
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2005

Matrix: Adaptive Middleware for Distributed
Multiplayer Games
Rajesh Krishna BALAN
Carnegie Mellon University, rajesh@smu.edu.sg

Maria Ebling
IBM Research Watson

Paul Castro
IBM Research Watson

Archan MISRA
IBM Research Watson, archanm@smu.edu.sg

DOI: https://doi.org/10.1007/11587552_20

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BALAN, Rajesh Krishna; Ebling, Maria; Castro, Paul; and MISRA, Archan. Matrix: Adaptive Middleware for Distributed Multiplayer
Games. (2005). Middleware 2005: ACM/IFIP/USENIX 6th International Middleware Conference, Grenoble, France, November 28 -
December 2, 2005: Proceedings. 3790, 390-400. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1207

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/11587552_20
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1207&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Matrix: Adaptive Middleware for Distributed
Multiplayer Games

Rajesh Krishna Balan1, Maria Ebling2, Paul Castro2, and Archan Misra2

1 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
2 IBM Research Watson, 19 Skyline Drive, Hawthorne, NY 10532,USA

Abstract
Building a distributed middleware infrastructure that provides the low latency required for

massively multiplayer games while still maintaining consistency is non-trivial. Previous attempts
have used static partitioning or client-based peer-to-peer techniques that do not scale well to
a large number of players, perform poorly under dynamic workloads or hotspots, and impose
significant programming burdens on game developers. We showthat it is possible to build a
scalable distributed system, called Matrix, that is easilyusable by game developers. We show
experimentally that Matrix provides good performance, especially when hotspots occur.

1 Introduction
Online gaming is a rapidly growing market segment estimatedto reach 100 mil-

lion players and a USD $5 billion market value by 2008 [9]. A popular form of multi-
player gaming is the rapidly growing [24] class of massivelymultiplayer online games
(MMOG) such asEverquest[19] andFinal Fantasy XI[20], where hundreds or even
thousands of players from across the world interact in a real-time shared virtual world.

To support these virtual worlds, most MMOGs currently use a centralized server
model, with players connecting to a single game server that handles the entire game
world. However, each server can handle at most 30,000 clients [7] whereas games like
Final Fantasy XI claim to have at least one million registered players [21]. To handle
more players, some MMOGs [7] use multiple servers that are statically assigned differ-
ent parts of the game world even though this approach is knownto be unresponsive to
unexpected workload variations or dynamic localized hotspots in the game.

To overcome this limitation, static partitioning schemes either significantly over-
provision the number of servers used for the game and/or impose artificial limits on the
number of players that can be in any part of the map. Unfortunately, overprovisioning
incurs extra costs and artificial limits may detract from thegaming experience. It would
be better instead, to use a distributed system that can handle arbitrary game loads by
dynamically and automatically adjusting the number of servers used by the game in a
scalable and efficient manner. This system could either be used on its own or in com-
bination with static partitioning schemes (as a mechanism to handle unexpected load
changes).

Building this dynamic distributed system for MMOGs, however, is a non-trivial
problem. To preserve the interactive feel of a MMOG, the client response latency must
be low [3]. But, maintaining complete consistency between distributed nodes requires
increasingly larger amounts of time as the amount of traffic and number of nodes in
the system increases (due to increased player activity). However, a lack of consistency
could lead to an unsatisfactory experience for the game player. The challenge lies in
satisfying these conflicting latency and consistency goals, especially for a system with
a large number of nodes and a high volume (O(Gbps)) of networktraffic.

2

The key insight that allows us to overcome this problem is theobservation that
MMOGs are an example of anearly decomposable system[18]. Such a system is one
in which the number of interactions among subsystems, in some geometric space, is
of a lower order of magnitude than the number of interactionswithin an individual
subsystem. For MMOGs, this behaviour typically manifests itself through a “radius” or
“zone of visibility” associated with each game player. It isusually sufficient to update
players with only those events that occur in their zone of visibility. For example, if a
tank is destroyed in a battlefield game, it is enough to only send this information to
other tanks that can see the victim, rather than to all the tanks in the game.

Using this insight, we built a scalable low-latency distributed middleware infras-
tructure, calledMatrix, that provides pockets of locally-consistent state. This weaker
form of consistency allows Matrix to provide low latency responses, while still giving
adequate consistency to game clients even when the number ofnodes in the system
increases. Matrix also provides low latency mechanisms to handle infrequent global
interactions. Another key Matrix design goal was ease of use. We achieved this by pro-
viding a clean and clear layering that hides the consistencymaintainence details within
an easy-to-use API (not shown due to space constraints). This API allows Matrix to
be used with only minimal changes to existing MMOGs. The layering also allows Ma-
trix to support the distributed operation of various MMOGs without actually needing
to understand the game logic. Finally, unlike static partitioning techniques, Matrix can
dynamically add and remove servers as necessary to handle transient hot-spots and dy-
namic loads caused by players joining and leaving the game.

We validated both Matrix’s system-level performance as well as its effectiveness at
satisfying real game players. In particular, we show that Matrix’s overhead is reason-
able and also that it outperforms a statically partitioned system when unexpected load
patterns occur. Due to space constraints, we present a summary of these results.

In Section 2, we describe Matrix’s design criteria while Section 3 presents the de-
sign and implementation of Matrix. Section 4 presents a summary of the evaluation
while Section 5 presents related work.

2 Matrix Design Criteria
In this section, we describe the two key design criteria (andtheir corresponding

implications) used to build the Matrix middleware. In particular, Matrix was specifically
designed to allow MMOG game developers to focus mainly on their game’s core logic
and delegate the task of scalably distributing their games to Matrix.

2.1 Attractive and Easy for Game Developers

The first key criteria was to make Matrix attractive for game developers to use. Most
game companies usually focus on core game-specific technologies, such as 3D graphics
modeling, and typically have very little in-house distributed systems expertise. Hence,
being able to leverage a distributed game middleware that scales and maintains adequate
consistency as the user population grows would be of great benefit for them. To appeal
to developers, Matrix has the following characteristics:

No Change in Security Model : A primary concern for online game developers is
cheating and denial-of-service (DoS) attacks. In particular, they are quite resistant to
any middleware that will lower their ability to tackle theseissues. This concern natu-
rally eliminates the use of peer-to-peer mechanisms, whichfundamentally change the

3

client-server interaction and security model. Matrix thususes the same game developer
preferred client-server architecture, as shown in Section3, allowing the developer to
reuse existing anti-cheating and anti-DoS mechanisms.

Separation of Concerns : To make developing distributed games easier, Matrix
provides a clean “separation of concerns” programming model where Matrix would
handle the distributed computing aspects of a game such as consistency, scalability,
resource provisioning and fault-tolerance, leaving the MMOG developer to focus on
the core game logic.

Support Multiple Gaming Platforms : Game developers frequently develop games
for multiple gaming platforms; having to write new Matrix routines for each platform
would hinder adoption. Our APIs do not require any new Matrix-specific routines for a
new platform.

Simplicity : Building and debugging a large distributed system is a tricky endeav-
our. As such, Matrix intentionally uses the simplest possible algorithms and APIs. The
simple algorithms allow Matrix to be easier to debug and maintain, and the API allows
existing games to be quickly and easily modified for use with Matrix.

2.2 Supports Game Requirements

The second key criteria was that Matrix must support the performance requirements
of massively multiplayer games. In particular Matrix must provide:

Low Response Latency : Response latency, the time between a game client’s action
and the observed reaction in the game world, is a crucial factor influencing a player’s
overall gaming experience. Matrix ensures that this latency is as low as possible by
not unnecessarily buffering packets and by using an O(1) route lookup mechanism to
determine where to send packets (explained further in Section 3.2.4).

Localized Consistency : It is vital that Matrix ensure that the MMOG players are
consistent with nearby objects, thus allowing these players to correctly interact with
these objects. Because MMOGs are nearly decomposable, it isunnecessary to provide
global consistency. Matrix thus provides fast, yet effective, localized consistency mech-
anisms (explained further in Section 3.1).

Automatically Handle Load Spikes : Load spikes are caused when a large number
of players simultaneously decide to visit the same locationin an MMOG. It is impor-
tant that Matrix is automatically able to handle these load spikes without a significant
increase in latency. It would also be useful, to conserve resources, if Matrix is able to
dynamically change its server usage based on the current game load. We describe how
we achieve this in Section 3.2.3.

3 Matrix Design and Implementation
In this section, we describe Matrix’s design and implementation, focusing primarily

on the overall architecture and major technology components.

3.1 Providing Localized Consistency

To build an easy to use localized consistency mechanism, we observed that all
games have some notion of geometric space that allows distances between game ob-
jects to be computed using a game-specific distance metric. If Matrix was aware of an
individual game’sspatial coordinatesand itsradius of visibility(the range over which
local consistency is typically required), it could confine the propagation of any game

4

(a) Overlap Region between 3 Matrix Servers (b) Matrix Architecture

Fig. 1. Matrix Components

state update to an easily computable region, without havingto maintain game-specific
relationship trees or other data structures. Matrix uses this insight to require game de-
velopers to merely forward all game packets, appropriatelytagged with the spatial co-
ordinates (in the game world) of the packet’s origin and destination, to the local Matrix
server. Matrix uses these spatial tags, together with the game’s radius of visibility, to
route these packets to the other game servers that manage objects within this radius of
visibility (and thus need to maintain consistency).

Matrix assigns unique portions of the MMOG’s spatial map to different servers.
Each server is only responsible for clients located within its assigned partition. For-
mally, Matrix partitions the overall spaceZ of an MMOG intoN non-overlapping par-
titions, {P1,P2, . . . ,PN}, and assigns each partitionPi to a distinct serverSi . To handle
load spikes, the number of serversN, and the specific partition managed by any server
Si can change dynamically.

Because games have a non-zero radius of visibility, changesin the MMOG state
at any point,σi , handled by serverSi, that is within the radius of visibility of a client
located on serverSj , must be consistently applied at both serversSi andSj . In general,
given a spatial partition and a radius of visibilityR, every pointσ in Z has a set of
servers associated with it, called theconsistency setof σ or C(σ). This set contains
all the servers whose partitions overlap the circle (or sphere) of radiusR centered atσ
and therefore need to be aware of any update or activity inσ. If d(x,y) represents the
distance-metric between pointsx andy,

C(σ ∈ Pi) = {Sj | j 6= i ∧ ∃σ′ ∈ Pj s.t. d(σ,σ′) ≤ R} (1)

From Equation 1, we observe that ifR is infinite,all updates must be globally prop-
agated, making localized consistency impossible. However, if R is small compared to
the size of partitionPi, most of the interior points ofPi will have empty consistency sets.
Only the relatively small number of periphery points, whoseC(σ) 6= /0 (i.e, whose radius
of visibility extends into adjoining partitions) will require consistency to be maintained
between servers. Games usually have limited player visibility radii and Matrix effi-
ciently utilize this sparseness by forming groups, called “overlap regions”, of all points
that have identical non-empty consistency sets (shown in Figure 1a).

Intuitively, an overlap region denotes a portion of the map,such that an update at
any point in that overlap region requires all the servers in that overlap region to be
informed of the update. Overlap regions allow Matrix servers to quickly determine the

5

consistency set for any game packet they receive by merely doing a table lookup (of the
set of overlap regions).

Matrix assumes that most players in a game have the same radius of visibility. The
Matrix API does allow game servers to specify different visibility radii for exceptions,
and internally creates distinct sets of overlap regions, each for a differentR. We decided
to use overlap regions instead of other geometric data structures, like spanners [4],
to determine the consistency set of any object because overlap regions do not require
costly (in terms of latency) hop-by-hop lookups and they work well even when the map
space changes dynamically (which happens during splits andreclamations).

3.2 Matrix Architecture

Figure 1b shows the Matrix architecture, that satisfies the design criteria in Sec-
tion 2. A MMOG is deployed using Matrix with the MMOG developers providing game
clients and game servers and the Matrix infrastructure providing Matrix servers and a
Matrix coordinator (MC). The architectural components interact as follows:

3.2.1 Game Clients

The clients are used by game players to play the MMOG. Each client interacts
with a game server and provides it with updates on the player’s activity and receives
updates on nearby activity. Game clients must be able to switch serversdynamically
because the MMOG may be on multiple servers, each handling a unique portion of the
MMOG world. The client is informed of these switches by its current game server and
is unaware of Matrix.

3.2.2 Game Servers

The game server is the software that stores the state of the game world and coordi-
nates the activity of the players in the game. In most commercial games, they are also
the only point of contact between game clients and the game world to protect against
cheating and unauthorized collusion; problems that are particularly acute in multiplayer
games. The game server must be designed for use in a multiserver environment. In par-
ticular, it must identify players using globally unique IDs(such as callsigns) instead of
locally generated IDs. Game servers are usually located on the same physical machine
as a Matrix server (to minimize the network latency). In our current implementation, the
Matrix server is a separate process from the game server. In the future, we may compile
the Matrix server into the game server (as a separate library) to improve performance.

When a game server starts, it sends Matrix the visibility radius of clients in the game
(to allow overlap regions to be correctly computed). The game server then forwards all
client packets (after spatially tagging them) to its Matrixserver for further processing.
The game server also periodically reports its current load to Matrix. If the server is
overloaded, Matrix will split the game world between the overloaded server and a newly
created game server and inform both the new and overloaded game servers of their new
map ranges. The overloaded game server will then forward allgame specific state (e.g.,
map objects such as trees, buildings, etc.) to the new game server via Matrix. Finally, the
overloaded game server will redirect any clients (and theircorresponding state) that are
not in its new map range to the appropriate game server (Matrix provides the identity of
the appropriate game server). Moving these clients to othergame servers will decrease
the load on the overloaded game server. However, if it is still overloaded, Matrix will
split the still overloaded game server again until it has shed enough load.

6

3.2.3 Matrix Servers

Matrix servers, the heart of our distributed middleware, provide the necessary con-
sistency, reliability and latency semantics for MMOGs. Each Matrix server is aware of
the map range currently managed by the game server connectedto it. On receiving spa-
tially tagged game packets from its game server, the Matrix server checks its overlap
tables, provided by the MC, to see if any peer Matrix servers are within that packet’s
consistency set. If so, the packet is forwarded to these peerservers which then forward
the packet, after verifying the packet’s range, to their owngame servers for processing.
Because Matrix handles packet routing, individual game servers do not need to know
about other game servers serving the MMOG.

Matrix splits map partitions using purely local decisions to improve scalability and
minimize latency. On detecting that its game server is overloaded (through explicit load
messages from the game server or via system performance measurements), a Matrix
server will first check, using some non-Matrix external entity, for an available Matrix
server. If a server is available, it will split its current map, keeping control of a sub-
portion of the map, while transferring responsibility for the remaining portion to a new
Matrix server. Currently, Matrix uses a simple “split-to-left” splitting technique where
each map is split into two equal pieces with the left piece handed off to the new server.
Though simple, this algorithm still provides good performance as shown in Section 4.

The new Matrix server will then create a new game server and orchestrate the trans-
fer of the global state, from the original (overloaded) gameserver to this newly-created
game server. The overloaded game server will then switch game clients to this new
server to ease its load. The amount of state associated with switching game clients is
minimal (based on experience with the games used to test Matrix) and Matrix has effi-
cient mechanisms (not described due to space constraints) to transfer this state. Newly
started game servers also need to obtain the static state of the game, like the map tex-
tures, that can be hundreds of megabytes in size. However, because this state is static, it
can be pre-cached on all new servers, requiring only pointers to the cached state to be
sent.

The Matrix server that performed the split will be the parentof the newly created
Matrix server. When a Matrix server detects that its game server is underutilized (again,
through explicit load notifications or via system performance measurements), it first
checks if it has any children. If it does and if their load levels are low enough, the parent
Matrix server will reclaim the partition and game state heldby the child. All the game
clients on the child’s game server will be transfered to the parent’s game server, after
which the child Matrix server and game server will be removedfrom the game and
returned to the resource pool. Matrix uses simple heuristics (not described) to prevent
oscillations and ensure stability in the splitting / reclamation process.

3.2.4 Matrix Coordinator (MC)

The MC creates the overlap tables used by Matrix servers to route spatially tagged
packets. When a new Matrix server is used for the game, it informs the MC of the
current map range and radius of visibility. The MC then computes the overlap regions
for all the Matrix servers in the game using geometric algorithms to calculate bounding
boxes between spatial regions; a particularly easy computation, using well known axis-
aligned bounding box computation algorithms, if the map partitions are rectangular in
shape. The MC will then inform each Matrix server of their overlap regions along with

7

(a) Number of Clients (b) Server Queue Length
This Figure shows Matrix responding to a 600 client hotspot.The left graph shows how the total
number of clients were shared among the various servers. Note that a server is overloaded when
it has 300+ clients. The right graph shows the receive queue length of the various servers. Matrix
used up to four server to handle the load caused by the hotspots. However, Matrix reclaimed those
extra servers as shown by the reclamation points on the left graph when the load eased. The second
reclamation took longer as the child server took longer to become underloaded (< 150 clients).

Fig. 2. Hotspot caused by 600 clients

the set,C(σ), of Matrix servers that should be informed about an event in that region.
The MC recomputes and redistributes overlap regions every time a new Matrix server
is used or whenever an existing Matrix server is reclaimed (the MC is informed of the
new map ranges whenever reclamations occur).

We used a central MC to minimize the latency of the packet forwarding process. In
the common case where players are only interacting with nearby objects, each Matrix
server can do an instant O(1) lookup to determine the consistency set for any game
packet using the overlap regions provided by the MC. Even in uncommon cases involv-
ing non-proximal interactions, the Matrix server can consult the MC to determine the
consistency set for that particular interaction. Matrix could use alternate lookup meth-
ods (such as DHTs [22]), but that would result in increased latency (e.g., DHT schemes
usually needO(log(N)) lookups forN Matrix servers). Although a centralized approach
can lead to performance bottlenecks, the MC is only used whenthe MMOG world par-
titioning changes due to splits or reclamations (which should occur infrequently for
a stable game). This centralized approach can scale to largeserver populations as the
MC is not used in the latency-critical packet forwarding process (except for the rare
non-proximal interactions). The MC can also be made reliable using well understood
replication techniques.

4 Evaluation Highlights
Due to space constraints, we present just one detailed result showing that Matrix

can handle dense hotspots automatically. The detailed evaluation results will appear in
a longer version of this paper.

4.1 Behaviour under Load and Hotspots

Matrix was designed to gracefully react to unexpected heavyloads and dense hotspots.
We tested this by subjecting Matrix to loads far higher than what a static partitioning
scheme could handle.

8

Figure 2 shows an experiment in which a hotspot of 600 clients(for a real shoot-
ing game called Bzflag [16]), far higher than a static partitioning could handle (results
not shown), was introduced at around the 10 second mark for about 75 seconds, after
which the entire hotspot gradually disappeared (indicatedby 200 clients disappearing
at fixed intervals). The hotspot was reintroduced at a different position in the world at
170 seconds, for about 50 seconds, and then gradually removed. Matrix relieved the
initial spike in the receive queue caused by 600 clients joining (shown at time=10 in
Figure 2) by spawning server 2 (at time=10) and giving it halfthe map. However, this
did not ease the load as the hotspot was on the map portion retained by server 1. Hence,
server 1 spawned another server, server 3, (at time=10) and split its current map with
it (servers 1 and 3 have 1/4 of the map each with server 2 havingthe rest). Server
3’s map range contained the hotspot and a large number of clients were switched to it
easing server 1’s load. However, server 3 now experienced a load spike (at time=60).
This process continues recursively until the load on all theservers is acceptable. As
clients leave the game, servers become underloaded and Matrix reacts by consolidating
the load onto a smaller number of servers. For example, after200 clients left the game
(at time=75), server 3 became underloaded and reclaimed its“child” server (server 4).
Matrix was similarly able to handle the subsequent appearance and disappearance of
another hotspot (introduced at t=170) located at a different part of the map.

This result clearly demonstrates that Matrix, unlike static partitioning schemes, is
able to deploy additional servers to react quickly and effectively to sudden load changes.
This is significant, as game developers no longer have to a-priori over-provision their
servers to prevent them from crashing (which would mar the game’s reputation) under
unexpected load spikes. These spikes could occur when particular areas in the game
become popular suddenly, like the town hall during a town meeting, or by a massive
influx of new game players (E.g., due to an advertising campaign or a reference on
Slashdot).

4.2 Summary of Other Results

In addition to Bzflag, we also tested Matrix with a role playing game called Dai-
monin [23] and a popular shooting game called Quake 2 [11]. For these three games, we
showed that Matrix is able to outperform static partitioning schemes when unexpected
loads or hotspots occur. In particular, Matrix is able to automatically use extra servers
to handle the load while the static partitioning schemes just fail.

We also conducted microbenchmarks that showed that Matrix’s overheads, in terms
of switching latency and bandwidth usage, were acceptable.In particular, the overhead
of using a central coordinator was negligible and the amountof traffic sent between
Matrix servers corresponded directly to the size of the overlap regions.

We then conducted a simple user study, using Bzflag, that showed that Matrix is
completely transparent to real game players. Even under heavy load, requiring Matrix to
add servers, game players did not perceive any significant Matrix-induced performance
degradation.

Finally, we performed a simplistic asymptotic analysis of Matrix. This analysis reaf-
firmed the microbenchmarks and suggested that a) Matrix can scale to a large player
population (> 1,000,000 players and 10,000 servers) only if the number of players in
the overlap regions is small relative to the total number of game players, and b) that Ma-
trix scalability is ultimately limited by the maximum I/O capacity of individual servers.

9

5 Related Work
There have been previous attempts at using scalable “grids”of servers to build a

distributed architectures for MMOGs [5, 17]. However, these solutions are still mostly
in a formative stage. Peer-to-peer (p2p) architectures have also been proposed as a so-
lution for MMOGs [12]. In these systems, players form localized groups and exchange
messages directly with other players in the group, thereby allowing the system to scale.
However, these mechanisms are unable to effectively handlehotspots and they do not
clearly separate the game from the infrastructure, requiring each game to be intimately
designed with the p2p network in mind. They also allow players to directly exchange
game messages with one another, compounding the problems associated with collusion
and cheating.

Commercial MMOG systems, such as Everquest [19] and Final Fantasy XI [20],
carefully partition the game world between different servers to reduce the communi-
cation overhead between servers. To handle hotspots, they allocate multiple tightly-
coupled (completely consistent) servers to handle the samepartition, an approach that
is neither efficient nor very scalable. Instead, Matrix techniques can be used by these
systems, together with careful static partitioning, to efficiently and effectively handle
hotspots and load fluctuations.

The notion of radius of visibility has been used extensivelyin the field of computer
graphics where only objects in the immediate field of view arerendered. However, we
are applying this technique to the domain of multiplayer games. The use of localized
consistency has also been used in previous systems to achieve lower latency updates
at the expense of complete correctness. These include distributed shared memory sys-
tems [2, 13], databases [1, 6], and network protocols [10]. However, unlike these pre-
vious systems, multiplayer games are nearly decomposable.This allows Matrix to use
localized consistency to reduce latency without sacrificing any correctness.

Finally, there have been a number of algorithms to split virtual worlds among dif-
ferent servers. These include algorithms optimized for reducing inter-server communi-
cations [14, 15] and for preserving locality [8]. Our work complements these solutions
and Matrix can use these algorithms to perform more optimal splits.

6 Conclusion
In this paper, we have shown that it is possible to build, using localized consis-

tency and on-demand mechanisms, an easy to use distributed middleware architecture
that is able to satisfy the latency and scalability requirements of MMOGs. We have
implemented Matrix and used its simple API to allow three games (BzFlag, Quake2
and Daimonin) to use Matrix. The Matrix design is specially attractive because of its
layered approach; by completely shielding the game from theactual mechanisms used
to implement consistency, reliability and map partitioning, Matrix allows a game de-
veloper to use it with almost no modifications to the game client, and relatively simple
modifications to the server code.

References
1. Adya, A. and Liskov, B. Lazy consistency using loosely synchronized clocks.Proceedings of the 16th

Annual ACM Symposium on Principles of Distributed Computing (PODC ’97), Santa Barbara, CA, Aug.
1997.

2. Agarwal, A., Chaiken, D., Johnson, K., Kranz, D., Kubiatowicz, J., Kurihara, K., Lim, B.-H., Maa, G.,
and Nussbaum, D. The MIT alewife machine : A large-scale distributed-memory multiprocessor.Pro-

10

ceedings of Workshop on Scalable Shared Memory Multiprocessors. Kluwer Academic, 1991.

3. Armitage, G. Lag over 150 milliseconds is unacceptable.http://gja.space4me.com/things/
quake3-latency-051701.html, May 2001.

4. Basch, J., Guibas, L. J., and Hershberger, J. Data structures for mobile data.Proceedings of the eighth
annual ACM-SIAM symposium on Discrete algorithms, pages 747–756, 1997.

5. Bauer, D., Rooney, S., and Scotton, P. Network infrastructure for massively distributed games.Pro-
ceedings of the 1st workshop on Network and System Support for Games (Netgames), pages 36–43,
Bruanschweig, Germany, May 2002.

6. Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S.,and Silberschatz, A. Update propagation proto-
cols for replicated databases.SIGMOD Record (ACM Special Interest Group on Management of Data),
28(2):97–108, 1999.

7. Butterfly.net.The Butterfly Grid. http://www.butterfly.net/, Sept. 2000.

8. Chen, J., Wu, B., Delap, M., Knutsson, B., Lu, H., and Amza,C. Locality aware dynamic load man-
agement for massively multiplayer games.Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming (PPoP), Chicago, IL, June 2005.

9. DFC Intelligence. Challenges and Opportunities in the Online Game Market - Executive Summary.
http://www.dfcint.com/game_article/june03article.htm, June 2003.

10. Golding, R. A. A weak-consistency architecture for distributed information services.Computing Sys-
tems, 5(4):379–405, Fall 1992.

11. Id Software.Quake 2 Source Code. http://www.idsoftware.com/business/techdownloads/,
Apr. 2002.

12. Knutsson, B., Lu, H., Xu, W., and Hopkins, B. Peer-to-peer support for massively multiplayer games.
Proceedings of the 23rd Conference of the IEEE Communications Society (Infocomm), Hong Kong,
China, Mar. 2004.

13. Lenoski, D., Laudon, J., Joe, T., Nakahira, D., Stevens,L., Gupta, A., and Hennessy, J. The DASH
prototype: Implementation and performance.Proceedings of the 19th Annual International Symposium
on Computer Architecture (ISCA), pages 92–103, Gold Coast, Australia, May 1992.

14. Lui, J. C. S. and Chan, M. F. An efficient partitioning algorithm for distributed virtual environment
systems.IEEE Transactions on Parallel and Distributed Systems, 13(3):193–211, 2002.

15. O’Connell, K., Dinneen, T., Collins, S., Tangney, B., Harris, N., and Cahill, V. Techniques for handling
scale and distribution in virtual worlds.Proceedings of the 7th ACM SIGOPS European Workshop,
Connemara, Ireland, Sept. 1996.

16. Riker, T. Bzflag source code and online documentation.http://www.bzflag.org/, June 2003.

17. Shaikh, A., Sahu, S., Rosu, M., Shea, M., and Saha, D. Implementation of a service platform for on-
line games.Proceedings of the 3rd workshop on Network and System Support for Games (Netgames),
Portland, Oregon, Sep 2004.

18. Simon, H. A. The architecture of complexity.Proceedings of the American Philosophical Society,
106:467–482, 1962.

19. Sony Entertainment.Everquest Live. http://eqlive.station.sony.com/, Mar. 1999.

20. Square Enix.Final Fantasy XI Online. http://www.playonline.com/ff11us/index.shtml, Oct.
2003.

21. Square Enix. Final Fantasy XI Online Press Release. http://www.playonline.com/ff11us/
polnews/news1430.shtml, Jan. 2004.

22. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. Chord: A scalable peer-to-peer
lookup service for internet applications.Proceedings of the 2001 ACM SIGCOMM Conference, pages
149–160. ACM Press, 2001.

23. Toennies, M. Daimonin source code.http://daimonin.sourceforge.net/, Sept. 2003.

24. Woodcock, B. S. Graphing the growth of mmogs.http://pw1.netcom.com/~sirbruce/
Subscriptions.html, Mar. 2004.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2005

	Matrix: Adaptive Middleware for Distributed Multiplayer Games
	Rajesh Krishna BALAN
	Maria Ebling
	Paul Castro
	Archan MISRA
	Citation

	middleware05.dvi

