to build a
scalable distributed system, called Matrix, that is easibable by game developers. We show
experimentally that Matrix provides good performance eesgly when hotspots occur.

1 Introduction

Online gaming is a rapidly growing market segment estimabeckach 100 mil-
lion players and a USD $5 billion market value by 2008 [9]. Aoptar form of multi-
player gaming is the rapidly growing [24] class of massivalyitiplayer online games
(MMOG) such asEverques{19] andFinal Fantasy XI[20], where hundreds or even
thousands of players from across the world interact in ated shared virtual world.

To support these virtual worlds, most MMOGSs currently usesati@lized server
model, with players connecting to a single game server thatlles the entire game
world. However, each server can handle at most 30,000 sl[@htvhereas games like
Final Fantasy Xl claim to have at least one million registeptayers [21]. To handle
more players, some MMOGs [7] use multiple servers that atecatly assigned differ-
ent parts of the game world even though this approach is kiiowe unresponsive to
unexpected workload variations or dynamic localized hatisn the game.

To overcome this limitation, static partitioning scheméher significantly over-
provision the number of servers used for the game and/orgmpdificial limits on the
number of players that can be in any part of the map. Unfotaipaoverprovisioning
incurs extra costs and artificial limits may detract fromglaening experience. It would
be better instead, to use a distributed system that can danbitrary game loads by
dynamically and automatically adjusting the number of eesswsed by the game in a
scalable and efficient manner. This system could either bd as its own or in com-
bination with static partitioning schemes (as a mechandgstmaindle unexpected load
changes).

Building this dynamic distributed system for MMOGs, howeus a non-trivial
problem. To preserve the interactive feel of a MMOG, thentli@sponse latency must
be low [3]. But, maintaining complete consistency betwemstrithuted nodes requires
increasingly larger amounts of time as the amount of traffid aumber of nodes in
the system increases (due to increased player activityyeder, a lack of consistency
could lead to an unsatisfactory experience for the gameeplaihe challenge lies in
satisfying these conflicting latency and consistency g@sigecially for a system with
a large number of nodes and a high volume (O(Gbps)) of nettwaffic.

The key insight that allows us to overcome this problem isdhservation that
MMOGs are an example of mearly decomposable systg¢i8]. Such a system is one
in which the number of interactions among subsystems, inesggometric space, is
of a lower order of magnitude than the number of interactiithin an individual
subsystem. For MMOGsSs, this behaviour typically manifesstsif through a “radius” or
“zone of visibility” associated with each game player. lugually sufficient to update
players with only those events that occur in their zone obilig. For example, if a
tank is destroyed in a battlefield game, it is enough to onhddhis information to
other tanks that can see the victim, rather than to all thiestanthe game.

Using this insight, we built a scalable low-latency distitied middleware infras-
tructure, calledViatrix, that provides pockets of locally-consistent state. Thisker
form of consistency allows Matrix to provide low latency pesses, while still giving
adequate consistency to game clients even when the numimerdes in the system
increases. Matrix also provides low latency mechanismsatudle infrequent global
interactions. Another key Matrix design goal was ease of Weeachieved this by pro-
viding a clean and clear layering that hides the consisterantainence details within
an easy-to-use API (not shown due to space constraintsy. AR allows Matrix to
be used with only minimal changes to existing MMOGs. The lmygealso allows Ma-
trix to support the distributed operation of various MMOGheut actually needing
to understand the game logic. Finally, unlike static partihg techniques, Matrix can
dynamically add and remove servers as necessary to haad#ent hot-spots and dy-
namic loads caused by players joining and leaving the game.

We validated both Matrix’s system-level performance ad a®its effectiveness at
satisfying real game players. In particular, we show thatria overhead is reason-
able and also that it outperforms a statically partitiongstesm when unexpected load
patterns occur. Due to space constraints, we present a syrofithese results.

In Section 2, we describe Matrix’s design criteria while &t 3 presents the de-
sign and implementation of Matrix. Section 4 presents a samgrof the evaluation
while Section 5 presents related work.

2 Matrix Design Criteria

In this section, we describe the two key design criteria (#rair corresponding
implications) used to build the Matrix middleware. In pautiar, Matrix was specifically
designed to allow MMOG game developers to focus mainly oir tieeme’s core logic
and delegate the task of scalably distributing their gamésatrix.

2.1 Attractiveand Easy for Game Developers

The first key criteria was to make Matrix attractive for garegelopers to use. Most
game companies usually focus on core game-specific teafies|such as 3D graphics
modeling, and typically have very little in-house distitibd systems expertise. Hence,
being able to leverage a distributed game middleware tlaé¢sand maintains adequate
consistency as the user population grows would be of grewftidor them. To appeal
to developers, Matrix has the following characteristics:

No Changein Security Model : A primary concern for online game developers is
cheating and denial-of-service (DoS) attacks. In pariGuhey are quite resistant to
any middleware that will lower their ability to tackle thelssues. This concern natu-
rally eliminates the use of peer-to-peer mechanisms, whintlamentally change the

client-server interaction and security model. Matrix thiges the same game developer
preferred client-server architecture, as shown in Se@&iaallowing the developer to
reuse existing anti-cheating and anti-DoS mechanisms.

Separation of Concerns : To make developing distributed games easier, Matrix
provides a clean “separation of concerns” programming rhatiere Matrix would
handle the distributed computing aspects of a game suchresistency, scalability,
resource provisioning and fault-tolerance, leaving the ®® developer to focus on
the core game logic.

Support Multiple Gaming Platforms: Game developers frequently develop games
for multiple gaming platforms; having to write new Matrixutines for each platform
would hinder adoption. Our APIs do not require any new Maggpecific routines for a
new platform.

Simplicity : Building and debugging a large distributed system is a yriskdeav-
our. As such, Matrix intentionally uses the simplest pdssitigorithms and APIs. The
simple algorithms allow Matrix to be easier to debug and taim and the API allows
existing games to be quickly and easily modified for use withtiit.

2.2 Supports Game Requirements

The second key criteria was that Matrix must support thegperénce requirements
of massively multiplayer games. In particular Matrix mustyide:

Low ResponselL atency : Response latency, the time between a game client’s action
and the observed reaction in the game world, is a cruciabfacfluencing a player’s
overall gaming experience. Matrix ensures that this latéaas low as possible by
not unnecessarily buffering packets and by using an O(lterlmokup mechanism to
determine where to send packets (explained further in @e8tR2.4).

Localized Consistency : It is vital that Matrix ensure that the MMOG players are
consistent with nearby objects, thus allowing these payercorrectly interact with
these objects. Because MMOGs are nearly decomposableininhecessary to provide
global consistency. Matrix thus provides fast, yet effegtlocalized consistency mech-
anisms (explained further in Section 3.1).

Automatically Handle L oad Spikes: Load spikes are caused when a large number
of players simultaneously decide to visit the same locaticen MMOG. It is impor-
tant that Matrix is automatically able to handle these Igailes without a significant
increase in latency. It would also be useful, to conserveuess, if Matrix is able to
dynamically change its server usage based on the currerd lgad. We describe how
we achieve this in Section 3.2.3.

3 Matrix Design and I mplementation

In this section, we describe Matrix’s design and implemgmtafocusing primarily
on the overall architecture and major technology companent

3.1 Providing Localized Consistency

To build an easy to use localized consistency mechanism, hgereed that all
games have some notion of geometric space that allows degaretween game ob-
jects to be computed using a game-specific distance mdthtatrix was aware of an
individual game’sspatial coordinatesind itsradius of visibility (the range over which
local consistency is typically required), it could confite tpropagation of any game

Game Server 1 @) -
e S€ Game Server 2 - = @L
Game Clients -
Region 1 ol & 2 : e
Game / (e "“'__ = {ubii g
Overlap Region Region 2 Servers‘ .
'\\@ I e Inrerner
Region 3 Moving Matrix / I I
Object
Servers - Matrix Coordinator
Game Server 3
Eergy
(a) Overlap Region between 3 Matrix Servers (b) Matrix Atetiiure

Fig. 1. Matrix Components

state update to an easily computable region, without hagimgaintain game-specific
relationship trees or other data structures. Matrix usissitsight to require game de-
velopers to merely forward all game packets, appropridtejged with the spatial co-
ordinates (in the game world) of the packet’s origin andidasibn, to the local Matrix
server. Matrix uses these spatial tags, together with theeigaradius of visibility, to
route these packets to the other game servers that managrsobijthin this radius of
visibility (and thus need to maintain consistency).

Matrix assigns unique portions of the MMOG'’s spatial map iffedent servers.
Each server is only responsible for clients located witténaissigned partition. For-
mally, Matrix partitions the overall spacof an MMOG intoN non-overlapping par-
titions, {P1,P»,...,Py}, and assigns each partiti®hto a distinct servef. To handle
load spikes, the number of servétsand the specific partition managed by any server
S can change dynamically.

Because games have a non-zero radius of visibility, chaimgbee MMOG state
at any point,gj, handled by serveg, that is within the radius of visibility of a client
located on serves;, must be consistently applied at both ser&randsS;. In general,
given a spatial partition and a radius of visibiliB; every pointo in Z has a set of
servers associated with it, called thensistency sebdf o or C(o). This set contains
all the servers whose partitions overlap the circle (or sphef radiusk centered at
and therefore need to be aware of any update or activity ifi d(x,y) represents the
distance-metric between pointgndy,

CloeP)={Sj|j#i A 30 €P st. d(,0') <R} (1)

From Equation 1, we observe thaHifis infinite, all updates must be globally prop-
agated, making localized consistency impossible. Howeél& is small compared to
the size of partitior?,, most of the interior points d® will have empty consistency sets.
Only the relatively small number of periphery points, wh@$e) + 0 (i.e, whose radius
of visibility extends into adjoining partitions) will redne consistency to be maintained
between servers. Games usually have limited player \itsibédii and Matrix effi-
ciently utilize this sparseness by forming groups, calleeetlap regions”, of all points
that have identical non-empty consistency sets (showngargila).

Intuitively, an overlap region denotes a portion of the nah that an update at
any point in that overlap region requires all the servershit bverlap region to be
informed of the update. Overlap regions allow Matrix sesverquickly determine the

consistency set for any game packet they receive by meratg@aable lookup (of the
set of overlap regions).

Matrix assumes that most players in a game have the sames iafdiisibility. The
Matrix API does allow game servers to specify differentbiidy radii for exceptions,
and internally creates distinct sets of overlap regionsh éar a differenR. We decided
to use overlap regions instead of other geometric datatstes; like spanners [4],
to determine the consistency set of any object becauseapvertjions do not require
costly (in terms of latency) hop-by-hop lookups and theykwaell even when the map
space changes dynamically (which happens during splitsesidmations).

3.2 Maitrix Architecture

Figure 1b shows the Matrix architecture, that satisfies #gsgh criteria in Sec-
tion 2. AMMOG is deployed using Matrix with the MMOG develapg@roviding game
clients and game servers and the Matrix infrastructureighog Matrix servers and a
Matrix coordinator (MC). The architectural componentgmact as follows:

3.2.1 GameClients

The clients are used by game players to play the MMOG. Eaehmtcinteracts
with a game server and provides it with updates on the plsyamtivity and receives
updates on nearby activity. Game clients must be able takwgiérversdynamically
because the MMOG may be on multiple servers, each handlimigai@ portion of the
MMOG world. The client is informed of these switches by itsremt game server and
is unaware of Matrix.

3.2.2 Game Servers

The game server is the software that stores the state of the garld and coordi-
nates the activity of the players in the game. In most comialegames, they are also
the only point of contact between game clients and the ganmlelwm protect against
cheating and unauthorized collusion; problems that articpdarly acute in multiplayer
games. The game server must be designed for use in a mudtiggvironment. In par-
ticular, it must identify players using globally unique 13gich as callsigns) instead of
locally generated IDs. Game servers are usually locateti®@aame physical machine
as a Matrix server (to minimize the network latency). In aunrent implementation, the
Matrix server is a separate process from the game servée fiuture, we may compile
the Matrix server into the game server (as a separate lipt@ignprove performance.

When a game server starts, it sends Matrix the visibilityuadf clients in the game
(to allow overlap regions to be correctly computed). The gaerver then forwards all
client packets (after spatially tagging them) to its Mas@ecver for further processing.
The game server also periodically reports its current l@atatrix. If the server is
overloaded, Matrix will split the game world between therdvaded server and a newly
created game server and inform both the new and overloaded gervers of their new
map ranges. The overloaded game server will then forwaghatle specific state (e.g.,
map objects such as trees, buildings, etc.) to the new gawer sga Matrix. Finally, the
overloaded game server will redirect any clients (and tba&iresponding state) that are
notin its new map range to the appropriate game server (Matovides the identity of
the appropriate game server). Moving these clients to athere servers will decrease
the load on the overloaded game server. However, if it is®tgrioaded, Matrix will
split the still overloaded game server again until it hagistieough load.

3.2.3 Matrix Servers

Matrix servers, the heart of our distributed middlewareyvde the necessary con-
sistency, reliability and latency semantics for MMOGs. ledatrix server is aware of
the map range currently managed by the game server conriedte@n receiving spa-
tially tagged game packets from its game server, the Maéiixes checks its overlap
tables, provided by the MC, to see if any peer Matrix serveeswathin that packet’s
consistency set. If so, the packet is forwarded to theseqezeers which then forward
the packet, after verifying the packet's range, to their game servers for processing.
Because Matrix handles packet routing, individual gameeysrdo not need to know
about other game servers serving the MMOG.

Matrix splits map partitions using purely local decisioasrprove scalability and
minimize latency. On detecting that its game server is oagked (through explicit load
messages from the game server or via system performanceireeesits), a Matrix
server will first check, using some non-Matrix external gmfior an available Matrix
server. If a server is available, it will split its current m&eeping control of a sub-
portion of the map, while transferring responsibility faetremaining portion to a new
Matrix server. Currently, Matrix uses a simple “split-®fl’ splitting technique where
each map is split into two equal pieces with the left piecedlearoff to the new server.
Though simple, this algorithm still provides good perfomoaas shown in Section 4.

The new Matrix server will then create a new game server atltestrate the trans-
fer of the global state, from the original (overloaded) ga®ever to this newly-created
game server. The overloaded game server will then switchegaints to this new
server to ease its load. The amount of state associated witthéng game clients is
minimal (based on experience with the games used to testxdylatrd Matrix has effi-
cient mechanisms (not described due to space constrairtsisfer this state. Newly
started game servers also need to obtain the static stdte giime, like the map tex-
tures, that can be hundreds of megabytes in size. Howewabe this state is static, it
can be pre-cached on all new servers, requiring only paintethe cached state to be
sent.

The Matrix server that performed the split will be the parehthe newly created
Matrix server. When a Matrix server detects that its gameeses underutilized (again,
through explicit load notifications or via system perforrm@ameasurements), it first
checks if it has any children. If it does and if their load lsvare low enough, the parent
Matrix server will reclaim the partition and game state h@jdhe child. All the game
clients on the child’s game server will be transfered to theept’'s game server, after
which the child Matrix server and game server will be remofredh the game and
returned to the resource pool. Matrix uses simple heusigtiot described) to prevent
oscillations and ensure stability in the splitting / recition process.

3.24 Matrix Coordinator (MC)

The MC creates the overlap tables used by Matrix serversuie ispatially tagged
packets. When a new Matrix server is used for the game, iriméahe MC of the
current map range and radius of visibility. The MC then cotepuhe overlap regions
for all the Matrix servers in the game using geometric alfons to calculate bounding
boxes between spatial regions; a particularly easy cortipntaising well known axis-
aligned bounding box computation algorithms, if the magipans are rectangular in
shape. The MC will then inform each Matrix server of their d&p regions along with

Number of Clients
w
o
o

n
o
S

o
S
L

! [-- - Server 1 Number of Clients
—a— Server 2 Number of Clients
500 4 —x— Server 3 Number of Clients
— - -Server 4 Number of Clients
------ Total Number of Clients

- - - -Server 1 Queue Length
—— Server 2 Queue Length
——Server 3 Queue Length
— - -Server 4 Queue Length

'S

1=}

S
.
H

@
[oX
o
3
2N
5}
E]

- i+—uonewepay

Receive Queue Length (Megabytes)

o

0 50 100 150 200 250 300 0 50 100 150 200 250

Time (s) Time (s)
(a) Number of Clients (b) Server Queue Length

This Figure shows Matrix responding to a 600 client hotsjpbe left graph shows how the total
number of clients were shared among the various serverg. tRat a server is overloaded when
it has 300+ clients. The righto?raph shows the receive quength of the various servers. Matrix
used up to four server to handle the load caused by the hetdfpotvever, Matrix reclaimed those
extra servers as shown by the reclamation points on therkgihgvhen the load eased. The second
reclamation took longer as the child server took longer tmbe underloaded{ 150 clients).

Fig. 2. Hotspot caused by 600 clients

the setC(o), of Matrix servers that should be informed about an evenat tegion.
The MC recomputes and redistributes overlap regions eveey & new Matrix server
is used or whenever an existing Matrix server is reclaimied fC is informed of the
new map ranges whenever reclamations occur).

We used a central MC to minimize the latency of the packet émding process. In
the common case where players are only interacting withbryeabjects, each Matrix
server can do an instant O(1) lookup to determine the camigtset for any game
packet using the overlap regions provided by the MC. Evemgommon cases involv-
ing non-proximal interactions, the Matrix server can cdnge MC to determine the
consistency set for that particular interaction. Matrixicbuse alternate lookup meth-
ods (such as DHTs [22]), but that would result in increastshiey (e.g., DHT schemes
usually need(log(N)) lookups forN Matrix servers). Although a centralized approach
can lead to performance bottlenecks, the MC is only used wWeeMMOG world par-
titioning changes due to splits or reclamations (which #thaccur infrequently for
a stable game). This centralized approach can scale to darger populations as the
MC is not used in the latency-critical packet forwarding gess (except for the rare
non-proximal interactions). The MC can also be made radiaising well understood
replication techniques.

4 Evaluation Highlights

Due to space constraints, we present just one detailed rsaving that Matrix
can handle dense hotspots automatically. The detailedatiah results will appear in
a longer version of this paper.

4.1 Behaviour under Load and Hotspots

Matrix was designed to gracefully react to unexpected h&mgs and dense hotspots.

We tested this by subjecting Matrix to loads far higher thdrata static partitioning
scheme could handle.

300

Figure 2 shows an experiment in which a hotspot of 600 cliéfiotsa real shoot-
ing game called Bzflag [16]), far higher than a static pamithg could handle (results
not shown), was introduced at around the 10 second mark fartatb seconds, after
which the entire hotspot gradually disappeared (indicated00 clients disappearing
at fixed intervals). The hotspot was reintroduced at a diffeposition in the world at
170 seconds, for about 50 seconds, and then gradually rembladrix relieved the
initial spike in the receive queue caused by 600 clientsijgifishown at time=10 in
Figure 2) by spawning server 2 (at time=10) and giving it ia¢f map. However, this
did not ease the load as the hotspot was on the map portionedtay server 1. Hence,
server 1 spawned another server, server 3, (at time=10)@ids current map with
it (servers 1 and 3 have 1/4 of the map each with server 2 hategest). Server
3’s map range contained the hotspot and a large number otgleere switched to it
easing server 1's load. However, server 3 now experiencedddpike (at time=60).
This process continues recursively until the load on allgberers is acceptable. As
clients leave the game, servers become underloaded anix kégtcts by consolidating
the load onto a smaller number of servers. For example, 20@clients left the game
(at time=75), server 3 became underloaded and reclaiméchiiisl” server (server 4).
Matrix was similarly able to handle the subsequent appearand disappearance of
another hotspot (introduced at t=170) located at a diffigpart of the map.

This result clearly demonstrates that Matrix, unlike statrtitioning schemes, is
able to deploy additional servers to react quickly and ¢iffety to sudden load changes.
This is significant, as game developers no longer have taoa-pwver-provision their
servers to prevent them from crashing (which would mar theajsreputation) under
unexpected load spikes. These spikes could occur whercylartiareas in the game
become popular suddenly, like the town hall during a towntingeor by a massive
influx of new game players (E.g., due to an advertising cagrpar a reference on
Slashdot).

4.2 Summary of Other Results

In addition to Bzflag, we also tested Matrix with a role playigame called Dai-
monin [23] and a popular shooting game called Quake 2 [1Y]tHase three games, we
showed that Matrix is able to outperform static partitiansthemes when unexpected
loads or hotspots occur. In particular, Matrix is able tooaudtically use extra servers
to handle the load while the static partitioning schemetsfaik

We also conducted microbenchmarks that showed that Matisérheads, in terms
of switching latency and bandwidth usage, were acceptabferticular, the overhead
of using a central coordinator was negligible and the amofintaffic sent between
Matrix servers corresponded directly to the size of the laparegions.

We then conducted a simple user study, using Bzflag, that ethalat Matrix is
completely transparentto real game players. Even undeyhead, requiring Matrix to
add servers, game players did not perceive any significatriaduced performance
degradation.

Finally, we performed a simplistic asymptotic analysis ctkik. This analysis reaf-
firmed the microbenchmarks and suggested that a) Matrix cale 0 a large player
population (> 1,000,000 players and 10,000 servers) only if the numbelaykeps in
the overlap regions is small relative to the total numberawhg players, and b) that Ma-
trix scalability is ultimately limited by the maximum 1/O pacity of individual servers.

5 Redated Work

There have been previous attempts at using scalable “gofds&rvers to build a
distributed architectures for MMOGs [5, 17]. However, thaslutions are still mostly
in a formative stage. Peer-to-peer (p2p) architectures hiso been proposed as a so-
lution for MMOGs [12]. In these systems, players form loeatl groups and exchange
messages directly with other players in the group, therbywiag the system to scale.
However, these mechanisms are unable to effectively hdradpots and they do not
clearly separate the game from the infrastructure, reqgigach game to be intimately
designed with the p2p network in mind. They also allow playterdirectly exchange
game messages with one another, compounding the problsosated with collusion
and cheating.

Commercial MMOG systems, such as Everquest [19] and FinatlaBg XI [20],
carefully partition the game world between different sesv® reduce the communi-
cation overhead between servers. To handle hotspots, tlieata multiple tightly-
coupled (completely consistent) servers to handle the gartition, an approach that
is neither efficient nor very scalable. Instead, Matrix t@ghes can be used by these
systems, together with careful static partitioning, tooéffitly and effectively handle
hotspots and load fluctuations.

The notion of radius of visibility has been used extensivelihe field of computer
graphics where only objects in the immediate field of viewrarelered. However, we
are applying this technique to the domain of multiplayer ganThe use of localized
consistency has also been used in previous systems to adbiger latency updates
at the expense of complete correctness. These includédisal shared memory sys-
tems [2,13], databases [1, 6], and network protocols [10}véler, unlike these pre-
vious systems, multiplayer games are nearly decompostieallows Matrix to use
localized consistency to reduce latency without sacri§@ny correctness.

Finally, there have been a number of algorithms to spliuairivorlds among dif-
ferent servers. These include algorithms optimized foucaty inter-server communi-
cations [14, 15] and for preserving locality [8]. Our workneplements these solutions
and Matrix can use these algorithms to perform more optipiaks

6 Conclusion

In this paper, we have shown that it is possible to build, gidocalized consis-
tency and on-demand mechanisms, an easy to use distribidetemare architecture
that is able to satisfy the latency and scalability requeata of MMOGs. We have
implemented Matrix and used its simple API to allow three garBzFlag, Quake2
and Daimonin) to use Matrix. The Matrix design is specialtyaxtive because of its
layered approach; by completely shielding the game fronattteal mechanisms used
to implement consistency, reliability and map partitianitatrix allows a game de-
veloper to use it with almost no modifications to the gamentliand relatively simple
modifications to the server code.

References

1. Adya, A. and Liskov, B. Lazy consistency using loosely@ywonized clocks Proceedings of the 16th
Annual ACM Symposium on Principles of Distributed Compgu{PODC '97) Santa Barbara, CA, Aug.
1997.

2. Agarwal, A., Chaiken, D., Johnson, K., Kranz, D., Kubigitz, J., Kurihara, K., Lim, B.-H., Maa, G.,
and Nussbaum, D. The MIT alewife machine : A large-scaleibisied-memory multiprocessoPro-

10

ceedings of Workshop on Scalable Shared Memory MultipsoceKluwer Academic, 1991.

. Armitage, G. Lag over 150 milliseconds is unacceptabig.tp://gja.spacedme.com/things/

quake3-latency-051701.html, May 2001.

. Basch, J., Guibas, L. J., and Hershberger, J. Data stesctor mobile dataProceedings of the eighth

annual ACM-SIAM symposium on Discrete algorithpages 747-756, 1997.

. Bauer, D., Rooney, S., and Scotton, P. Network infrasiirecfor massively distributed game®ro-

ceedings of the 1st workshop on Network and System SuppdBafoes (Netgamespages 36—43,
Bruanschweig, Germany, May 2002.

. Breitbart, Y., Komondoor, R., Rastogi, R., SeshadriaBd Silberschatz, A. Update propagation proto-

cols for replicated databaseSIGMOD Record (ACM Special Interest Group on Managementatd)D
28(2):97-108, 1999.

. Butterfly.net.The Butterfly Gridhttp://www.butterfly.net/, Sept. 2000.

8. Chen, J., Wu, B., Delap, M., Knutsson, B., Lu, H., and Ana,Locality aware dynamic load man-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.
24.

agement for massively multiplayer gameBroceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming (PPgRhicago, IL, June 2005.

. DFC Intelligence. Challenges and Opportunities in the Online Game Market -chttee Summary

http://www.dfcint.com/game_article/juneO3article.htm, June 2003.

Golding, R. A. A weak-consistency architecture forritistted information servicesComputing Sys-
tems 5(4):379-405, Fall 1992.

Id Software.Quake 2 Source Codénttp://www.idsoftware.com/business/techdownloads/,
Apr. 2002.

Knutsson, B., Lu, H., Xu, W., and Hopkins, B. Peer-torpagport for massively multiplayer games.
Proceedings of the 23rd Conference of the IEEE Communitat®ociety (InfocommHong Kong,
China, Mar. 2004.

Lenoski, D., Laudon, J., Joe, T., Nakahira, D., StevensGupta, A., and Hennessy, J. The DASH
prototype: Implementation and performané&oceedings of the 19th Annual International Symposium
on Computer Architecture (ISCApages 92-103, Gold Coast, Australia, May 1992.

Lui, J. C. S. and Chan, M. F. An efficient partitioning alggun for distributed virtual environment
systemslEEE Transactions on Parallel and Distributed Systeft%(3):193-211, 2002.

O’Connell, K., Dinneen, T., Collins, S., Tangney, B.rig N., and Cabhill, V. Techniques for handling
scale and distribution in virtual worldsProceedings of the 7th ACM SIGOPS European Workshop
Connemara, Ireland, Sept. 1996.

Riker, T. Bzflag source code and online documentati@np: //www.bzflag.org/, June 2003.

Shaikh, A., Sahu, S., Rosu, M., Shea, M., and Saha, D.ehmgitation of a service platform for on-
line games.Proceedings of the 3rd workshop on Network and System SufgpdBames (Netgames)
Portland, Oregon, Sep 2004.

Simon, H. A. The architecture of complexityroceedings of the American Philosophical Sogiety
106:467-482, 1962.

Sony EntertainmenEverquest Livehttp://eqlive.station.sony.com/, Mar. 1999.

Square EnixFinal Fantasy XI Onlinehttp://www.playonline.com/ff11us/index.shtml, Oct.
2003.

Square Enix. Final Fantasy XI Online Press Releasehttp://www.playonline.com/ff11us/
polnews/news1430.shtml, Jan. 2004.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., aradaBrishnan, H. Chord: A scalable peer-to-peer
lookup service for internet application®roceedings of the 2001 ACM SIGCOMM Confererpages
149-160. ACM Press, 2001.

Toennies, M. Daimonin source coda:tp://daimonin.sourceforge.net/, Sept. 2003.

Woodcock, B. S. Graphing the growth of mmogshttp://pwl.netcom.com/ sirbruce/
Subscriptions.html, Mar. 2004.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2005

	Matrix: Adaptive Middleware for Distributed Multiplayer Games
	Rajesh Krishna BALAN
	Maria Ebling
	Paul Castro
	Archan MISRA
	Citation

	middleware05.dvi

