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Abstract Manpower scheduling is concerned with the construction of a workers' schedule which meets 
demands while satisfying given constraints. We consider a manpower scheduling problem, called the Change 
Shift Assignment Problem(CSAP). In previous work, we proved that CSAP is NP-hard and presented greedy 
methods to solve some restricted versions. In this paper, we present ~ombinat~orial algorithms to solve more 
general and realistic versions of CSAP which are unlikely solvable by greedy methods. First, we model 
CSAP as a fixed-charge network and show that a feasible schedule can be obtained by finding disjoint paths 
in the network, which can be derived from a minimum-cost flow. Next, we show that if the schedule is 
tableau-shaped, then such disjoint paths can be derived from an optimal path cover, which can be found 
by a polynomial-time algorithm. Finally, we show that if all constraints are monotonzc, then CSAP may be 
solved by a pseudo-polynomial backtracking algorithm which has a good run-time performance for random 
CSAP instances. 

1 Introduction 
Manpower scheduling problems (MSP) arise in large manufacturing or service organizations which operate 
in multiple shifts. Examples of applications are scheduling nurses in hospitals, ground crews in airports, 
and operators in telephone companies. Manpower scheduling is concerned with the generation of a workers' 
schedule consisting of shift and offday assignments to  meet the time-varying manpower demands while 
satisfying a set of constraints imposed by the management, labour union and the government. 

Manpower scheduling is a complex problem in general and thus an active topic in operations research 
(e.g. [ l ,  2, 4, 7, 81). Recently, Tien and Kamiyama [Ill  proposed an integer programming framework for 
solving the MSP in general. In their framework, MSP is decomposed into a pipeline of three sub-problems 
- allocation, offday scheduling and shift assignment. Allocation inputs the temporal manpower demands 
and outputs the manpower demands in terms of the number of workers required during each shift in each 
day. Offday scheduling assigns offdays to the schedule subject to manpower demands and certain offday 
scheduling constraints. Shift assignment then completes the schedule by assigning shifts to the working 
days subject to manpower demands and shift assignment constraints. 

We are mainly concerned with the shift assignment problem (SAP). Many interesting variations of the 
shift assignment problem have been studied. For example, Carraresi and Gal10 [5] considered the problem of 
finding an even balance of shifts over the planning period; Martello and Toth [l01 gave a heuristic approach 
to solve the bus-driver scheduling problem which assigns duties to drivers such that the total time spent 
driving and the spread time over the planning period is bounded; Balakrishnan and Wong [l] applied network 
optimization coupled with Lagrangian relaxation to solve SAP subject to a host of scheduling constraints. 

In this paper, we consider yet another variation of the SAP, which we termed CSAP (Changing Shift 
Assignment Problem). CSAP is concerned with finding a satisfying assignment of shifts to workers subject 
to manpower demands and the shift change constraints. The shift change constraints define the permissible 
shift changes from one day to the next so that workers can maintain a healthy biological clock. For instance, 
it is permissible to change from a morning shift to an afternoon shift, but not from an evening shift to a 
morning shift since there is not enough rest hours in between. As an application, CSAP arises in the 
scheduling of airport ground crews to service in-bound flights for their next journey. Here, shift types 
corresponds to flights because different flights require ground crews of different skill profiles to service. 
Hence, the number of shift types is large and the shift change constraints are fairly complicated in order to 
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generate cost-effective schedules to meet the fluctuating flight requirements. This is even more so considering 
the fact that full-time and part-time workers do not work the same set of shifts. 

In [g], we proved that CSAP is NP-hard, even in very restricted domains. In that paper, we also 
presented cases of CSAP which can be solved by greedy methods. This paper is a sequel which presents 
the more difficult cases, for which greedy methods are unlikely to be successful. The paper proceeds as 
follows. Section 2 gives the preliminaries and formally defines CSAP. Section 3 introduces the fixed-cost 
network flow problem and show that CSAP can be reduced to that problem. This enables us to solve 
CSAP by known techniques for the fixed-cost network flow problem. Section 4 shows that if the schedule 
is tableau-shaped, then CSAP can be solved by a polynomial-time algorithm for finding an optimal path 
cover. Section 5 presents a pseudo-polynomial backtracking algorithm to solve CSAP with monotonic shift 
change constraints. Section 6 gives the conclusion. 

2 Preliminaries 
An instance of CSAP is defined by 6 parameters, the number of workers W, the scheduling period I, the 
number of shifts J, the J X I demand matrix D ,  the W X I show-up schedule U and the 7 X J shift change 
matrix 6.  Shifts are numbered from 1 to 7 and shift 0 denotes an offday. The demand matrix gives the 
manpower requirement, i.e. D j i  is the number of workers required to work shift j on day i. The show-up 
schedule is a blank schedule with offdays already assigned. The unassigned entries are known as slots and 
the number of slots on each day gives the supply of workers for that day. Let DSi and DDi denote the 
total supply of and demand for workers on day i respectively. We assume that for all i ,  DDi <̂  DSi (since 
otherwise, there is no feasible schedule). The shift change matrix is a boolean square matrix which defines 
the shift change permission, i.e. 6 j j  = 1 if shift jl may be followed by shift j2 and 0 otherwise. We assume 
that an offday may precede or follow any shift. The output of CSAP is a feasible schedule a in which all 
slots are assigned to shift numbers 1 to J such that (1) all demands are met; and (2) the shift change is 
permitted between any 2 adjacent slots. If there is no feasible schedule, the primitive fail must be returned. 
To simplify presentation of algorithms, we assume that a = U initially and thus U is not explicitly used. A 
partial schedule is one which has not been fully assigned. As in most literature, we assume that a schedule 
is used in a cyclic fashion. In other words, if a certain worker is on row W of the schedule in the current 
scheduling period, then he will be on row W + 1 in the next scheduling period, and the rows wrap around. 
This allows the schedule to be used indefinitely and also guarantees fairness of shift distribution among 
workers over time. Cyclicity may take on other forms, but in this paper, we will consider only the above 
case. Hence, we can represent a schedule as a list of workstre.tches where each workstretch is a contiguous 
sequence of slots delimited by offdays. Let K denote the number of workstretches of the given show-up 
schedule, Q denote the kth workstretch; ski denote a slot on day (position) i (note that there may be more 
than one such slot); Ck,I-1 and C k , i + ~  denote the slots to the left and right of crbi respectively, considering 
wraparound. We further assume that K is of the same order of magnitude as W. One can verify that the 
matrix representation can be converted to the workstretch representation and vice versa in polynomial time. 

Fig. 1 gives an illustration of the terms explained. In the figure, (a) is a demand matrix; (b) is a show-up 
schedule; (c) is a shift change matrix; (d) is a feasible schedule derived from (b) which satisfies the demand 
matrix subject to the shift change matrix; and (e) is the workstretch representation of (d). The numbers in 
brackets represent the start days of the respective workstretches. 

Shift\Day Worker\Day ShiÂ£t\ShiÂ Worker\Day 
M T W H F S W  M T W H F S V  1 2 3 4 5 6 7 8  M T W H F S W  
1 0 0 1 0 0 0  1 - - - - - 0 0  1 1 0 1 0 1 0 1 0  1 4 6 6 8 8 0 0  1 
2 3 2 2 1 2 3  2 - - - - - -  0 2 0 1 0 1 0 1 0 1  2 1 3 3 5 5 5 0  2 
0 1 1 0 1 1 0  3 0 - - - - - -  3 0 0 1 0 1 0 1 0  3 0 2 2 2 4 4 4  3 
1 0 1 1 2 2 1  4 0 0 - - - - -  4 0 0 0 1 0 1 0 1  4 0 0 2 2 4 4 6  4 
1 1 0 1 1 1 1  5 - 0 0 - - - -  5 0 0 0 0 1 0 1 0  5 8 0 0 1 3 3 5  5 
1 2 3 2 0 0 1  6 - - -  0 0 - -  6 0 0 0 0 0 1 0 1  6 5 5 7 0 0 2 2  6 
0 0 1 0 0 0 0  7 - - - -  0 0 -  7 0 0 0 0 0 0 1 0  7 6 6 6 6 0 0 2  7 
2 1 1 1 3 1 0  8 - - - - - 0 0  8 0 0 0 0 0 0 0 1  8 2 2 6 6 8 0 0  8 

9 - - - - - - o  9 2 2 4 4 8 8 0  9 
1 0 - - - 0 - - -  1 0 8 8 8 0 2 2 2  

(a) (b) (c) (4 

Fig. 1: CSAP Input and Output 

A shift change matrix is said to be monotonic if it is upper-triangular consisting of all ones. Monotonic 
shift changes has the following real-world motivation. In industry, a worker usually starts work at  time no 
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earlier than that of the day before so that he gets enough rest in between. Thus, if we order the shifts by 
their start times, a feasible schedule is composed of workstretches which are monotonically non-decreasing 
sequences. This explains the significance of the monotonic shift change matrix. 

A demand matrix D is said to be slack with respect to the show-up schedule if there exists a da i such / that DDi < DSi. Let DSLi = DSi - DDi be the number of slack units on day i .  Let TS = DSi, 
T D  = DDi, and S = TS - T D  be the total supply, total demand and total slack respectively. If 
S=0 then demand is said to be exact. In industry, if demands are slack, the spare workers are assigned 
either extra offdays or shifts such that shift change constraints are not violated. So in the same way, we 
introduce a special shift type called the *-shift (wildcard shift) and add the appropriate number of them 
into the schedule. In other words, we create a demand for DSLi units of *-shifts on day i, for all i. Note 
that A *-shift can be assigned to any slot. 

The following complexity result about CSAP is known: 

Theorem 2.1. ([g]) CSAP is NP-hard, even for I = 5, if D is exact and 6 is upper-triangular. 

3 CSAP with Slack Demand and Arbitrary Shift Change 
In this section, we will solve the most general version of CSAP, i.e. where the demand matrix D is slack 
and shift change matrix 6 is any arbitrary matrix. This problem is NP-hard by Theorem 2.1. We convert 
CSAP into a fixed-charge network and apply any known algorithm to find a minimum-cost flow. We then 
prove that any minimum-cost flow induces a feasible schedule iff one exists. 
3.1 Fixed-Charge Network Flow Problem 
Let V be a set of nodes and E be a set of directed arcs on V. Each arc (U, v) E E has: (1) a variable cost 
cuv = cost per unit flow from U to v, (2) a fixed cost huv = cost of using the arc, (3) a lower bound lbuv 
= minimum amount that must flow on the arc, and (4) a capacity ubuv = maximum amount that can flow 
on the arc. Let b(u) represent the supply/demand quantity of node U. If b(u) > 0, then U is a supply node; 
if b(u) < 0, it is a demand node. We assume that xugv b(u) = 0. Let xuv be the amount of flow on arc 
(U, v) and yuv be a 011 variable that takes the value 1 if the flow on arc (U, U) is positive and 0 otherwise. 

The fixed-cost network flow problem (FCNP) is an optimization problem whose input is a fixed-cost 
network N = (V, E, c, h, lb, ub, b) and output is a minimum-cost flow together with its cost z. It may be 
formulated by the following mathematical program: 

minimize z = X cuvxuv + X huvguv (1) 

The cost function (1) consists of two terms: the first term accounts for the total flow's variable cost, 
and the second term accounts for the fixed cost. Constraints (2) represent the flow-balance constraints; 
constraints (3) ensure that if Y ~ , ~ = O ,  no flow will occur between nodes U and v. 

It  is known that FCNP is NP-hard, even when the arc costs are constant and the underlying graph 
is bipartite [6]. However, due to its wide applications in production planning, transportation and com- 
munication network design, facilities location, VLSI design, e t ~ ,  efficient algorithms have been developed, 
particularly for layered networks. Discussions on the computational efficiency of such algorithms may be 
found in [6] and its references. In this paper, we assume one such efficient algorithm is available and use it 
as a subroutine. 
3.2 Algorithm F 
To solve CSAP, we propose the following algorithm: 

procedure F ( I ,  7, I<, D, U, 6)  : 
1. compute DS, DD,  DSL,TS, TD,  S ;  
2 .  construct the f ixed-cost network N = (V, E, c, h, lb, ub, b); 
3.  obtain a minimum-cost flow by solving FCNP with input N ;  

let fmin(N) and zmin denote the flow and its cost respectively; 
4 .  if Zmin > TS, return fail; 
5. obtain a feasible schedule U from fmin(N) (see Lemma 3.3 below) ; 
6 .  return U .  
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Fig. 2 gives an illustration of algorithm F. In this example, K=3,1=3, J=2  and shift change is monotonic. 
2(a) shows a demand matrix and (b) shows a show-up schedule. From (a) and (b), we derive DD=[1,3,2], 
DS=[2,3,2] and DSL=[1,0,0]. The network constructed is as shown in (c). Numbers in nodes represent the 
supply/demand quantities. To simplify drawing, the edges from layer 3 to 1 are not drawn. 2(d) shows a 
minimum-cost flow of (c). Numbers above edges represent flow values. 2(e) shows a feasible schedule which 
is derived from (d). 

Layer 

Fig. 2: Illustration of algorithm F 

We will discuss how the fixed-cost network N is constructed (Step 2) and then prove the correctness of 
our algorithm by showing that any minimum-cost flow induces a feasible schedule provided that the cost 
does not exceed the total supply TS.  
3.3 Network Cons t ruc t ion  
A fixed-cost network is constructed as follows (see Appendix A for the precise algorithmic description): 

1. For each workstretch k, create a W-node W[k] whose supply quantity is \o'k\. 

2. For 1 <: j < J and 1 < i < I, create number of D-nodes D\j, 4 I], D[j ,  i, 21,. . - , D b ,  i, p} (where 
p = Dj,,). Each D-node has demand quantity 1. 

3. For 1 < j < J and l < i < I, create D$Li number of *-nodes *[j, i, l], *[j, i, 21, - - - , *E, i, 4 (where 
q = D$Li). Each *-node has demand quantity 0. 

4. For 1 < i < I, create one slack node SL[i] whose demand quantity is DSLr Slack nodes act as sinks 
which absorb the flows out of *-nodes. 

The nodes are arranged into a cyclic layered network, where layer i (0 < i < I )  contains: 
1. W-nodes representing workstretches that start on day i + 1; 
2. D-nodes and *-nodes associated with day i (i.e. nodes whose second index is I); and 
3. the slack node associated with day i - 1, i.e. SL[i - l]. 
Edges represent permissible shift changes. Since the first (i.e. leftmost) slot of a workstretch can be 

assigned to any shift, each W-node in layer i is connected to all D-nodes and *-nodes in layer i + 1. D-nodes 
and *-nodes in adjacent layers are connected if shift changes are permitted. All *-nodes in layer i are 
connected to the slack node in layer i + 1. All edges are assigned unit fixed costs, except the edges from 
*-nodes to slack nodes, which are assigned zero fixed costs. All variable costs are set to zeros. 
3.4 Proof  of Correctness  
Let f (N) denote a flow of the given network N. A node in N is said to be in-active if a t  least one of its 
incoming edges has a positive flow value. Similarly, a node is said to be out-active if a t  least one of its 
outgoing edges has a positive flow value. If neither condition occurs, then a node is said to be dead. Ignoring 
all dead nodes, it is clear that f (N) is a directed layered graph such that, 

1. all W-nodes, D-nodes and slack nodes are in f (N); 
2. the number of *-nodes in f (N)  is at least S, since the sum of demand quantities of slack nodes is S 

and each *-node can supply at most one unit of flow to its slack node; and 
3. z (the cost of f (N))  equals the total number of edges in f (N)  which have fixed costs. 
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In a flow, we say that a fork occurs at  a node U if U has more than one outgoing edges. Similarly, a 
join occurs at  a node u if U has more than one incoming edges. A path is disjoint if none of the nodes 
along the path has a fork or a join. 

Definition 3.1. A disjoint path flow is a flow such that: 
1. the edges of the flow can be partitioned two sets of edges: (a) disjoint paths connecting the W-nodes, 

D-nodes and *-nodes and (b) edges from *-nodes to  slack nodes; and 
2. every *-node supplies exactly one unit to its slack node. 

Definition 3.2. A column of a schedule in matrix representation is said to be proper if every slot in  that 
column has been assigned a shift and the column assignment satisfies the demand for that day. Likewise, a 
partial schedule is said to be i-proper i f  the columns 1 to i of the schedule are proper. Hence, a schedule is 
feasible if and only if it is I-proper. 

Let X = (I, J ,  K ,  D, U ,  6 )  be an instance of CSAP. Let N denote the network constructed by Step 2 of 
algorithm F. Then, the following lemma holds: 
Lemma 3.3. Every disjoint path flow of N induces a feasible schedule for A i f f  A has a feasible schedule. 

Proof. Let f (N)  denote any disjoint path flow of N. Then, f (N) contains exactly K disjoint paths, since 
there are K W-nodes. Each disjoint path in f (N)  must originate from a W-node and end in a D-node or 
*-node. Consider the disjoint path which begins with an arbitrary W-node W[k], 

where r = b(W[k]). This represents a permissible shift assignment of workstretch k, where shift jt is assigned 
to slot ~ , i + ~ - l  for 1 < t < r. Similarly, given a feasible schedule for A, it is easy to construct a disjoint 
path flow for N ,  by associating each workstretch assignment to one disjoint path. D 

Let fmin(N) and Zmin denote a minimum-cost flow of N and its cost respectively. Then the following 
two lemmas hold. 

Lemma 3.4. Zmin > T S .  
Proof. fmin(N) contains T D  D-nodes and at least S *-nodes. Every such node has at  least one incoming 
edge, and each such edge has a unit fixed cost. Since T S  = TD + S by definition, zmin > TS. 0 

Lemma 3.5. Zmin = TS iff fmin(N) is a disjoint path flow. 

Proof. If fmin(N) is a disjoint path flow, then clearly Zmin = TS .  Now, suppose Zmin = TS.  Then, 
fmw(N) must have TD D-nodes and exactly S *-nodes, and every such node has exactly one incoming 
edge. Therefore, 

1. every *-node sends one unit of flow to its respective slack node; 
2. joins cannot exist in fmin(N); 
3. forks cannot exist in fmin{N). 

This may be shown by contradiction. We scan fmin(N) from layer 0 and suppose a fork first occurs 
between layers i- 1 and i. Since layers 0, ..., i- 1 are fork and join free, we can construct an i- 1-proper 
schedule. Thus, number of out-active nodes in layer i - 1 = number of in-active nodes in layer i, and 
so a join must occur between layer i - 1 and i, giving rise to a contradiction. 0 

Theorem 3.6. Algorithm F finds a feasible schedule iff one exists. 

Proof. If the algorithm returns a schedule, then the schedule is clearly feasible. Conversely, if a feasible 
schedule exists, by Lemma 3.3, there exists a disjoint path flow for the network constructed by Step 2 of F. 
By Lemma 3.4 and 3.5, any minimum-cost flow is a disjoint path flow. Hence Step 3 of F always returns a 
disjoint path flow, and Step 5 produces the corresponding feasible schedule. U 

4 CSAP with Exact Demand and Arbitrary Shift Change 
We now consider CSAP such that the demand matrix is exact. Further, we restrict workstretches to be 
non-cyclic and have equal start days or end days. This includes the case that all workers have the same 
offday(s). If we rearrange workstretches in non-decreasing order of their lengths, i.e., \o-k\ > I C T ~ + ~ I ,  for 
k = 1, ..., I( - 1, then the schedule will be shaped like a tableau as shown in Fig. 3(a) or (b), with each row 
of the tableau representing one workstretch. We call this problem T-CSAP and show that it is polynomially 
solvable. 

A node-disjoint path cover, or simply path cover, of a directed graph is a collection of node-disjoint paths 
(possibly having zero length) which covers all nodes of the graph. Given a directed graph G, a path cover 
always exists. An optimal path cover is one which has the least number of paths, and its size is denoted 
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M T W H F S U  M T W H F S U  

(a) (b) 

Fig. 3: Tableau-shaped schedules 

by <(G). The problem of finding an optimal path cover for an n-node directed acyclic graph is solvable in 
0(n2-5) time [3]. 

Using the notion of path cover, we propose the following algorithm P to solve T-CSAP: 

procedure P ( I ,  J, K,  D, U, 6 )  : 
1. construct the corresponding network N using Step 2 of algorithm F; 
2. apply any known algorithm to find an optimal path cover p for N ;  
3 .  if < ( N )  > K return fail; 
4.  obtain a feasible schedule a from p ;  
5. return a.  

We prove that algorithm P is correct. This can be achieved by showing that an optimal path cover 
always contains K disjoint paths and it induces a feasible schedule. 

Let A = (I, J ,  K, W, U, 6) be an instance of T-CSAP and N be the layered network constructed by Step 
2 of algorithm F. Since all workstretches have equal start days, we remove all W-nodes from N. Clearly, 
layer 1 of the network contains K nodes. Since demand is exact, there there are neither *-nodes nor slack 
nodes in N. The resulting network is as shown in Fig. 4. In this figure, (a) shows the given tableau-shaped 
schedule; (b) shows the network constructed from (a); and (c) shows an optimal path cover corresponding 
to (b). 

Since a path in N consists of at most one node from each layer and there are K nodes in layer 1, we get: 

Lemma 4.1. <(N) > K.  

Lemma 4.2. Let p = (p1 , p2, ...,/^K') be a path cover of size K of  N. Let Ipk[ denote the number of 
nodes on path k. W.l .o .g ,  suppose \pkI > \pk+i\ f o r  k = 1, ... ,I< - 1. Then,  lpkl = \ ak \ ,  for k = 1, ..., K. 
Proof. Consider the non-increasing sequences {Ipl l ,  (ml ,  ..., I ~ K  I} and {jai 1, jozl, ..., \aK I}. Suppose k is the 
smallest index such that IpkI # \ f fk \  If \^k\ > [ckl, then we may conclude that DDi > DS; for i = \ak\ + 1 
to lpkl, which is a contradiction because demand is exact. Similarly, if lpkI < \ck\, then DDi < DSi for 
i = lpkl + 1 to [ak \, a contradiction also. Thus, such k does not exist. a 
Theorem 4.3. A has a feasible schedule iff <(G) = I<. 

Proof. Suppose C(G) = I< and p is an optimal path cover of G. We construct a feasible schedule a as follows. 
For each 1 < k < K ,  the path pk , composed of a sequence of nodes (D[jl, l ,  pi], D[j2, 2, pd, ..., D[jr, r, p d ) ,  
represents a permissible shift assignment of workstretch k such that shift jt is assigned to slot a k t  for 
1 < t < IpJ. The assignment is always possible by Lemma 4.2. Since p covers all nodes in G and all 
workstretches are assigned, a- is feasible. Conversely, given a feasible schedule a, we apply the reverse 
procedure to obtain a path cover of size K.  This has to be optimal by Lemma 4.1. D 

5 CSAP with Slack Demand and Monotonic Shift Change 
We next consider the subproblem of CSAP such that the demand matrix D is slack; and shift change matrix 
6 is monotonic. We call this M-CSAP. 

It has been shown in [g] that a polynomial-time greedy algorithm can be used to solve M-CSAP if the 
given demand matrix is exact. Thus, a naive method to solve M-CSAP would be to consider all possible 
substitutions of *-shifts with actual shift numbers and apply the greedy method exhaustively. We call this 
method the exhaustive greedy method or EG, which we employ as a yardstick algorithm for evaluating the 
performance of our backtracking algorithm. 
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M T W H F S U  

Fig. 4: Example of network constructed for tableau-shaped schedule 

procedure EG(I, J1 I<, D ,  U) : 
1 .  for a l l  possible exact demand D' derived from D do 
2. if there i s  a greedy f eas ib le  schedule a with demand D' return a", 

3.  return fail. 

Recall that S is the total number of slack units. The number of different ways to substitute %-shifts by 
shift numbers 1, ..., J is J ~ .  Hence, the worst-case time complexity of EG is O(J' I<2 I )  since the worst-case 
time complexity of the greedy algorithm has been shown to be O(K21) [g]. 
5.1 Algorithm BT 
We propose a depth-first backtracking algorithm BT. BT assigns shifts in increasing order subject to two 
dominance criteria for pruning search space. All workstretches are assigned contiguously from left to  right. 
Define the leftmost slot of a workstretch k ,  denoted l ( k ) ,  as its leftmost unassigned slot, and the tail as the 
sequence of slots from its leftmost slot to its rightmost slot. 

Definition 5.1. A workstretch is potentially assignable at position i to shift j if: 
1. a - k i  is unassigned; 
2. there is no unassigned shift j on days l ( k ) ,  . . . , i - 1; and 
3. it is possible to assign *-shift(s) to the slots c r k , ~ k ) ,  . . . , a,t'-~, followed by assigning shift j to U^,. 

One can easily verify that a workstretch is potentially assignable at  at most one position. Let p(k) denote 
the potentially-assignable position of workstretch k.  Define the head of workstretch k as the sequence of 
slots from crk,l(k) to c ~ k , ~ ( k ) - ~ .  

Definition 5.2. A workstretch k dominates another workstretch k' with respect to (position) i and (shift) 
j iff assigning j to crk,i always leads to a feasible solution whenever assigning the same j to a y i  does. 

We propose the two dominance criteria for the backtracking algorithm. Let j be the current shift (i.e. 
shifts 1 to j - 1 have already been assigned). Let B be the set of days which have at  least one unassigned 
shift j. For all i B, let Cj (cluster I) be the set of all workstretches k such that p(k) = i and k is not 
dominated by other workstretches in Ci w.r.t. i and j. Let C be the set union of all such clusters. 

Criteria 1. Given two workstretches k and k' potentially assignable at some position i to current shift 
j ,  k dominates k' with respect to i and j if (see Fig. 5): 

1. k's tail is longer than or equal to kl's; and 
2. k's head is shorter than or equal to ki's. 

Criteria 2. Suppose cluster C. contains a workstretch k whose tail is longest among all workstretches in 
C. Then k dominates every workstretch in Cit with respect to i and j ,  for all i' E B such that i' # i. 

Fig. 5: Example of dominance. Black slots represent leftmost slots. 

Based on these dominance criteria, we propose the following recursive algorithm BT. Assume that the 
input parameters I, J, K and D are global variables. BT has 2 input parameters j (current shift) and o- 
(current partial schedule), and 1 output parameter U* (output schedule). 
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procedure  BT(j, a, a* ) : 
1.  i f j > J  thenreturn 1; 
2 .  compute B ;  
3.  if B = 0  t h e n d o n e < - B T ( j + l , a , a * ) ;  
4 .  else 
4 . 1 .  compute c lusters  C,- for  a l l  i G B; 
4 . 2 .  s e l ec t  i' such that Ci) contains an element with longest - ta i l ;  
4 . 3 .  fo r  each k i n  C? unt i l  done 
4 . 3 . 1 .  assign * (S )  t o  the head of a^ and assign j t o  a k , , ~  ; 
4 . 3 . 2 .  done + BT(j, U, U* ) ; 
4 . 3 . 3 .  if not done then (backtrack) undo Step 4 . 3 . 1 ;  
4 . 4 .  if done t h e n  copy a t o  a* ; 
5. endi f  
6. if done then return 1 else return ' 0 .  

Each state of the backtracking process either begins a new shift (Step 3) or assigns one current shift 
(Step 4). When *-shifts are assigned, we say that slack units are being consumed. Thus, in each state, 0 to 
I- 1 slack units are consumed, by definition of potential assignability. When there are no more slack units, 
each cluster Ci must contain exactly one workstretch whose leftmost slot is at  position i. In that case, BT 
collapses to  the greedy algorithm presented in [g]. 
5.2 Worst-Case Compu ta t i ona l  Complexi ty 
We show that BT is pseudo-polynomial with respect to S (number of slack units). Let T be the worst-case 
backtrack tree generated by BT for a given input instance of M-CSAP, where the nodes represent the states 
of recursion. We estimate the worst-case complexity of BT by counting the number of nodes in T .  Define 
an (i, j)-assignment to be a series of assignments to the schedule to meet the demand for some shift j on 
some day i. Let T(i, j )  denote the subtree of T associated with an (i, j)-assignment. 

Consider an arbitrary T(i,  j ) .  Let VQ be the root of T(i,  j). For each node v in T(i,  j) ,  let p(v) denote 
the number of slack units consumed in v. Clearly, p(vo) = 0. For every non-leaf node v of T, let deg(v) 
denote the branching factor (i.e. the number of child nodes) of v, and let wl,  w2, ..., wdeg(,,) denote the child 
nodes of v. Then, for all non-leaf nodes v: 

1. deg(v) = I - p(v); and 
2. 0 < ~ ( v )  < ~ ( w l )  < ~ ( w 2 )  < < p ( ~ d e ~ ( i , ) )  <, I - l .  

The structure of T(i,  j )  for I = 4 is as shown in Fig. 6. 

Fig. 6: Example of T(i,  j). Numbers in nodes show the slack units consumed. 

Suppose the depth of T(i ,  j) is d. For any leaf node v^, the path from the root VQ to vd can be uniquely 
identified by a distinct non-decreasing sequence (p(vo), p(vl), . . . , p(vd)) , The total number of slack units 
consumed by the path is given by y^f=o p(vi). Thus, the number of different paths in T(i,  j )  which consume 
some n slack units is equivalent to the number of integer partitions of n into d or less parts such that each 
part does not exceed I - 1, which is the coefficient of X" of the following generating function. 
Fact 1. The generating function for integer partition into d or less parts such that each part does not 
exceed k is 
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Hence, the number of paths in T which consumes S slack units is given by the coefficient of z s  in the 
generating function 

I  J  7-1 D , i  

F ( x )  = nn n E X"". 

;=l j=l 1=1 m = l  

As there is no known formula that computes integer partitions, we upper-bound the above generating 
function by the following: 

/ 1 \ I 2 J  

Fact  2. Given differentiable functions f and g over z such that f ( X )  = g(x)' for some integer constant 
r ,  then the nth derivative o f f  with respect to X may be expressed as 

Fact  3. If  g(x)  = &, then gn(0) = n!. 

From facts 2 and 3, we get 

where r  = 12J.  Thus, the coefficient of xn in F ( x )  is given by 

n- 1 n - i  i Fi(0) - = E  [ T T -  ;] -. 
n ! 

i = O  
i ! 

By induction, one can prove that the above recurrence has the closed form 

Relating back to BT, the total number of paths in T which consume S or less units is thus given by 

Hence, P<s is independent of K .  Furthermore, if we assume that I and J are constants, then Pcs is 
polynomial in S .  Now the number of nodes in T is at  most the depth of T times P<& which equals 
O(I<I) - Pcs. Every node represents one recursion step which incurs 0 ( K )  time. ~ h u s ,  the worst-case 
complexitfof BT given S slack units, denoted tirneBr(S) is given by 

which is pseudo-polynomial assuming that I and J are constants. Comparing the time complexities of 
algorithms EG and BT, we may conclude that BT is superior to EG unless 

S J 
< I 2 . -  

logs + 1 log J ' 

5.3 Experimental  Resul ts  
We test the performance of BT with random instances of M-CSAP. Recall that I is the scheduling period, 
J is the number of shifts, I< is the number of workstretches and S is the number of slack units. An instance 
of M-CSAP is generated as follows. Randomly generate a I< X I cyclic show-up schedule and for each day, 
distribute the S slack units in proportion to the number of slots. (In the real world setting, this is often 
the case.) The demands for all J shifts are then randomly generated based on the cyclic schedule and 
distribution of slack units. 
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First, we fix I = 7, J = 3 and vary K and S. For each pair of K and S, we generate 1000 instances 
which include both feasible and infeasible instances. Table 1 shows the results of the experiment. The results 
indicate that our branch and bound algorithm works hardest when the ratio of slack units to slots (denoted 
e) is between 0.1 and 0.2. In those cases, the maximum number of nodes over all instances expanded grows 
exponentially with S, but the average number of nodes is still bounded by a lower-degree polynomial of S. 
In all other cases, both the maximum and average number of nodes expanded are polynomial relative to 
K, I ,  J and S. 

We next investigate the effect of varying J while fixing K = 20, e = 0.1 and I = 7. Again for each 
J, we generate and test 1000 instances. Table 2 shows the experimental results. Here, we learn that the 
maximum number of nodes generated by branch and bound grows quadratically with K, I, J and e, while 
the average number of nodes grows linearly. 

Table 1. I = 7 and J = 3 

11 Max nodes 1 Avg nodes 
S expanded expanded 
7 555 45 

Table 2. K=20, 7 = 7 and ~ 0 . 1  

Max nodes 
expanded 

188 
2129 

61874 
1 91156 

242535 
' 247343 

285831 

Avg nodes 
expanded 

139 
223 
737 
1551 
2444 
3412 
3617 

6 Conclusion 
In this paper, a sequel to [g], we have presented combinatorial algorithms to solve the more difficult cases of 
the Changing Shift Assignment Problem (CSAP). For the most general version, we proposed an algorithm 
based on network flows. One could have proposed other approaches such as branch and bound methods, but 
we believe that network-based approaches give much more insights into the operation and structure of the 
problem. Furthermore, network flows are well-studied and there exist efficient computational procedures 
which we can use rather than invent new ones. It  remains an open problem whether there exists a polynomial- 
time algorithm for CSAP with slack demands and monotonic shift change constraints. 

Acknowledgements 
I would like to thank Osamu Watanabe for discussions and comments. 

References 
[l] N. Balakrishnan and R. T. Wong. A network model for rotating workforce scheduling problem. Net- 

works, 20:25-32, 1990. 
[2] L. Bianco, M. Bielli, A. Mingozzi, S. Ricciardelli, and M. Spadoni. A heursitic procedure for the crew 

rostering problem. Euro. J. Ops. Res., 58:272-283, 1992. 
[3] F. T.  Boesch and J. F. Gimpel. Covering the points of a digraph with point-disjoint paths and its 

application to code generation. J. Assoc. Comput. Mach., 24(2):192-198, 1977. 
[4] R. N. Burns and G. J. Koop. A modular approach to optimal multiple-shift manpower scheduling. 

Ops. Res., 35(1):100-110, 1987. 
[5] P. Carraresi and G. Gallo. A multi-level bottleneck assignment approach to the bus drivers' rostering 

problem. Euro. J. Ops. Res., 16:163-173, 1984. 
[6] G. M. Guisewite and P. M. Pardalos. Minimum concave-cost network flow problems: Applications, 

complexity and algorithms. Annals Ops. Res., 25:75-100, 1990. 
[7] C. M. Khoong and H. C. Lau. ROMAN: An integrated approach to manpower planning and scheduling. 

In 0. Balci, R. Sharda, and S. Zenios, editors, CS & OR: New Development in Their Interfaces, pages 
383-396. Pergammon Press, 1992. 

[8] M. M. Kostreva and K. S. Jennings. Nurse scheduling on a microcomputer. Computers Ops. Res., 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



9 8 H. C. Lau 

18(8):106-117, 1991. 
[g] H. C. Lau. Manpower scheduling with shift change constraints. In Proc. 5th Int 'l. Symp. Algorithms 

and Computation (ISAAC), pages 616-624. Springer Verlag Lect. Notes Comp. Sci. (834), 1994. Full 
version in Trans. Inf. Proc. Soc. Japan, 36(5) 1995. 

[l01 S. Martello and P. Toth. A heuristic approach to the bus driver scheduling problem. Euro. J. Ops. 
Res., 24(1):106-117, 1986. 

[l11 J .  Tien and A. Kamiyama. On manpower scheduling algorithms. SIAM Review, 24(3):275-287, 1982. 

Hoong Chuin Lau 
Dept. Computer Science 
Tokyo Institute of Technology 
Meguro-ku, Ookayama 
Tokyo 152, Japan 
(hclau@cs.titech.ac.jp) 

Appendix A: Construction of Fixed-Cost Network 

In the following procedure, the ranges of variables are as follows: 1 < i < 1,1 < j < J ,  1 < k < K ,  1 < 
J'l 5 J ,  1 5 J'2 < J 1 1  < P < Dj,i, l < q < DSLi, 1 < PI 5 Djl,ilj 1 5 q1 < DSLil 1 1 < P2 < , and 
1 < 92 < DSLi2. 

procedure Construct-Network (i.e. Step 2 of Algorithm F): 
1. For all k, create W-node W[k] and set b(W[k]) = 14. 
2. For all j, i and p, create D-node Db, <p] and set b(D[7,i, p]) = -1. 
3. For all j, i and q, create *-node *\j, i, q] and set b(*[j, i, q])=O. 
4. For all i, create slack node SL[i] and set b(SL[{\) = DSLi. 
5. For all j l ,  j2, p i ,  pz, ql, 92, and adjacent layers il and i2 (i.e. 1 < il < I - 1 and i2 = il + l ) ,  

do the following: add arcs from D[jl, i ll  pi] to D[j2, i2, p2] if bji ,j2 = 1; add arcs from D\j\, i1 , pl] 
to *[j2, i2, q2] if jl = j2; add arcs from *hl1 ill ql] to  D[j2, i2,p2] if = 1; and add arcs from 
*[jl, h ,  ql] to * [ j 2 ,  i2, q2] if jl = j2. For each such arc (U, v), set Zbuv = 0, ubuv = CO and hw = 1. 

6. For all k, j, i, p and q, add arcs from W[k] to D\j, i,p] and *[j,i, q] if workstretch k starts on day i. 
For each such arc (U, v )  where U = W[k], set lbuv = 0, ubuv = CO and huv = 1. 

7. For all j ,  i and q, add arcs from all *[j, i, q] to SL[i]. For each such arc (U, v), set lbuv = 0, ubuv = 1 
and huv = 0. 
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