
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2006

Query-Based Watermarking for XML Data
Xuan ZHOU
L3S Research Center

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Kian-Lee TAN
National University of Singapore

DOI: https://doi.org/10.1145/1229285.1266991

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ZHOU, Xuan; PANG, Hwee Hwa; and TAN, Kian-Lee. Query-Based Watermarking for XML Data. (2006). Proceedings of the ACM
Symposium on Information, Computer, and Communications Security: ASIACCS'07, Singapore, March 20-22, 2007. 253-264. Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/613

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1229285.1266991
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Query-based Watermarking for XML Data

Xuan Zhou
L3S Research Center

Deutscher Pavillon, Expo
Plaza 1

30539 Hanover, Germany

zhou@l3s.de

HweeHwa Pang
School of Information Systems

Singapore Management
University

Singapore 178902

hhpang@smu.edu.sg

Kian-Lee Tan
Department of Computer

Science
National University of

Singapore
Singapore 117543

tankl@comp.nus.edu.sg

ABSTRACT
As increasing amount of XML data is exchanged over the in-
ternet, copyright protection of this type of data is becoming
an important requirement for many applications. In this
paper, we introduce a rights protection scheme for XML
data based on digital watermarking. One of the main chal-
lenges for watermarking XML data is that the data could
be easily reorganized by an adversary in an attempt to de-
stroy any embedded watermark. To overcome it, we propose
a query-based watermarking scheme, which creates queries
to identify available watermarking capacity, such that wa-
termarks could be recovered from reorganized data through
query rewriting. The identifier queries are tied closely to
the usability of the data, and are highly resilient to reor-
ganization and alteration attacks. In addition, our scheme
considers data semantics to avoid vulnerabilities caused by
redundancy, while taking advantage of the available water-
mark capacity. Based on this scheme, we have designed and
implemented a watermarking solution for XML, and exper-
imentally verified the effectiveness of the solution and its
potential for real world applications.

1. INTRODUCTION
XML is emerging as a new standard for information rep-

resentation and exchange over the internet. As increasing
amounts of commercial data are exchanged or published in
this data format, unauthorized duplication and distribution
of the data become a mandatory concern for many appli-
cations. Examples include a job agent who would like to
prevent job advertisements on his server from being stolen
and posted on other web sites, and a commercial digital li-
brary that needs to safeguard its copyright over its collection
of documents.

Digital watermarking is one of the most widely used mea-
sures to protect digital information from copyright infringe-
ments. By introducing indiscernible perturbations into the
data, it marks the data with copyright information, through
which the publisher can prove his ownership of the data. In

this work, we investigate how to perform digital watermark-
ing on XML data. As a simple example, figure 1(a) shows an
XML document which contain a set of publication records.
In order to embed watermarks into this document, we intro-
duce some perturbations into the <rating> elements, whose
values range from 0 to 100. In particular, we use a secure
pseudo-random number generator (PRNG) to select a small
number of <rating> elements and round each of their val-
ues by 2. Such small modification is usually imperceptible
to users, and does not significantly affect the usage of the
document. Later on, we can claim our ownership of this
XML document by showing that all the <rating> elements
selected by our PRNG contain only even values, which is
unlikely to happen by accident.

An adversary could also modify the XML document to
erase the embedded watermark. His attack will succeed if
he happens to change one of the <rating> elements selected
by our PRNG. However, he must achieve that in a limited
number of modifications, as over-modification would make
the whole document unusable. Therefore, a successful wa-
termarking should observe two basic principles: (i) the wa-
termark insertion does not affect the usability of the data;
(ii) it is difficult to remove the embedded information with-
out destroying the usability of the data. (In this paper,
we focus on robust watermarking rather than fragile water-
marking, which is used for tamper detection.)

Earlier research on robust watermarking has mostly fo-
cused on multimedia data (e.g. image [22], text [3], audio
[4] and video [10]), and a number of commercial applica-
tions have been developed. However, those methodologies
do not work well with XML data, as its format is so flexible
that adversaries can readily reorganize the data to destroy
watermark bits. In some recent studies on watermarking
relational and XML data [1, 21, 8], the proposed techniques
mostly focus on how to embed watermark into isolated data
elements and do not adequately address the problems in-
curred by data reorganization. Therefore, they are either
unable to fully utilize available watermark capacity or vul-
nerable to attacks like data reorganization and redundancy
removal.

There are a number of unsolved challenges faced by wa-
termarking XML data. They include:

(1) Identifying data elements and structures for water-
marking: An XML document consists of a number of data
elements and structures that link the data elements together
based on their relationships, both of which could offer capac-
ity for watermarking. Identifying these units is crucial for
watermarking tasks. However, to identify each data element

<db>
<book publisher="mkp">

<title>Readings in Database Systems</title>
<author>Stonebraker</author>
<author>Hellerstein</author>
<editor>Harrypotter</editor>
<rating>75</rating>

</book>
<book publisher="acm">

<title>Database Design</title>
<author>Bernstein</author>
<author>Newcomer</author>
<editor>Gamer</editor>
<rating>75</rating>

</book>
...

</db>

(a) db1.xml

<db>
<publisher name="mkp">

<author name="Stonebraker">
<book rating="75">Readings in Database Systems</book>
<book rating="61">XML Query Processing</book>

</author>
<author name="Hellerstein">
<book rating="75">Readings in Database Systems</book>
<book rating="57">Relational Data Integration</book>

</author>
...

</publisher>
<publisher name="acm">

...
</publisher>
...

</db>

(b) db2.xml

Figure 1: Structure Reorganization

or structure unit, it is inadequate to treat it in isolation;
rather, we should consider its relationships with other data
elements and structures. As illustrated by the db1.xml in
figure 1(a), if we identify each <rating> element by its value
(i.e., 75), we lose the distinction between the two <rating>
elements under the two different books. This would signif-
icantly reduce the effective watermark capacity. Instead, a
better identifier of the <rating> element is the value of its
sibling element <title>.

(2) Resilience to data reorganization and alteration: When
data elements are identified through relationships and struc-
tures, an adversary could reorganize the data to prevent the
elements from being correctly identified. The flexible for-
mat of XML data in particular enables it to be reorganized
easily. As shown in figure 1, an adversary could redesign
the schema of db1.xml into db2.xml, without losing any in-
formation. He could also alter some parts of the structure
(delete or add some edges or data elements) to hinder the de-
tection of embedded watermarks. He could even transform
the XML data into relational data. Thus, the identifiers
of data elements must be persistent enough to survive any
form of reorganization and alteration.

(3) Identifying data redundancy: Innate redundancies within
XML data could severely degrade the robustness of water-
marking. For example, db1.xml contains the semantic that
an editor only works for one publisher, i.e., the functional
dependency “editor → publisher” holds. The FD produces
many duplicated publisher entries that correspond to the
same editor. If these duplicates are selected to embed dif-

ferent bits of a watermark, the watermark could be erased
by making all the duplicates identical. In contrast to chal-
lenge (1) which requires data elements to be differentiated,
this problem requires duplicates of the same data element to
be identified and treated accordingly during watermarking.

In this paper, we present a query-based watermarking
scheme for XML data that overcomes the above challenges.
Our contributions include:
(i) We propose to use a set of query templates to express the
usability of an XML dataset, and give the methods to quan-
tify such usability and the corresponding distortion func-
tion.
(ii) We create a scheme for robustly identifying data ele-
ments and structure units in XML data. Our scheme cre-
ates queries as the identifiers of data elements, so that the
identifiers can be adapted to reorganized data through query
rewriting. The created identifiers are tied closely to the us-
ability of the data, and highly resilient to reorganization and
alteration attacks. In addition, we consider the internal se-
mantics to avoid vulnerabilities caused by redundancy, while
taking advantage of the available watermark capacity.
(iii) On top of the identification scheme, we devise a wa-
termarking scheme for embedding copyright information in
XML data, and prove its effectiveness both theoretically and
experimentally.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the previous works on watermarking relational
and XML data. Section 3 gives the basic concepts of digital
watermarking and presents a threat model for watermark-
ing XML data. Section 4 introduces the basic construction
of our watermarking system. Following that, sections 5 and
6 elaborate on the two major components of the scheme –
the data element identification scheme and the watermark-
ing algorithm. Section 7 presents an implementation of our
proposed scheme and experiment results. Finally, section
8 summarizes the paper and gives directions for future re-
search.

2. RELATED WORK
There have been a number of works [1, 21, 19, 13, 14, 15,

8] on watermarking relational database. Several watermark-
ing schemes have been proposed to address different attacks,
or to serve different purposes (e.g. traitor tracing [14, 15]
and tamper detection [13]). To summarize, the attacks that
have been handled by the previous works include the follow-
ings – alteration, selection, addition, resorting and collusion
(collusion is not encountered in copyright protection but in
traitor tracing). These attacks are also present to water-
marking XML data, and we are going to address most of
them (except collusion) in this paper. However, the previ-
ous works have not adequately studied the challenges posed
by data reorganization and redundancy. While they pro-
posed to identify available watermark capacity by primary
keys, it is questionable whether such identifiers can survive
through the reorganization and redundancy removal attacks
described in section 3. (For instance, using those schemes
to watermark a relation that is not normalized would result
in vulnerability to redundancy removal attacks.) Moreover,
without a measure of the usability of relational data and the
corresponding distortion function, those schemes are unable
to tie their identifiers to data usability so as to ensure their
robustness. We are going to work out these problems in this
paper.

D(Y,K)

DecoderAttackerEncoder

YX

K

S

M
A(X)E(M,S,K)

M’

Figure 2: A Generic Watermarking Model

In fact, data reorganization is more critical with XML
data, as its structure is more complex and flexible than that
of relational data. Such identifiers as primary key are not
always available in XML data, and it is difficult to normal-
ize XML data to remove any innate redundancy. In [20],
Sion et al. proposed an information hiding scheme for semi-
structured data, in which they identify each data element
by the values of its adjacent elements, and hope the iden-
tifiers could survive through reorganization. However, we
do not think this intuitive method will work well for XML.
As illustrated in figure 1, the neighbors of the book element
in db1.xml actually change significantly after it is converted
to db2.xml. In [17], the only work on watermarking XML
data that we are aware of, the authors extended the water-
marking scheme by Agrawal et. al. [1] on XML data, and
deployed it on an XML compression system. However, they
did not address any problems relating to data reorganization
or redundancy.

David Gross-Amblard calls his work “query-preserving wa-
termarking ” [8] (this term is adapted from [11]). He con-
sidered the relational or XML data that are only partially
accessible through a set of parametric queries, and studied
how watermark could be inserted so that it can be detected
from the results of those queries. This is different from our
“query-based watermarking”, in which we create queries to
resiliently identify the data elements used for embedding
watermarks, so that watermark could be recovered from re-
organized data through query rewriting.

3. PROBLEM DEFINITION
This section enumerates the challenges for watermarking

XML data, following a review of a generic watermarking
model.

3.1 Watermarking
In general, a watermarking scheme embeds data with copy-

right information, which could later be extracted to prove its
ownership. A simple model of robust watermarking process,
adapted from [16], is shown in figure 2. S is the original
data before being watermarked; K is the secret key used in
both watermark embedding and watermark detection; and
M is the watermark to be embedded in S. The watermark
encoding function E embeds M into S through K, and pro-
duces watermarked data X. Attackers may try to remove
M from X by modifying X into Y . However, with a resilient
watermarking scheme, the owner can still extract M ′ = M
from Y through D (watermark detection function) and K.

A good watermarking scheme should satisfy the following
three basic requirements:

1. Imperceptibility: The modification of the data is im-
perceptible to end users. In other words, the usability of the
data should not be degraded too much by the watermarking
procedure. Suppose U(x, y) is the distortion function that
measures the usability degradation caused by modifying x
into y. The imperceptibility requirement could be repre-

sented by U(S, X) < T , where T denotes the maximum
tolerable distortion.

2. Resilience: It is difficult for adversaries to remove
the watermark without destroying the usability of the data.
It could be represented as P (M ′ 6= M |U(X, Y) < T) < ε,
which means that the probability of an unsuccessful detec-
tion is less than some tolerable error rate ε, after one or
more attacks that preserve data usability.

3. Credibility: Detection of the watermark is enough
to convince others that the data has been watermarked by
the owner. This means that it is difficult for an attacker to
falsely claim ownership by coming up with a key that can
extract his intended watermark from the data. (Credibility
measures the resilience of watermarking against invertibility
attacks [5]).

There is a trade-off between resilience and credibility, in
the sense that increasing credibility reduces resilience against
attacks, as both are limited by the watermark capacity of
the data. The means to improve both resilience and credi-
bility is to fully utilize available watermark capacity in the
data.

3.2 Threat Model
To the best of our knowledge, the followings are the vari-

ous possible attacks to the watermarking of XML data:
Attack1: Data Reorganization. The attack redesigns

the schema of an XML data and reorganizes the data accord-
ing to the new schema, in an attempt to deter the owner
from correctly identifying the data elements or structure
units that contain the watermark. An example has been
given in figure 1 in the Introduction. The attack also in-
cludes re-ordering the data elements and altering their rela-
tionships. Such an attack has not been adequately addressed
in watermarking other types of data, e.g. image and audio,
as their formats are much less variable.

Attack2: Redundancy Removal. Attackers exploit
redundancies within the data to destroy the embedded wa-
termark. This is similar to the data compression attack [7]
to multimedia watermarking schemes. Redundancies within
XML data are usually produced by semantics that are not
considered by the schema design. An example is the func-
tional dependency “editor→ publisher” in db1.xml of fig-
ure 1, which produces many duplicates of the publisher at-
tributes. Any watermark embedded in the duplicates can
probably be erased by removing the duplicates or making
them identical. A possible solution is to normalize the data
before it is watermarked. However, normalization of XML
data is still an open research problem [2]. Furthermore,
many XML data will be intentionally designed to contain
redundancies, to achieve simplicity and performance.

Attack3: Addition Attack. Attackers mix the water-
marked data with other related data. As with Attack1, this
attack also aims to prevent the identification of watermarked
data elements.

Attack4: Selection Attack. Attackers select from the
data a subset that satisfies their intended usage, and discard
the rest, in a hope that the watermark is lost in the process.

Attack5: Content Alteration. Attackers randomly or
selectively modify some elements or structures of the data
to erase the embedded watermark bits. This is the most
common attack to watermarking systems.

All these attacks should be conducted under the restric-
tion that they do not destroy the usability of data.

4. THE BIG PICTURE
Section 4.1 introduces the concept of using query tem-

plates to measure the usability of XML data. Section 4.2
gives a framework for watermarking XML data.

4.1 Measures of Data Usability
To design a watermarking scheme that satisfies the three

basic requirements mentioned in section 3.1, we need to first
know how to properly measure the usability of an XML
dataset and find out the corresponding distortion function
U(x, y). In the previous works on watermarking relational
and XML data, the measures of usability only consider the
contents of individual data elements and ignore the struc-
tures that link them together. Those measures fail to cap-
ture the distortion caused by data reorganization.

Instead, we propose measuring usability by query tem-
plates. As the usability of XML data is a measure of whether
the data can provide useful and correct information to users,
we equate usability with the requirement that the results
of some basic queries on the data should remain correct
after watermarking or attacks. For example, users usu-
ally issue queries in the templates “db/book[title=?]/author”
and “db/book[author=?]/title” to db1.xml in figure 1. If
the document can no longer return correct results to these
queries after watermarking or attacks, the data would be re-
garded as useless. Therefore, we can measure the usability
of db1.xml by the consistency of the results to the two query
templates before and after watermarking and attacks. This
measure directly considers the requirements of end users,
and takes both data contents and structures into account.
With this measure, we can see that data reorganization does
not necessarily impair data usability, as queries could be
rewritten to retrieve the same results from the reorganized
data.

In section 5, we address how to quantify the usability of
XML data through a set of query templates, and define the
distortion function U(x, y).

4.2 The Framework
Our system for watermarking XML data comprises two

schemes – an identification scheme that creates persistent
identifiers for the data elements used to embed watermarks,
and a watermarking scheme that inserts/detects watermarks
into/from the data elements. The identification scheme is
crucial for handling the challenges posed by data reorganiza-
tion, and it constitutes the main contribution of this work.

Based on the requirements and the challenges for water-
marking XML introduced in section 3, to ensure the quality
of watermarking, the identifiers created by the identifica-
tion scheme should satisfy the following criteria: (i) Re-
silience: they should be able to survive through data re-
organization or alteration. As our scheme represents data
usability by a number of query templates, resilience means
that as long as the results for the query templates are pre-
served, the identifiers can correctly identify data elements.
(ii) Redundancy independence: they should be independent
of data redundancies, i.e., duplicated data elements should
have the same identifier; otherwise, watermarks could be
removed by redundancy removal attacks. (iii) Differentia-
bility: they should be able to distinguish between data ele-
ments to achieve large watermark capacity. A larger water-
mark capacity helps to achieve better resilience and credi-
bility of watermarking.

mapping 2

mapping 1

mapping 3

data

schema

watermark
insert query

detect query 3

detect query 2

detect query 1

watermark detect query

rewrite

rewrite

rewrite

+ Y3

Y2

Y1

X

Figure 3: Watermark Insertion and Location

In consideration of these criteria, we choose to use queries
as the identifiers of data elements, because a query could be
easily adapted to different organizations of the same data
through query rewriting. For example, an XPath query
“db/book[title=‘DB Design’]/author” to be conducted on db1
.xml could be rewritten into another XPath query “db/publisher/
author[book=‘DB Design’]@name” to be conducted on db2.xml.
Thus, we get a query-based watermarking system which
works as follows:

1. Data Element Identification: Use a secret key to
select a number of data elements to embed watermark bits.
(These data elements should be important to the usability of
the XML dataset.) Create queries as identifiers of these data
elements through the identification scheme, and safeguard
the set of identifiers (denoted by Q) along with the secret
key.

2. Watermark Insertion: Execute the queries in Q on
the original data to retrieve the data elements (see figure 3).
The watermark bits are then embedded into these elements
through selected watermark embedding algorithms.

3. Watermark Detection: Execute the same set of
queries to retrieve the data elements embedded with water-
mark bits, and reconstruct the watermark from them. As
the schema and the data could be reorganized by attackers,
the queries may have to be rewritten for the reorganized
data (figure 3). The query rewriting is conducted according
to the mapping between the original schema and the new
schema, which has been studied extensively in the context
of data integration [18, 9, 23]. As the detection process
requires query set Q, which contain a part of information
of the original data, we regard our approach as semi-blind
watermarking [6].

We present the identification scheme in section 5 and the
watermarking scheme in section 6.

5. THE IDENTIFICATION SCHEME
This section presents our identification scheme. Section

5.1 gives the preliminary concepts of XML data, and shows
that an XML dataset can be represented by a flat table.
Section 5.2 shows how to quantify data usability that are
expressed by query templates. Section 5.3 presents a basic
algorithm that creates identifiers for data elements, and sec-
tion 5.4 proves the robustness of the identifiers. Section 5.5
extends the algorithm, so it can achieve better watermark
capacity.

75

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

db

book

Heller

1

Stone

5

harrypotter

publisher
title

author
author

editor

Readings
in

mkp
75

rating

Newcomer

gamer

Bernstain

6

book
book

publisher
title

author
author

editor
acm

DB
design

rating

Figure 4: db1.xml as A Tree

5.1 Preliminaries
An XML dataset is organized in a tree structure that com-

prises only two types of nodes: Leaf Node that contains a
value but does not refer to other nodes; Non-leaf Node that
contains no value but a set of edges that refer to other leaf
or non-leaf nodes. The edge pointing to a node is known as
the name of the node. For instance, the db1.xml in figure 1
can be represented as the tree in figure 4. We distinguish be-
tween XML schema and XML tree, where the former is the
definition of node name and their relationships (normally
father-child relationship) and the latter is the instances of
XML data that conform to a certain schema.

Path: a path is a string “a1/a2/.../ak”, where ai is the
parent of ai+1 in an XML schema. We denote the complete
set of paths that are rooted at the root of an XML schema
S by paths(S). ¤

For example, “db/book/publisher” is a path in db1.xml
(figure 4), and the paths(S) of db1.xml include {db, db/book,
db/book/publisher, db/book/title, db/book/author, db/book/
editor, db/book/rating}. In a XML tree T , the complete set
of nodes that are reachable by the path path1 is denoted by
{path1}.
Query: A query is a string “a1

�
[sat1]

�
/a2

�
[sat2]

�
/.../ak�

[satk]
�
”, where “a1/a2/.../ak” is a path. [sati] is a selec-

tion criterion in the form [pi1 = valuei1, ... , pik = valuei1],
where each “pij” is a sub-path and each valuei1 is a char-
acter string. The results to the query are the nodes in
{a1/.../ak} that satisfy all the sati criteria. ¤

For example, “db/book[title = ‘DB design’]/author” is a
query to retrieve the authors of the book titled “DB design”.

Query Template: A query template is in the form “a1

�
[sat′1]

�
/

a2

�
[sat′2]

�
/.../ak

�
[sat′k]

�
”, where [sat′i] = [pi1 , ..., pik] (with-

out comparison operation). We say a query fits into a query
template if they are equal after we remove all the comparison
operations of the query. ¤

For example, “db/book [title = ‘DB design’]/publisher” fits
in query template “db/book [title]/publisher”.

Tree Tuple: Suppose T is an XML tree that conforms to a
non-recursive schema S, and paths(S) = {p1, ..., pk}. A tree
tuple is a set of nodes {np1 , ..., npk} in T that satisfy:

• npi ∈ {pi}, i.e. node npi is a node reachable by path
pi.

• For each pair of paths, say pi and pj , if “pj” = “pi/a”
where a is an edge, then npj is the parent of npi in T .
¤

gamer

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

(1) (3)(2)

book

publisher

db

Readings
in Stone

harrypotter

author
editortitle

rating

75mkp

book

publisher

db

author
editortitle

rating

75

book

publisher

db

Readings
in

author
editortitle

rating

75mkpacm

design
DB

Bernstain
gamer

Newcomer

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Figure 5: (1) and (2) are tree tuples, but (3) is not

75

1

1

1

1

5

5

6

6

Readings in ..

Readings in ..

DB design

DB design

mkp

mkp

acm

acm

Stone

Heller

harrypotter

harrypotter

Newcomer

gamer

game

db/book/publisher

db
db/book
db/book/title

db/book/editor

.

db/book/author

Bernstain

.

db/book/rating

75

75

75

Figure 6: Flat Table of db1.xml

This definition of tree tuple is adapted from [2]. As illus-
trated in figure 5, the nodes in (1) compose a tree tuple of
db1.xml. So do the nodes in (2). However, the set of nodes
in (3) is not a tree tuple – the title node and the author node
in (3) belong to different book nodes in the original db1.xml;
according to the definition of tree tuple, they cannot become
the children of the same book node in a tree tuple.

We assign each non-leaf node in an XML tree a label (as
shown in figure 4), such that the label of two non-leaf nodes
are identical if and only if the subtrees rooted at the two
non-leaf nodes are identical. Then, an XML tree could be
transformed into a Flat table (as shown in figure 6), in which
each column corresponds to a path rooted at the root, and
each tuple corresponds to a tree tuple.

As an example, the flat table of the XML tree in figure 4
is shown in figure 6. Because an XML tree can always be
reconstructed from its flat table, the flat table does not lose
any information contained in the XML tree. Representing
an XML dataset as a flat table will simplify the task of
quantifying the usability of the data.

Based on the concept of flat table, we define functional
dependency within XML data (a similar definition could be
found in [2]).

Functional dependency: Given a XML tree T that con-
forms to a schema S, a functional dependency (FD) is an
expression of the form P1 → P2, where P1, P2 ⊂ paths(S).
T satisfies P1 → P2, if for any pair of tuples d1, d2 in the
flat table FT (T), d1.P1 = d2.P1 implies d1.P2 = d2.P2. ¤

For example, the FDs in db1.xml include:
db/book/title → db/book;
db/book → db/book/title;
db/book → db/book/rating;
db/book/title → db/book/publisher, db/book/editor;
db/book/editor → db/book/publisher.

The FD ‘db/book/editor→db/book/publisher’ holds, because
we assume that each editor only works for one publisher.
From functional dependencies, we can infer that some nodes
are duplicates of each other.

Duplicate: Given a FD P → p, where P ⊂ paths(S) and
p ∈ paths(S), for any pair of tree tuples {n1

p1 , ..., n1
pk
} and

{n2
p1 , ..., n2

pk
}, if n1

pi
= n2

pi
for every pi ∈ P , then n1

p and n2
p

are duplicates of each other. (because we can deduce from
P → p that n1

p = n2
p.) ¤

For example, owing to db/book/editor→db/book/publisher,
if two books have the same editor, their publishers are du-
plicates of each other. Duplicates are the main cause of
redundancies in XML data.

5.2 Quantifying Data Usability
As we have stated earlier, we measure the usability of

XML data by a set of query templates. Through the flat ta-
ble, we can quantify the usability represented by query tem-
plates, and define the distortion function used to measure
the usability degradation made by watermarking or attacks.

First, a query on an XML tree can always be written
into a selection query on its flat table. For example, the
query “db/book [author = ‘Hellerstein’, editor = ‘Harrypot-
ter’]/title” on db1.xml (figure 4) could be written into query
“SELECT db/book/title FROM FT WHERE db/book/author
= ‘Hellerstein’ AND db/book/editor=‘Harrypotter’” to be
executed on the flat table in figure 6. This can be formally
presented as the following proposition:

Proposition 1 A query “a1

�
[sat1]

�
/.../ak

�
[satk]

�
” on an

XML tree T is equivalent to the query “SELECT a1/.../ak

FROM FT (T) WHERE sat1 AND ... AND satk” on its flat
table. ¥
Cover Range: For a query template q = “a1

�
[sat′1]

�
/.../ak�

[sat′k]
�
”, where [sat′i] = [pi1 , ..., pik], its cover range C(q) is

the set of paths that comprise “a1/.../ak” and all “a1/.../ai/pij”.
¤

For example, in db1.xml, the cover range of “db/book[author,
editor]/ title” is {“db/book/title”, “db/book/ author”, “db/
book/editor”}.

Then, we quantify data usability as follows:

Usability: If a query template q is used to express the us-
ability of an XML tree T , the quantity of the usability w.r.t.
q can be measured by the integrity of FT (T)’s projection on
q’s cover range C(q). (The integrity can be measured by the
ratio of inconsistent tuples in this projection before and after
watermarking/attacks) ¤

Consider a query template “db/book [author, editor]/title”,
which is used to describe the usability of db1.xml (figure 4).
According to Proposition 1, for any x, y, query “db/book [au-
thor = x, editor = y]/title” is equivalent to the query “SE-
LECT db/book/title FROM FT WHERE db/book/author =
x AND db/book/editor = y” on the flat table. Therefore, the
projection of the flat table on the cover range {db/book/title,
db/book/author, db/ book/editor} is sufficient and necessary
for answering all the queries that fit in “db/book[author, ed-
itor]/title”. If “db/book[author, editor]/title” represents the
usability of db1.xml, then the integrity of this projection
quantifies the usability.

With the quantification of the usability of XML data, we

have the following definition of distortion function.

Distortion: Suppose Q is a set of query templates used to
express the usability of an XML tree T , and T is transformed
into T ′ by watermarking or attacks. Then, the distortion on
q ∈ Q made by transforming T to T ′ is denoted by Uq(T, T ′),
which is the ratio of inconsistent tuples between the projec-
tion of FT (T) over C(q) and the projection of FT (T ′) over
C(q), namely

Uq(T, T ′) =
πC(q)

�
FT (T)

�− πC(q)

�
FT (T ′)

�
πC(q)

�
FT (T)

�
The overall distortion is U(T, T ′) = maxq∈Q Uq(T, T ′). ¤

5.3 Identifier Creation – Basic Algorithm
In this section, we introduce an algorithm to create an

identifier for each data element in an XML tree. As wa-
termarks could be embedded in an XML tree by modifying
the value of its leaf nodes or changing the attributes of its
non-leaf nodes, both types of nodes are to be identified. The
created identifiers should satisfy the following three criteria
(as mentioned in section 4.2).

Resilience: To survive reorganization attacks, the node
identifiers should be closely related to data usability, such
that as long as data usability is preserved, the identifiers are
preserved too. In other words, the node identifiers should be
able to identify most nodes correctly as long as the distortion
on the data is within a tolerable threshold.

Redundancy Independence: To counter redundancy re-
moval, duplicated (redundant) nodes should be assigned iden-
tical identifiers. We assume that redundancies in XML data
are produced by functional dependencies. Although there
may be redundancies that are not caused by FDs, they are
beyond the scope of this paper.

Differentiability: To economize available watermark ca-
pacity, the identifiers should differentiate between nodes that
are not duplicates of one another.

To create identifiers for the nodes in an XML tree (whose
schema is S), the crucial step is to find a set of paths
P ⊂ paths(S) to identify each path p ∈ paths(S). From
the perspective of flat table, it is to find a set of attributes
to identify each attribute of the flat table. For example,
in db1.xml (figure 4), as each book node can be uniquely
identified by its title, we can use “db/book/title” to identify
“db/book”. With this path identifier, we can readily create a
query in the form “db/book[title = ?]” to identify each node
in {db/book}. For instance, the identifier of the first book
node in db1.xml will be “db/book[title = ‘Reading in Data-
base Systems’]”. In our algorithm, we only present how to
create path identifiers and ignore the trivial step of creating
identifiers for individual nodes.

Before presenting our algorithm, we first give a definition
of minimum determinant.

Minimum Determinant: For a path p ∈ paths(S), if
there exists a set of paths P1 ⊂ paths(S) that satisfy: (a)
each path in P1 ends with a leaf node, (b) P1 → p, (c) there
is no P2 ⊂ paths(S) such that P2 → p and P2 6→ P1, then
P1 is called a minimum determinant of p. ¤

As in db1.xml (figure 4), the minimum determinant of
“db/book” is “db/book/title”. The minimum determinant of
“db/book/publisher” is “db/book/editor”.

Figure 7 shows the algorithm to create identifier for each

/* we denote the cover range of q by C(q); */
1) func CreateID (S, FD, U)
2) foreach p ∈ paths(S), do
3) if there is no q ∈ U such that p ∈ C(q), then
4) ID(p) = NULL;
5) elseif p has no minimum determinant, then
6) ID(p) = p;
7) else /* p’s minimum determinant is P */
8) if there is a q ∈ U that p ∈ C(q) and P ⊂ C(q),then
9) ID(p) = P;
10) else
11) ID(p) = p;
12) end func

Figure 7: Algorithm 1: Basic Identifier Creation

path in an XML tree. The input to this algorithm is the
XML tree’s schema S, the set of existing functional depen-
dencies FD and a set of usability templates U that are se-
lected to describe the usability of the XML tree. For each
path p ∈ paths(S), the algorithm outputs a set of paths
to be its identifier, denoted by ID(p). As presented in the
algorithm, if p is not contained in the cover range of any
query template, it is not contributing to the usability of the
data. So we do not use the nodes in {p} to embed water-
marks, and put p’s identifier as null. If p has a minimum
determinant P , and both p and P are contained in the cover
range of the same query template, we use P as p’s identifier;
otherwise, we use p as its own identifier. The complexity of
the algorithm is O

�|paths(S)| ×maxq∈U |C(q)|�.
As an example, to create identifiers for the nodes in db1.xml,

we input usability templates “db/book[title] /author”, “db/book
[title]/publisher” and “db/book[title]/editor”, and the schema
and FDs described in section 5.1. Algorithm 1 creates an
identifier for each path of db1.xml. The identifier of “db/book”
is its minimum determinant “db/book/title”. The identifier
of “db/book/publisher” is itself. While it has a minimum de-
terminant “db/book/editor”, they are not contained in the
cover range of the same query template.

5.4 Proof of Resilience
In this section, we prove that the identifiers created by

above algorithm are resilient to reorganization or alteration
attacks and are independent of redundancies. To prove re-
silience, we show that destroying identifiers will destroy data
usability to the same degree.

Assumption 1: given a flat table T , and two cover ranges
C1 and C2 such that C1 ⊂ C2, the tuples in T ’s projection
over C1 have the same expected number of replicas in T ’s
projection over C1. (This assumption holds in many real
world data.) ¥
Proposition 2: Suppose p ∈ paths(S), and the identifier
created by Algorithm 1 for p is P . If X% of the nodes in
{p} are not identifiable after an attack, then the distortion
made by this attack to the XML data is at least X%.
Proof. Based on Algorithm 1, p and P must be covered
by the cover range of the same query template, denoted
by C(q). If X% of the nodes in {p} are not identifiable
after the attack, then there are X% of the tuples destroyed
in the projection of the flat table on P ∪ p. As P ∪ p ⊂
C(q), there are also about X% of tuples destroyed in the
projection of the flat table on C (owing to the Assumption
1). Therefore, the distortion made by the attack on q is
X%, i.e.,Uq(T, T ′) = X%. According to the definition of

distortion, the distortion made by the attack on the whole
XML data is at least X%. ¥

To prove redundancy independence, we show that dupli-
cated nodes are always identified by the same identifier.

Proposition 3: Suppose p ∈ paths(S). If two nodes n1, n2 ∈
{p} are duplicates of each other, then n1 and n2 will be as-
signed the same identifier by Algorithm 1.
Proof. Based on the definition of duplicate, there must be
a FD P1 → p, and n1, n2 must belong to two tree tuples
{n1

p1 , ..., n1
pk
} and {n2

p1 , ..., n2
pk
}, such that n1 = n1

p, n2 = n2
p

and value(n1
pi

) = value(n2
pi

) for all pi ∈ P1. If the iden-

tifier of p is itself, since value(n1
p) = value(n2

p), n1 and
n2 will be assigned the same identifier. If the identifier
of p is its minimum determinant P2, according to the de-
finition of minimum determinant, P1 → P2. Therefore
value(n1

pj
) = value(n2

pj
) for all pj ∈ P2, and again n1 and

n2 will be assigned the same identifier. ¥

5.5 Identifier Creation – Extended Algorithm
According to Algorithm 1, the identifier of a path p is ei-

ther p itself or its minimum determinant. Obviously, using
the minimum determinant as identifier could further dif-
ferentiate the nodes in {p} than using p itself. However,
to counter reorganization attacks, Algorithm 1 allows min-
imum determinant to be used only if p and its minimum
determinant are contained in the cover range of the same
query template. This condition is overly strict and limits
the differentiability of created identifiers. Our first exten-
sion to Algorithm 1 is to relax the condition of using mini-
mum determinants, so as to improve the differentiability of
the created identifiers.

Suppose an XML tree T that conforms to schema S and
paths(S) = {A, B, C}. Figure 8 shows the flat table of T ,
with A, B and C as its attributes. Suppose the minimum
determinant of C is A, and the query templates to express
the usability of T is U . We consider whether to use A as
C’s identifier in different scenarios.
Scenario 1: U contains only one query template U = {q},
and its cover range C(q) is {A, B, C}. In this scenario, it is
safe to use A as C’s identifier. According to Proposition 2,
to destroy the identifiers, an attacker would have to modify
the flat table’s projection on {A, C}, which is not possible
without changing the projection on {A, B, C}.
Scenario 2: U contains two query templates U = {q1, q2},
and C(q1) = {A} and C(q2) = {B, C}. In this scenario, it
is unsafe to use A as C’s identifier. As shown in figure 8, a
simple attack is to reorder the records in columns B and C,
which could change the projection on {A, C} entirely while
preserving the projections on {A} and {B, C}. This scenario
has been considered by Algorithm 1.
Scenario 3: U contains two query templates U = {q1, q2},
and C(q1) = {A, B} and C(q2) = {B, C}. In this scenario,
it is possible to use A as C’s identifier. An attacker can-
not arbitrarily change the projection on {A, C}, as it would
either destroy the projection on {A, B} or destroy the pro-
jection on {B, C}. In fact, to preserve data usability, the
attacker can only change some tuples that have identical B
fields. If the replication factor of the records in column B is
very low, only a small number of tuples can be changed, so
it is still practical to use A as C’s identifier. This scenario
is ignored by Algorithm 1.

Based on the above observation, we introduce the con-

A is C’s minimum determinant

B CA

1

1

2

3

B CA

1 2

1

2

3

21

1

3

3

1

2

2

1

reorganize

Cover Ranges: {A,B,C} or {A}, {B,C} or {A,B}, {B,C}

Figure 8: Example of Reorganization (after the re-
organization, the projections on {A} and {B,C} are
preserved, but not for {A,B,C} or {A,C})

cepts of γ-related and γ-closure, which will be used in iden-
tifier creation to achieve better watermark capacity.

γ-related: Given two query templates q1 and q2, whose
cover ranges C(q1) and C(q2) overlap. In the projection of
the flat table on C(q1) ∪ C(q2), if the replication factor of
the records in the columns covered by C(q1) ∩ C(q2) is less
than γ, then we say that q1 and q2 (or C(q1) and C(q2)) are
γ-related to each other. ¤
γ-closure: Given a set of query templates Q and their cover
ranges C(Q), a γ-closure of cover ranges, denoted by clo, is
a subset of C(Q), such that each pair of C(q1), C(q2) ∈ clo
is γ-related, and there is no C(q3) 6∈ clo that is γ-related to
any cover range in clo. ¤

When two cover ranges C(q1) and C(q2) are γ-related and
γ is very small, it is difficult to modify the flat table’s pro-
jection on C(q1) ∪ C(q2) without modifying the usability
projection on C(q1) or C(q2). Thus, if a path and its mini-
mum determinant are covered by a γ-closure of cover ranges,
it is still safe to use the minimum determinant as the iden-
tifier of the path. This enables us to use more minimum
determinants to achieve a larger watermark capacity.

Our second extension concerns some paths that do not
appear on the right side of any functional dependency, e.g.
“db/book/author” in db1.xml. According to the defini-
tion of duplicate, if a path p does not appear on the right
side of any FD, the nodes in {p} will not contain dupli-
cates. It seems that we can use anything as p’s identi-
fier, without worrying about redundancy problem. How-
ever, if the parents of some nodes in {p} are duplicates of
each other, we can still deduce that these nodes are iden-
tical. Therefore, in our extended algorithm, we use the
path itself and the identifier of its longest prefix path as its
identifier, e.g. ID(“db/book/author”) = {ID(“db/book”),
“db/book/author”}= {“db/book/title”, “db/book/ author”}.

Finally, figure 9 shows the extended algorithm for iden-
tifier creation, which offers higher watermark capacity than
Algorithm 1. In the algorithm, a user only needs to set γ to a
sufficiently small value so that it is difficult for an attacker to
disable the identifiers through reorganization. The complex-
ity of the algorithm is also O

�|paths(S)| ×maxq∈U |C(q)|�.
To summarize, section 5 presents a scheme that can create

resilient identifiers for the data elements in an XML dataset.
The identifiers are tied closely to the query templates used
to represent the data usability. After reorganization attack,
as long as the query templates (after being rewritten) can
return correct results, the identifiers (through query rewrit-
ing) can correctly identify the data elements from the reor-

1) func CreateID (S, FD, U, γ)
2) generate all cover ranges of U and their γ-closures;
3) foreach p ∈ paths(S), do
4) if there is no q ∈ U such that p ∈ C(q), then
5) ID(p) = NULL;
6) if p has no minimum determinant, then
7) if there is no FD P1 → p, then
8) ID(p) = ID(p’s longest prefix) + p;
9) else
10) ID(p) = p;
11) else /* p’s minimum determinant is P */
12) if p and P are contained in a γ-closure, then
13) ID(p) = P;
14) else
15) ID(p) = p;
16) end func

Figure 9: Algorithm 2: Extended Identifier Creation

ganized data. In addition, the identifiers are independent
of redundancies caused by functional dependencies, while
being able to differentiate data elements to the full extent.

5.6 Some Remarks on Usability Templates
Selecting appropriate query templates to represent the us-

ability of an XML document is crucial to the success of wa-
termarking. If one chooses too many query templates that
are not important to users, it would impair the resilience
of watermarking, because attackers can reorganize the data
without regard to these templates, such that some water-
mark identifiers created upon these templates are destroyed.
On the other hand, if the important query templates are not
all taken into account, we could lose some watermark capac-
ity. In practice, the templates selection can be conducted by
domain experts, following guideline – (1) all selected tem-
plates should be important; (1) all important query tem-
plates should be included.

6. THE WATERMARKING SCHEME
On top of the above identification scheme, we devise a

watermarking scheme for embedding watermarks in data el-
ements. Watermark can be embedded in (i) leaf nodes by
modifying their values and (ii) non-leaf nodes by adding to
or deleting their child nodes. For example, the first ‘book’
in db1.xml contains two ‘author’ attributes. We can change
the attribute number to 1 by deleting an ‘author’, or to 3 by
adding a fake ‘author’. Information is embedded through
such additions and deletions. Our watermarking scheme
makes use of both leaf nodes and non-leaf nodes.

As an XML dataset may contain various data types with
unique characteristics, our scheme employs different water-
marking algorithms for them. A number of existing wa-
termarking algorithms can be adopted directly, such as the
algorithms for watermarking text [3], numeral [21], and im-
age [22]. As it is not the objective of this paper to design
watermarking algorithms for these different data types, we
shall not discuss them further. Instead, we assume some
common properties of the leaf nodes and non-leaf nodes,
and present a “example” watermarking algorithm for XML
data. We assume that each leaf node contains bits of dif-
ferent significance, such that modifying a more significant
bit would result in a larger deviation from its original value.
Similarly, the attributes of a non-leaf node also have differ-
ent significance.

6.1 Preparation

1) proc embed(φ, k, wm)
2) foreach leaf node A, do
3) for i=1 to |LSB(A)|, do
4) r=hash(i,A,k) mod P; /*P is a large prime*/
5) if r < φ× P, then
6) j=hash(i,A,k) mod |wm|;
7) bi(A)=wmj;
8) add ID(A) to Q;
9) foreach non-leaf node B, do
10) for i=1 to |LSA(B)|, do
11) r=hash(i,B,k) mod P;
12) if r < φ× P, then
13) j=hash(i,B,k) mod |wm|;
14) if |ai(B)| mod 2 6= wmj, then
15) delete a ai(B);
16) add ID(B) to Q;
17) end proc

Figure 10: Algorithm 3: Watermark Insertion

In the preparation step, the user first discovers all the
functional dependencies based on the schema of the XML
data, and specifies a number of query templates that repre-
sent the usability of the data. He also determines the poten-
tial leaf nodes and non-leaf nodes to be used to embed water-
marks, and the MSB/MSA (most significant bits/attributes)
and the LSB/LSA (least significant bits/ attributes) for each
type of nodes. Then, he inputs the information to the identi-
fication scheme, which creates an identifier for each potential
leaf node or non-leaf node to be watermarked. (As shown in
Algorithm 1 and Algorithm 2, if a node is not contributing
to the data usability, its identifier will be empty and it will
not be used to embed watermarks.)

When creating node identifiers, we only use MSB/MSA
(instead of full values) in the selection criteria of the created
identifying queries, so that slight modification of the values
or attributes would not affect the accuracy of identification
and at the same time retain the differentiability of the cre-
ated identifiers. The LSB/LSA are the bits/attributes that
could sustain a certain distortion, so they are used to em-
bed watermarks. It is worth noting that “least significant
bits” is different from “insignificant bits”; over-modifying
the LSB/LSA will also destroy the usability of data.

6.2 Watermark Insertion
After preparation, each LSB/LSA constitutes a potential

object to embed a watermark bit. However, to preserve data
usability, only a small fraction of the LSB/LSA is selected
for modification. Let φ denote the proportion of the selected
LSB/LSA. A secure hash function h() is used to assign to
each LSB/LSA a hash value, which decides whether that
LSB/LSA is used to embed a watermark bit. The hash
value of the ith LSB/LSA of node A is

hash(i, A, k) = h
�
h(ID(A))⊗ h(i)⊗ h(k)

�
where ID(A) is the query to identify A and k is a secret key.
We denote the watermark by wm, and the ith bit of wm by
wmi. In addition, we denote the ith LSB of a leaf node A by
bi(A), and the ith LSA of a non-leaf node B by ai(B). Q is a
set of queries to identify the selected leaf/non-leaf nodes for
embedding watermarks. Q and k are secrets that the user
keeps, and are used for watermark detection subsequently.
The watermark embedding algorithm is shown in figure 10.

The input of the algorithm is φ (the proportion of LSB/LSA
used to embed watermark), the secret key k and the water-
mark wm. First, it embeds watermark bits into the leaf
nodes. For each LSB in a leaf node, a hash value is cal-

1) proc detect(Q, φ, k, wm)
2) foreach query ID(A) in Q, do
3) if A is a leaf node, then
4) for i=1 to |LSB(A)|, do
5) r=hash(i,A,k) mod P; /*P is a large prime*/
6) if r < φ× P, then
7) j=hash(i,A,k) mod |wm|;
8) q = rewrite(ID(A));
9) retrieve C by query q;
10) if bi(C)=1, then
11) wmt[j] += 1;
12) else wmf [j] += 1;
13) else if A is a non-leaf node, then
14) for i=1 to |LSA(A)|, do
15) r=hash(i,A,k) mod P;
16) if r < φ× P, then
17) j=hash(i,A,k) mod |wm|;
18) q = rewrite(ID(A));
19) retrieve C by query q;
20) if |ai(C)| mod 2=1, then
21) wmt[j] += 1;
22) else wmf [j] += 1;
23) end proc
24)

25) proc construct(wm, υ) /* 1
2 < υ < 1*/

26) for i=0 to |wm|-1, do

27) x =
wmt[i]

wmt[i]+wmf [i] ;

28) if x > υ, then
29) wmi = 1;
30) else if x < 1− υ, then
31) wmi = 0;
32) else wmi = undefined;
33) end proc

Figure 11: Algorithm 4: Watermark Detection

culated that decides whether that LSB is to be used for
watermarking. If so, this LSB embeds the (hash(i,A,k) mod
|wm|)th bit of the watermark. Next, the algorithm embeds
watermark bits into the non-leaf nodes. The same selection
criterion is used to determine the LSA of non-leaf nodes for
watermarking, where watermark bits are embedded through
attribute deletion. The complexity of the algorithm is O

�
n×

max(LSB, LSA)
�
, where n is the number nodes in the XML

tree being watermarked, and max(LSB, LSA) denotes the
maximum number of LSB and LSA on each node.

6.3 Watermark Detection
Watermark detection is the reverse process of watermark

insertion. As the nodes are identified via queries, query
rewriting is the initial step of watermark detection: for
selecting the watermarked nodes (see section 4), the user
rewrites the queries on the original data into queries on the
reorganized data according to the mapping between the orig-
inal and reorganized schemas. As query rewriting is beyond
the scope of our work, we omit the details. The basic tech-
niques can be found in [12, 9, 18]. While query rewriting
can only be done in a semi-automatic way, it does not affect
the soundness of our watermarking schema. The watermark
detection algorithm is shown in figure 11.

Each query in Q is rewritten and executed on the tar-
get data to retrieve the nodes that carry the watermarks.
Each LSB/LSA of the nodes is decided by the selection cri-
terion whether it has been watermarked. If so, its value
is used to vote whether the corresponding watermark bit
is 1 or 0. For each bit of the watermark, two buckets,
wmt[i] and wmf [i], are used to count the votes. wmt[i]
records the number of votes supporting wmi = 1 and wmf [i]
records the number of votes supporting wmi = 0. Finally,
the watermark is reconstructed based on a majority rule

with υ as the threshold. The complexity of the algorithm is
O
�|Q| ×max(LSA, LSB)

�
.

6.4 Analysis
This section analyzes the credibility level offered by the

watermarking scheme and its resilience to various attacks.
Credibility reflects how confident we are that the data

has been purposely watermarked by the owner. It measures
the resilience of a watermarking scheme against invertibil-
ity attacks – given a dataset and a specific watermark wm,
what is the difficulty (probability) for an attacker to figure
out a Q and a k that can detect wm from the dataset? If
the hash function h() used in our watermarking algorithm
is sufficiently secure, it will be impossible for an attacker
to find a k that can generate a Q to extract the correct
wm. What an attacker can only do is to randomly guess
the k. Based on our algorithm, the probability of a suc-
cessful guess is p = 1

2|wm| , where |wm| is the length of the
watermark. If the watermark contains 32 bits, this proba-
bility will be 2−32, which is small enough to defend against
such random guesses. Therefore, the credibility of our water-
marking scheme can be high if we can insert an watermark
of an adequate size.

Attack4 (selection) can succeed only if all the LSB/LSAs
that have been embedded with one of the watermark bits
are removed. Given N bits of LSB/LSAs in the dataset, on
the average Nφ

|wm| bits are used to embed a single watermark

bit. If an attacker selects X% of the data and discards the
rest, the probability of a successful attack is approximately

1− �1− �1−X%
� Nφ
|wm|

�|wm|
. With N = 5× 105, |wm| = 20

and φ = 0.5%, even if the attacker discards 90% of the data,
the probability of a successful attack is only about 4×10−5.

In Attack5 (alteration), to preserve data usability, the at-
tacker is only allowed to introduce a small distortion to the
dataset. It means that he can only alter a small fraction of
the LSB/LSAs. Then, the resilience of our algorithm against
this attack is measured by the probability that modifying a
certain fraction of the LSB/LSA destroys the watermark.
If the attacker randomly reverses X% of the LSB/LSA,
the probability of a successful attack is 1 − �Pn

i=υn

�n
i

�
(1−X%)iX%(n−i)

�|wm|
, where n = Nφ

|wm| . With N = 5×105,

υ = 1
2
, |wm| = 20 and φ = 0.5%, even if the attacker re-

verses 35% of the LSB/LSAs, the probability of a successful
attack is only about 3× 10−3.

The same applies to Attack1 (reorganization), in which an
attacker reorganizes the data to prevent watermarked nodes
from being correctly identified. Proposition 2 has shown
that destroying node identifiers will destroy data usability
to the same degree. Therefore, if the maximum tolerable
distortion is X%, the attacker is only allowed to disable
X% of the node identifiers. The probability of a successful

attack is also 1−�Pn
i=υn

�n
i

�
(1−X%)iX%(n−i)

�|wm|
, where

n = Nφ
|wm| . This indicates that reorganization attacks are

actually no more powerful than alteration attacks.
Attack2 (redundancy removal) does not apply to our wa-

termarking scheme, as the node identifiers created by our
identification scheme are independent of the redundancies
inside the data.

Attack3 (addition) is not able to compromise our water-
marking scheme either. An attacker can merge the water-
marked dataset with some relevant dataset, and conduct

title conference page monthauthor*year

inproceedings* | ...

Root

Figure 12: Schema of DBLP Dataset

reorganization afterwards. However, as long as the usability
of the data is preserved, through Q we can still locate the
watermarked nodes from the merged dataset and retrieve
the watermark from them.

An attacker may choose to perform several kinds of at-
tacks simultaneously. However, this will not improve his
chance of success, as the destruction made by the attacks to
data usability will accumulate.

7. EXPERIMENT
We have implemented a system for watermarking XML,

named WmXML, based on the architecture in figure 3. A
demonstration of this system has been published in [24].

Section 6.4 has theoretically analyzed the effectiveness of
our watermarking system. This section presents the results
of some experiments on this system, which are intended to
establish how much incremental watermark capacity our wa-
termarking scheme achieves, and how resilient the scheme is
against attacks. The XML data we used in our experiments
is the DBLP dataset, which encodes the information of more
than 600,000 publications. Its schema is shown in figure 12.

7.1 Watermark Capacity
We conducted experiments to confirm that our system is

able to further differentiate the data elements in a semi-
structure document than the naive method of identifying
each data element directly by its value. In the experiments,
we used our system to create identifiers for all the leaf nodes
in the DBLP data set, and compared their quantity with
those created by the naive method. Figure 13 compares the
number of identifers created by the two methods for three
types of leaf nodes – author, pages and year. Obviously, our
method is able to differentiate and identify many more leaf
nodes than the naive approach. The contrast is especially
significant for those nodes with small values, e.g. year. As
the naive approach does not differentiate between leaf nodes
containing the same value, it loses a large amount of water-
mark capacity.

536769
 574682

49019

420739

70

1316760

<pages>
 <author>
 <year>

n
u
m

b
e
r

o
f
ID

s

our method

naive method

Figure 13: Watermark Capacity

 0

 0.2

 0.4

 0.6

 0.8

 1

1248163264

su
cc

es
s

ra
te

amount of data selected (%)

phi = 1%
phi = 0.5%
phi = 0.1%

 0

 0.1

 0.2

 0.3

10.50.10.05

di
st

or
tio

n

phi (%)

watermark Q1
watermark Q2
watermark Q3

attack Q1
attack Q2
attack Q3

 0

 0.1

 0.2

 0.3

 0.4

10.50.10.05

di
st

or
tio

n

phi (%)

watermark Q1
watermark Q2
watermark Q3

attack Q1
attack Q2
attack Q3

(a) Attack4: Selection (b) Attack5: Alteration (c) Attack1: Reorganization

Figure 14: Resilience to Various Attacks

7.2 Resilience
We also conducted a set of experiments to study the resis-

tance of our scheme to various kinds of attacks. To simplify
our study, we only embedded watermarks by modifying the
number of author attributes under each inproceedings node.
(We assume that a very small proportion (say 0.1%) of in-
correct author attributes is acceptable for most users.) The
parameters of the data set and our watermarking procedure
are given in table 1.

According to DBLP web-site (http:// dblp.uni-trier.de/),
we summarize the usability of the bibliographic data into
three applications:
1: find the authors of a given publication;
2: find the publications of a given author;
3: find the publications of a particular conference or jour-
nal.
These can be captured by the query templates in table 1.
Thus, our experiments were designed to assess whether at-
tackers could remove the watermarks without destroying the
results to the three usability query templates. If that is not
achievable, we consider our system to be secure. An attack’s
damage to the three types of usability is measured by the
distortion defined in section 5.2, which measures the per-
centage of mismatch between the flat table’s projections on
the query templates before and after attacks.

The first set of experiments is intended to study the re-
silience of our system against Attack4 (selection), in which
an attacker selects a part of the bibliographic data that sat-
isfies his intended purpose and discards the rest. We sim-
ulated the attack through random selection. Figure 14 (a)
depicts the success rate of this attack (the probability that
a watermark is removed by the attack) when selecting dif-
ferent proportions of data. If φ = 0.1% (i.e., 0.1% of the

Parameter Value
Size of DBLP data set 245 MBytes
Number of bibliographies in DBLP 575744
Number of different authors in DBLP 420739
φ(phi) – % of nodes to embed watermark 0.05%∼1%
υ – parameter in algorithm 4 0.5

Notation Query Templates
Q1 “Root/inproceedings[title]/author”
Q2 “Root/inproceedings[author]”
Q3 “Root/inproceedings[conference]/title”

Table 1: Experiment Parameters

inproceedings nodes are used to embed watermarks), the at-
tack succeeds only when the selected data is less than 16%.
When φ = 1%, even if an attacker selects only 2% of the
data, he is not likely to remove the embedded watermark.
As discarding too much data directly compromises the us-
ability of DBLP, our watermarking scheme is highly resilient
to selection attacks.

The second set of experiments aims to study the resilience
of our system against Attack5 (alteration). To simulate the
attack, we randomly selected some inproceedings nodes, and
modified their author attributes in order to reverse the pos-
sible embedded watermark bits. We then tested whether
the attack successfully removed the watermark (success rate
≥ 50%) without destroying the three query templates men-
tioned previously. We also varied parameter φ to observe
how it increased the difficulty of the attacks. Figure 14 (b)
shows the distortion incurred by successful attacks, in con-
trast to those incurred by the watermarking procedure. As
expected, when φ is larger (more nodes are selected to em-
bed watermark bits), both watermarking procedures and at-
tacks incur higher distortion. However, even when φ = 1%,
the distortion made by watermarking are still insignificant
(≈ 0.5%). In contrast, the distortion made by Attack5 are
very significant (20% ≤ distortion ≤ 30%), and can hardly
be accepted by users. Thus, it is difficult for Attack5 to
remove watermark without destroying the usability of the
data.

The last set of experiments was designed to study the re-
silience of our system against Attack1, which attempts to
reorganize the structure to prevent the watermarked nodes
from being identified correctly (although this has been an-
alyzed in section 5.4). As mentioned earlier, we only em-
bedded watermark bits into the inproceedings nodes. The
identifier created by our system for inproceedings is “Root/
inproceedings[title]”. To simulate the attacks, we randomly
exchanged the title attributes to disable the identification of
the inproceedings nodes. We then tested whether the attack
succeeded (success rate ≥ 50%) without destroying the re-
sults to the three query templates. The results are shown in
figure 14 (c). In accordance with the analysis in section 5.4,
reorganization degrades data usability in proportion with
the identifiers it disables. The distortion made by the re-
organization attack are very significant (30% ≤ distortion
≤ 40%). To disable the identification of watermarked node,
the reorganization attacks have to incur the same degree of
destruction to data usability as alteration attacks (Attack5).

8. CONCLUSION
In this paper, we proposed a query-based watermarking

technique for XML data. We showed that data usability
could be represented by query templates, and data element
identifiers could be created through the query templates and
functional dependencies, so that the identifiers are highly re-
silient against data reorganization and redundancy removal,
while making the best of available watermark capacity. We
devised and implemented a watermarking system for XML
based on the proposed technique, and experiments results
confirmed its resilience to various attacks.

There are some issues for further investigation. (1) The
query templates we used to represent data usability are tem-
plates of simple selection queries. More complex queries in-
volving joins and aggregations could also be incorporated.
(2) Different user groups may have different definitions of
data usability. It would be interesting to design a water-
marking scheme that can counter attacks from different user
groups. (3) There may be redundancies in the data that are
not caused by functional dependency. Their influence on
watermarking needs to be studied further.

9. REFERENCES
[1] R. Agrawal and J. Kiernan. Watermarking relational

data: framework, algorithms and analysis. The VLDB
Journal, 12(2):157–169, 2003.

[2] M. Arenas and L. Libkin. A normal form for xml
documents. In Proceedings of the twenty-first ACM
symposium on Principles of database systems, 2002.

[3] M. Atallah, V. Raskin, C. Hempelmann, M. Karahan,
R. Sion, and K. Triezenberg. Natural language
watermarking and tamperproofing. In Proceedings of
the 5th International Information Hiding Workshop,
2002.

[4] L. Boney, A. H. Tewfik, and K. N. Hamdy. Digital
watermarks for audio signals. In Proceedings of
International Conference on Multimedia Computing
and Systems, pages 473–480, 1996.

[5] S. Craver, N. Memon, B.-L. Yeo, and M. M. Yeung.
On the invertibility of invisible watermarking
techniques. In ICIP ’97: Proceedings of the 1997
International Conference on Image Processing (ICIP
’97) 3-Volume Set-Volume 1, page 540, Washington,
DC, USA, 1997. IEEE Computer Society.

[6] E. Elbasi and A. M. Eskicioglu. A dwt-based robust
semi-blind image watermarking algorithm using two
bands. In E. J. Delp, III and P. W. Wong, editors,
Security, Steganography, and Watermarking of
Multimedia Contents VIII, pages 777–787, Feb. 2006.

[7] C. Fei, D. Kundur, and R. Kwong. The choice of
watermark domain in the presence of compression. In
Proceedings of International Conference on
Information Technology: Coding and Computing,
pages 79–94, 2001.

[8] D. Gross-Amblard. Query-preserving watermarking of
relational databases and xml documents. In
Proceedings of the twenty-second ACM symposium on
Principles of database systems, pages 191–201. ACM
Press, 2003.

[9] A. Y. Halevy. Answering queries using views: A
survey. The VLDB Journal, 10(4):270–294, 2001.

[10] F. Hartung and B. Girod. Watermarking of

uncompressed and compressed video. Signal
Processing, 66(3):283–301, 1998.

[11] S. Khanna and F. Zane. Watermarking maps: hiding
information in structured data. In SODA ’00:
Proceedings of the eleventh annual ACM-SIAM
symposium on Discrete algorithms, pages 596–605,
Philadelphia, PA, USA, 2000. Society for Industrial
and Applied Mathematics.

[12] M. Lenzerini. Data integration: a theoretical
perspective. In PODS ’02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
233–246, New York, NY, USA, 2002. ACM Press.

[13] Y. Li, H. Guo, and S. Jajodia. Tamper detection and
localization for categorical data using fragile
watermarks. In DRM ’04: Proceedings of the 4th ACM
workshop on Digital rights management, pages 73–82,
New York, NY, USA, 2004. ACM Press.

[14] Y. Li, V. Swarup, and S. Jajodia. Fingerprinting
relational data: schemes and specialties. IEEE
Transaction on Dependable and Secure Computing,
2(1):34–45, 2005.

[15] S. Liu, S. Wang, R. H. Deng, and W. Shao. A block
oriented fingerprinting scheme in relational database.
In ICISC’04: International Conference on
Information Security and Cryptology, 2004.

[16] P. Moulin and J. O’Sullivan. Information-theoretic
analysis of information hiding. IEEE Transactions on
Information Theory, 49, 2003.

[17] W. Ng and H.-L. Lau. Effective approaches for
watermarking xml data. In DASFAA’05: International
Symposium on Database Systems for Advanced
Applications, 2005.

[18] Y. Papakonstantinou and V. Vassalos. Query rewriting
for semistructured data. In Proceedings of the 1999
ACM SIGMOD, pages 455–466. ACM Press, 1999.

[19] R. Sion. Proving ownership over categorical data. In
20th International Conference on Data Engineering
(ICDE’04), page 584, 2004.

[20] R. Sion, M. Atallah, and S. Prabhakar. Resilient
information hiding for abstract semi-structures. In
Proceedings of Workshop on Digital Watermarking,
volume 2939/2004, pages 141–153, 2003.

[21] R. Sion, M. Atallah, and S. Prabhakar. Rights
protection for relational data. In Proceedings of the
2003 ACM SIGMOD, pages 98–109. ACM Press, 2003.

[22] M. D. Swanson, B. Zhu, and A. H. Tewfik.
Transparent robust image watermarking. In
Proceedings of the 1996 SPIE Conf. on Visual
Communications and Image Proc., volume III, pages
211–214, 1996.

[23] C. Yu and L. Popa. Constraint-based xml query
rewriting for data integration. In Proceedings of the
2004 ACM SIGMOD, pages 371–382. ACM Press,
2004.

[24] X. Zhou, H. Pang, and K.-L. Tan. WmXML: A
system for watermarking xml data (demo). In
VLDB’05: the 31st International Conference on Very
Large Databases, pages 1318–1321, 2005.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2006

	Query-Based Watermarking for XML Data
	Xuan ZHOU
	Hwee Hwa PANG
	Kian-Lee TAN
	Citation

	tmp.1472371170.pdf.ce4A7

