
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1996

Combinatorial approaches for hard problems in
manpower scheduling
Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems

Engineering and Industrial Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LAU, Hoong Chuin. Combinatorial approaches for hard problems in manpower scheduling. (1996). Journal of the Operations Research
Society of Japan. 39, (1), 88-98. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Journal of the 0perat.ions Research
Society of Japan

Vol. 39, No. 1, March 1996

COMBINATORIAL APPROACHES FOR
HARD PROBLEMS IN MANPOWER SCHEDULING

Hoong Chuin Lau
Tokyo Institute of Technology

(Received March 24, 1994; Revised January 30, 1995)

Abstract Manpower scheduling is concerned with the construction of a workers' schedule which meets
demands while satisfying given constraints. We consider a manpower scheduling problem, called the Change
Shift Assignment Problem(CSAP). In previous work, we proved that CSAP is NP-hard and presented greedy
methods to solve some restricted versions. In this paper, we present ~ombinat~orial algorithms to solve more
general and realistic versions of CSAP which are unlikely solvable by greedy methods. First, we model
CSAP as a fixed-charge network and show that a feasible schedule can be obtained by finding disjoint paths
in the network, which can be derived from a minimum-cost flow. Next, we show that if the schedule is
tableau-shaped, then such disjoint paths can be derived from an optimal path cover, which can be found
by a polynomial-time algorithm. Finally, we show that if all constraints are monotonzc, then CSAP may be
solved by a pseudo-polynomial backtracking algorithm which has a good run-time performance for random
CSAP instances.

1 Introduction
Manpower scheduling problems (MSP) arise in large manufacturing or service organizations which operate
in multiple shifts. Examples of applications are scheduling nurses in hospitals, ground crews in airports,
and operators in telephone companies. Manpower scheduling is concerned with the generation of a workers'
schedule consisting of shift and offday assignments to meet the time-varying manpower demands while
satisfying a set of constraints imposed by the management, labour union and the government.

Manpower scheduling is a complex problem in general and thus an active topic in operations research
(e.g. [l , 2, 4, 7, 81). Recently, Tien and Kamiyama [Ill proposed an integer programming framework for
solving the MSP in general. In their framework, MSP is decomposed into a pipeline of three sub-problems
- allocation, offday scheduling and shift assignment. Allocation inputs the temporal manpower demands
and outputs the manpower demands in terms of the number of workers required during each shift in each
day. Offday scheduling assigns offdays to the schedule subject to manpower demands and certain offday
scheduling constraints. Shift assignment then completes the schedule by assigning shifts to the working
days subject to manpower demands and shift assignment constraints.

We are mainly concerned with the shift assignment problem (SAP). Many interesting variations of the
shift assignment problem have been studied. For example, Carraresi and Gal10 [5] considered the problem of
finding an even balance of shifts over the planning period; Martello and Toth [l01 gave a heuristic approach
to solve the bus-driver scheduling problem which assigns duties to drivers such that the total time spent
driving and the spread time over the planning period is bounded; Balakrishnan and Wong [l] applied network
optimization coupled with Lagrangian relaxation to solve SAP subject to a host of scheduling constraints.

In this paper, we consider yet another variation of the SAP, which we termed CSAP (Changing Shift
Assignment Problem). CSAP is concerned with finding a satisfying assignment of shifts to workers subject
to manpower demands and the shift change constraints. The shift change constraints define the permissible
shift changes from one day to the next so that workers can maintain a healthy biological clock. For instance,
it is permissible to change from a morning shift to an afternoon shift, but not from an evening shift to a
morning shift since there is not enough rest hours in between. As an application, CSAP arises in the
scheduling of airport ground crews to service in-bound flights for their next journey. Here, shift types
corresponds to flights because different flights require ground crews of different skill profiles to service.
Hence, the number of shift types is large and the shift change constraints are fairly complicated in order to

© 1996 The Operations Research Society of Japan

Manpower Scheduling 89

generate cost-effective schedules to meet the fluctuating flight requirements. This is even more so considering
the fact that full-time and part-time workers do not work the same set of shifts.

In [g], we proved that CSAP is NP-hard, even in very restricted domains. In that paper, we also
presented cases of CSAP which can be solved by greedy methods. This paper is a sequel which presents
the more difficult cases, for which greedy methods are unlikely to be successful. The paper proceeds as
follows. Section 2 gives the preliminaries and formally defines CSAP. Section 3 introduces the fixed-cost
network flow problem and show that CSAP can be reduced to that problem. This enables us to solve
CSAP by known techniques for the fixed-cost network flow problem. Section 4 shows that if the schedule
is tableau-shaped, then CSAP can be solved by a polynomial-time algorithm for finding an optimal path
cover. Section 5 presents a pseudo-polynomial backtracking algorithm to solve CSAP with monotonic shift
change constraints. Section 6 gives the conclusion.

2 Preliminaries
An instance of CSAP is defined by 6 parameters, the number of workers W, the scheduling period I, the
number of shifts J, the J X I demand matrix D , the W X I show-up schedule U and the 7 X J shift change
matrix 6. Shifts are numbered from 1 to 7 and shift 0 denotes an offday. The demand matrix gives the
manpower requirement, i.e. D j i is the number of workers required to work shift j on day i. The show-up
schedule is a blank schedule with offdays already assigned. The unassigned entries are known as slots and
the number of slots on each day gives the supply of workers for that day. Let DSi and DDi denote the
total supply of and demand for workers on day i respectively. We assume that for all i , DDi <̂ DSi (since
otherwise, there is no feasible schedule). The shift change matrix is a boolean square matrix which defines
the shift change permission, i.e. 6 j j = 1 if shift jl may be followed by shift j2 and 0 otherwise. We assume
that an offday may precede or follow any shift. The output of CSAP is a feasible schedule a in which all
slots are assigned to shift numbers 1 to J such that (1) all demands are met; and (2) the shift change is
permitted between any 2 adjacent slots. If there is no feasible schedule, the primitive fail must be returned.
To simplify presentation of algorithms, we assume that a = U initially and thus U is not explicitly used. A
partial schedule is one which has not been fully assigned. As in most literature, we assume that a schedule
is used in a cyclic fashion. In other words, if a certain worker is on row W of the schedule in the current
scheduling period, then he will be on row W + 1 in the next scheduling period, and the rows wrap around.
This allows the schedule to be used indefinitely and also guarantees fairness of shift distribution among
workers over time. Cyclicity may take on other forms, but in this paper, we will consider only the above
case. Hence, we can represent a schedule as a list of workstre.tches where each workstretch is a contiguous
sequence of slots delimited by offdays. Let K denote the number of workstretches of the given show-up
schedule, Q denote the kth workstretch; ski denote a slot on day (position) i (note that there may be more
than one such slot); Ck,I-1 and C k , i + ~ denote the slots to the left and right of crbi respectively, considering
wraparound. We further assume that K is of the same order of magnitude as W. One can verify that the
matrix representation can be converted to the workstretch representation and vice versa in polynomial time.

Fig. 1 gives an illustration of the terms explained. In the figure, (a) is a demand matrix; (b) is a show-up
schedule; (c) is a shift change matrix; (d) is a feasible schedule derived from (b) which satisfies the demand
matrix subject to the shift change matrix; and (e) is the workstretch representation of (d). The numbers in
brackets represent the start days of the respective workstretches.

Shift\Day Worker\Day ShiÂ£t\ShiÂ Worker\Day
M T W H F S W M T W H F S V 1 2 3 4 5 6 7 8 M T W H F S W
1 0 0 1 0 0 0 1 - - - - - 0 0 1 1 0 1 0 1 0 1 0 1 4 6 6 8 8 0 0 1
2 3 2 2 1 2 3 2 - - - - - - 0 2 0 1 0 1 0 1 0 1 2 1 3 3 5 5 5 0 2
0 1 1 0 1 1 0 3 0 - - - - - - 3 0 0 1 0 1 0 1 0 3 0 2 2 2 4 4 4 3
1 0 1 1 2 2 1 4 0 0 - - - - - 4 0 0 0 1 0 1 0 1 4 0 0 2 2 4 4 6 4
1 1 0 1 1 1 1 5 - 0 0 - - - - 5 0 0 0 0 1 0 1 0 5 8 0 0 1 3 3 5 5
1 2 3 2 0 0 1 6 - - - 0 0 - - 6 0 0 0 0 0 1 0 1 6 5 5 7 0 0 2 2 6
0 0 1 0 0 0 0 7 - - - - 0 0 - 7 0 0 0 0 0 0 1 0 7 6 6 6 6 0 0 2 7
2 1 1 1 3 1 0 8 - - - - - 0 0 8 0 0 0 0 0 0 0 1 8 2 2 6 6 8 0 0 8

9 - - - - - - o 9 2 2 4 4 8 8 0 9
1 0 - - - 0 - - - 1 0 8 8 8 0 2 2 2

(a) (b) (c) (4

Fig. 1: CSAP Input and Output

A shift change matrix is said to be monotonic if it is upper-triangular consisting of all ones. Monotonic
shift changes has the following real-world motivation. In industry, a worker usually starts work at time no

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

90 11. C. Lau

earlier than that of the day before so that he gets enough rest in between. Thus, if we order the shifts by
their start times, a feasible schedule is composed of workstretches which are monotonically non-decreasing
sequences. This explains the significance of the monotonic shift change matrix.

A demand matrix D is said to be slack with respect to the show-up schedule if there exists a da i such / that DDi < DSi. Let DSLi = DSi - DDi be the number of slack units on day i . Let TS = DSi,
T D = DDi, and S = TS - T D be the total supply, total demand and total slack respectively. If
S=0 then demand is said to be exact. In industry, if demands are slack, the spare workers are assigned
either extra offdays or shifts such that shift change constraints are not violated. So in the same way, we
introduce a special shift type called the *-shift (wildcard shift) and add the appropriate number of them
into the schedule. In other words, we create a demand for DSLi units of *-shifts on day i, for all i. Note
that A *-shift can be assigned to any slot.

The following complexity result about CSAP is known:

Theorem 2.1. ([g]) CSAP is NP-hard, even for I = 5, if D is exact and 6 is upper-triangular.

3 CSAP with Slack Demand and Arbitrary Shift Change
In this section, we will solve the most general version of CSAP, i.e. where the demand matrix D is slack
and shift change matrix 6 is any arbitrary matrix. This problem is NP-hard by Theorem 2.1. We convert
CSAP into a fixed-charge network and apply any known algorithm to find a minimum-cost flow. We then
prove that any minimum-cost flow induces a feasible schedule iff one exists.
3.1 Fixed-Charge Network Flow Problem
Let V be a set of nodes and E be a set of directed arcs on V. Each arc (U, v) E E has: (1) a variable cost
cuv = cost per unit flow from U to v, (2) a fixed cost huv = cost of using the arc, (3) a lower bound lbuv
= minimum amount that must flow on the arc, and (4) a capacity ubuv = maximum amount that can flow
on the arc. Let b(u) represent the supply/demand quantity of node U. If b(u) > 0, then U is a supply node;
if b(u) < 0, it is a demand node. We assume that xugv b(u) = 0. Let xuv be the amount of flow on arc
(U, v) and yuv be a 011 variable that takes the value 1 if the flow on arc (U, U) is positive and 0 otherwise.

The fixed-cost network flow problem (FCNP) is an optimization problem whose input is a fixed-cost
network N = (V, E, c, h, lb, ub, b) and output is a minimum-cost flow together with its cost z. It may be
formulated by the following mathematical program:

minimize z = X cuvxuv + X huvguv (1)

The cost function (1) consists of two terms: the first term accounts for the total flow's variable cost,
and the second term accounts for the fixed cost. Constraints (2) represent the flow-balance constraints;
constraints (3) ensure that if Y ~ , ~ = O , no flow will occur between nodes U and v.

It is known that FCNP is NP-hard, even when the arc costs are constant and the underlying graph
is bipartite [6]. However, due to its wide applications in production planning, transportation and com-
munication network design, facilities location, VLSI design, e t ~ , efficient algorithms have been developed,
particularly for layered networks. Discussions on the computational efficiency of such algorithms may be
found in [6] and its references. In this paper, we assume one such efficient algorithm is available and use it
as a subroutine.
3.2 Algorithm F
To solve CSAP, we propose the following algorithm:

procedure F (I , 7, I<, D, U, 6) :
1. compute DS, DD, DSL,TS, TD, S ;
2 . construct the f ixed-cost network N = (V, E, c, h, lb, ub, b);
3. obtain a minimum-cost flow by solving FCNP with input N ;

let fmin(N) and zmin denote the flow and its cost respectively;
4 . if Zmin > TS, return fail;
5. obtain a feasible schedule U from fmin(N) (see Lemma 3.3 below) ;
6 . return U .

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Manpo wcr Scheduling 9 1

Fig. 2 gives an illustration of algorithm F. In this example, K=3,1=3, J=2 and shift change is monotonic.
2(a) shows a demand matrix and (b) shows a show-up schedule. From (a) and (b), we derive DD=[1,3,2],
DS=[2,3,2] and DSL=[1,0,0]. The network constructed is as shown in (c). Numbers in nodes represent the
supply/demand quantities. To simplify drawing, the edges from layer 3 to 1 are not drawn. 2(d) shows a
minimum-cost flow of (c). Numbers above edges represent flow values. 2(e) shows a feasible schedule which
is derived from (d).

Layer

Fig. 2: Illustration of algorithm F

We will discuss how the fixed-cost network N is constructed (Step 2) and then prove the correctness of
our algorithm by showing that any minimum-cost flow induces a feasible schedule provided that the cost
does not exceed the total supply TS.
3.3 Network Cons t ruc t ion
A fixed-cost network is constructed as follows (see Appendix A for the precise algorithmic description):

1. For each workstretch k, create a W-node W[k] whose supply quantity is \o'k\.

2. For 1 <: j < J and 1 < i < I, create number of D-nodes D\j, 4 I], D[j , i, 21,. . - , D b , i, p} (where
p = Dj,,). Each D-node has demand quantity 1.

3. For 1 < j < J and l < i < I, create D$Li number of *-nodes *[j, i, l], *[j, i, 21, - - - , *E, i, 4 (where
q = D$Li). Each *-node has demand quantity 0.

4. For 1 < i < I, create one slack node SL[i] whose demand quantity is DSLr Slack nodes act as sinks
which absorb the flows out of *-nodes.

The nodes are arranged into a cyclic layered network, where layer i (0 < i < I) contains:
1. W-nodes representing workstretches that start on day i + 1;
2. D-nodes and *-nodes associated with day i (i.e. nodes whose second index is I); and
3. the slack node associated with day i - 1, i.e. SL[i - l].
Edges represent permissible shift changes. Since the first (i.e. leftmost) slot of a workstretch can be

assigned to any shift, each W-node in layer i is connected to all D-nodes and *-nodes in layer i + 1. D-nodes
and *-nodes in adjacent layers are connected if shift changes are permitted. All *-nodes in layer i are
connected to the slack node in layer i + 1. All edges are assigned unit fixed costs, except the edges from
*-nodes to slack nodes, which are assigned zero fixed costs. All variable costs are set to zeros.
3.4 Proof of Correctness
Let f (N) denote a flow of the given network N. A node in N is said to be in-active if a t least one of its
incoming edges has a positive flow value. Similarly, a node is said to be out-active if a t least one of its
outgoing edges has a positive flow value. If neither condition occurs, then a node is said to be dead. Ignoring
all dead nodes, it is clear that f (N) is a directed layered graph such that,

1. all W-nodes, D-nodes and slack nodes are in f (N);
2. the number of *-nodes in f (N) is at least S, since the sum of demand quantities of slack nodes is S

and each *-node can supply at most one unit of flow to its slack node; and
3. z (the cost of f (N)) equals the total number of edges in f (N) which have fixed costs.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

In a flow, we say that a fork occurs at a node U if U has more than one outgoing edges. Similarly, a
join occurs at a node u if U has more than one incoming edges. A path is disjoint if none of the nodes
along the path has a fork or a join.

Definition 3.1. A disjoint path flow is a flow such that:
1. the edges of the flow can be partitioned two sets of edges: (a) disjoint paths connecting the W-nodes,

D-nodes and *-nodes and (b) edges from *-nodes to slack nodes; and
2. every *-node supplies exactly one unit to its slack node.

Definition 3.2. A column of a schedule in matrix representation is said to be proper if every slot in that
column has been assigned a shift and the column assignment satisfies the demand for that day. Likewise, a
partial schedule is said to be i-proper i f the columns 1 to i of the schedule are proper. Hence, a schedule is
feasible if and only if it is I-proper.

Let X = (I, J , K , D, U , 6) be an instance of CSAP. Let N denote the network constructed by Step 2 of
algorithm F. Then, the following lemma holds:
Lemma 3.3. Every disjoint path flow of N induces a feasible schedule for A i f f A has a feasible schedule.

Proof. Let f (N) denote any disjoint path flow of N. Then, f (N) contains exactly K disjoint paths, since
there are K W-nodes. Each disjoint path in f (N) must originate from a W-node and end in a D-node or
*-node. Consider the disjoint path which begins with an arbitrary W-node W[k],

where r = b(W[k]). This represents a permissible shift assignment of workstretch k, where shift jt is assigned
to slot ~ , i + ~ - l for 1 < t < r. Similarly, given a feasible schedule for A, it is easy to construct a disjoint
path flow for N , by associating each workstretch assignment to one disjoint path. D

Let fmin(N) and Zmin denote a minimum-cost flow of N and its cost respectively. Then the following
two lemmas hold.

Lemma 3.4. Zmin > T S .
Proof. fmin(N) contains T D D-nodes and at least S *-nodes. Every such node has at least one incoming
edge, and each such edge has a unit fixed cost. Since T S = TD + S by definition, zmin > TS. 0

Lemma 3.5. Zmin = TS iff fmin(N) is a disjoint path flow.

Proof. If fmin(N) is a disjoint path flow, then clearly Zmin = TS . Now, suppose Zmin = TS. Then,
fmw(N) must have TD D-nodes and exactly S *-nodes, and every such node has exactly one incoming
edge. Therefore,

1. every *-node sends one unit of flow to its respective slack node;
2. joins cannot exist in fmin(N);
3. forks cannot exist in fmin{N).

This may be shown by contradiction. We scan fmin(N) from layer 0 and suppose a fork first occurs
between layers i- 1 and i. Since layers 0, ..., i- 1 are fork and join free, we can construct an i- 1-proper
schedule. Thus, number of out-active nodes in layer i - 1 = number of in-active nodes in layer i, and
so a join must occur between layer i - 1 and i, giving rise to a contradiction. 0

Theorem 3.6. Algorithm F finds a feasible schedule iff one exists.

Proof. If the algorithm returns a schedule, then the schedule is clearly feasible. Conversely, if a feasible
schedule exists, by Lemma 3.3, there exists a disjoint path flow for the network constructed by Step 2 of F.
By Lemma 3.4 and 3.5, any minimum-cost flow is a disjoint path flow. Hence Step 3 of F always returns a
disjoint path flow, and Step 5 produces the corresponding feasible schedule. U

4 CSAP with Exact Demand and Arbitrary Shift Change
We now consider CSAP such that the demand matrix is exact. Further, we restrict workstretches to be
non-cyclic and have equal start days or end days. This includes the case that all workers have the same
offday(s). If we rearrange workstretches in non-decreasing order of their lengths, i.e., \o-k\ > I C T ~ + ~ I , for
k = 1, ..., I(- 1, then the schedule will be shaped like a tableau as shown in Fig. 3(a) or (b), with each row
of the tableau representing one workstretch. We call this problem T-CSAP and show that it is polynomially
solvable.

A node-disjoint path cover, or simply path cover, of a directed graph is a collection of node-disjoint paths
(possibly having zero length) which covers all nodes of the graph. Given a directed graph G, a path cover
always exists. An optimal path cover is one which has the least number of paths, and its size is denoted

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Manpower Scheduling

M T W H F S U M T W H F S U

(a) (b)

Fig. 3: Tableau-shaped schedules

by <(G). The problem of finding an optimal path cover for an n-node directed acyclic graph is solvable in
0(n2-5) time [3].

Using the notion of path cover, we propose the following algorithm P to solve T-CSAP:

procedure P (I , J, K, D, U, 6) :
1. construct the corresponding network N using Step 2 of algorithm F;
2. apply any known algorithm to find an optimal path cover p for N ;
3 . if < (N) > K return fail;
4. obtain a feasible schedule a from p ;
5. return a.

We prove that algorithm P is correct. This can be achieved by showing that an optimal path cover
always contains K disjoint paths and it induces a feasible schedule.

Let A = (I, J , K, W, U, 6) be an instance of T-CSAP and N be the layered network constructed by Step
2 of algorithm F. Since all workstretches have equal start days, we remove all W-nodes from N. Clearly,
layer 1 of the network contains K nodes. Since demand is exact, there there are neither *-nodes nor slack
nodes in N. The resulting network is as shown in Fig. 4. In this figure, (a) shows the given tableau-shaped
schedule; (b) shows the network constructed from (a); and (c) shows an optimal path cover corresponding
to (b).

Since a path in N consists of at most one node from each layer and there are K nodes in layer 1, we get:

Lemma 4.1. <(N) > K.

Lemma 4.2. Let p = (p1 , p2, ...,/^K') be a path cover of size K of N. Let Ipk[denote the number of
nodes on path k. W.l .o .g , suppose \pkI > \pk+i\ f o r k = 1, ... ,I< - 1. Then, lpkl = \ ak \ , for k = 1, ..., K.
Proof. Consider the non-increasing sequences {Ipl l , (ml , ..., I ~ K I} and {jai 1, jozl, ..., \aK I}. Suppose k is the
smallest index such that IpkI # \ f fk \ If \^k\ > [ckl, then we may conclude that DDi > DS; for i = \ak\ + 1
to lpkl, which is a contradiction because demand is exact. Similarly, if lpkI < \ck\, then DDi < DSi for
i = lpkl + 1 to [ak \, a contradiction also. Thus, such k does not exist. a
Theorem 4.3. A has a feasible schedule iff <(G) = I<.

Proof. Suppose C(G) = I< and p is an optimal path cover of G. We construct a feasible schedule a as follows.
For each 1 < k < K , the path pk , composed of a sequence of nodes (D[jl, l , pi], D[j2, 2, pd, ..., D[jr, r, p d) ,
represents a permissible shift assignment of workstretch k such that shift jt is assigned to slot a k t for
1 < t < IpJ. The assignment is always possible by Lemma 4.2. Since p covers all nodes in G and all
workstretches are assigned, a- is feasible. Conversely, given a feasible schedule a, we apply the reverse
procedure to obtain a path cover of size K. This has to be optimal by Lemma 4.1. D

5 CSAP with Slack Demand and Monotonic Shift Change
We next consider the subproblem of CSAP such that the demand matrix D is slack; and shift change matrix
6 is monotonic. We call this M-CSAP.

It has been shown in [g] that a polynomial-time greedy algorithm can be used to solve M-CSAP if the
given demand matrix is exact. Thus, a naive method to solve M-CSAP would be to consider all possible
substitutions of *-shifts with actual shift numbers and apply the greedy method exhaustively. We call this
method the exhaustive greedy method or EG, which we employ as a yardstick algorithm for evaluating the
performance of our backtracking algorithm.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

/I. C. Lau

M T W H F S U

Fig. 4: Example of network constructed for tableau-shaped schedule

procedure EG(I, J1 I<, D , U) :
1 . for a l l possible exact demand D' derived from D do
2. if there i s a greedy f eas ib le schedule a with demand D' return a",

3. return fail.

Recall that S is the total number of slack units. The number of different ways to substitute %-shifts by
shift numbers 1, ..., J is J ~ . Hence, the worst-case time complexity of EG is O(J' I<2 I) since the worst-case
time complexity of the greedy algorithm has been shown to be O(K21) [g].
5.1 Algorithm BT
We propose a depth-first backtracking algorithm BT. BT assigns shifts in increasing order subject to two
dominance criteria for pruning search space. All workstretches are assigned contiguously from left to right.
Define the leftmost slot of a workstretch k , denoted l (k) , as its leftmost unassigned slot, and the tail as the
sequence of slots from its leftmost slot to its rightmost slot.

Definition 5.1. A workstretch is potentially assignable at position i to shift j if:
1. a - k i is unassigned;
2. there is no unassigned shift j on days l (k) , . . . , i - 1; and
3. it is possible to assign *-shift(s) to the slots c r k , ~ k) , . . . , a,t'-~, followed by assigning shift j to U^,.

One can easily verify that a workstretch is potentially assignable at at most one position. Let p(k) denote
the potentially-assignable position of workstretch k. Define the head of workstretch k as the sequence of
slots from crk,l(k) to c ~ k , ~ (k) - ~ .

Definition 5.2. A workstretch k dominates another workstretch k' with respect to (position) i and (shift)
j iff assigning j to crk,i always leads to a feasible solution whenever assigning the same j to a y i does.

We propose the two dominance criteria for the backtracking algorithm. Let j be the current shift (i.e.
shifts 1 to j - 1 have already been assigned). Let B be the set of days which have at least one unassigned
shift j. For all i B, let Cj (cluster I) be the set of all workstretches k such that p(k) = i and k is not
dominated by other workstretches in Ci w.r.t. i and j. Let C be the set union of all such clusters.

Criteria 1. Given two workstretches k and k' potentially assignable at some position i to current shift
j , k dominates k' with respect to i and j if (see Fig. 5):

1. k's tail is longer than or equal to kl's; and
2. k's head is shorter than or equal to ki's.

Criteria 2. Suppose cluster C. contains a workstretch k whose tail is longest among all workstretches in
C. Then k dominates every workstretch in Cit with respect to i and j , for all i' E B such that i' # i.

Fig. 5: Example of dominance. Black slots represent leftmost slots.

Based on these dominance criteria, we propose the following recursive algorithm BT. Assume that the
input parameters I, J, K and D are global variables. BT has 2 input parameters j (current shift) and o-
(current partial schedule), and 1 output parameter U* (output schedule).

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Manpower Scheduling

procedure BT(j, a, a*) :
1. i f j > J thenreturn 1;
2 . compute B ;
3. if B = 0 t h e n d o n e < - B T (j + l , a , a *) ;
4 . else
4 . 1 . compute c lusters C,- for a l l i G B;
4 . 2 . s e l ec t i' such that Ci) contains an element with longest - ta i l ;
4 . 3 . fo r each k i n C? unt i l done
4 . 3 . 1 . assign * (S) t o the head of a^ and assign j t o a k , , ~ ;
4 . 3 . 2 . done + BT(j, U, U*) ;
4 . 3 . 3 . if not done then (backtrack) undo Step 4 . 3 . 1 ;
4 . 4 . if done t h e n copy a t o a* ;
5. endi f
6. if done then return 1 else return ' 0 .

Each state of the backtracking process either begins a new shift (Step 3) or assigns one current shift
(Step 4). When *-shifts are assigned, we say that slack units are being consumed. Thus, in each state, 0 to
I- 1 slack units are consumed, by definition of potential assignability. When there are no more slack units,
each cluster Ci must contain exactly one workstretch whose leftmost slot is at position i. In that case, BT
collapses to the greedy algorithm presented in [g].
5.2 Worst-Case Compu ta t i ona l Complexi ty
We show that BT is pseudo-polynomial with respect to S (number of slack units). Let T be the worst-case
backtrack tree generated by BT for a given input instance of M-CSAP, where the nodes represent the states
of recursion. We estimate the worst-case complexity of BT by counting the number of nodes in T . Define
an (i, j)-assignment to be a series of assignments to the schedule to meet the demand for some shift j on
some day i. Let T(i, j) denote the subtree of T associated with an (i, j)-assignment.

Consider an arbitrary T(i, j) . Let VQ be the root of T(i, j). For each node v in T(i, j) , let p(v) denote
the number of slack units consumed in v. Clearly, p(vo) = 0. For every non-leaf node v of T, let deg(v)
denote the branching factor (i.e. the number of child nodes) of v, and let wl, w2, ..., wdeg(,,) denote the child
nodes of v. Then, for all non-leaf nodes v:

1. deg(v) = I - p(v); and
2. 0 < ~ (v) < ~ (w l) < ~ (w 2) < < p (~ d e ~ (i ,)) <, I - l .

The structure of T(i, j) for I = 4 is as shown in Fig. 6.

Fig. 6: Example of T(i, j). Numbers in nodes show the slack units consumed.

Suppose the depth of T(i , j) is d. For any leaf node v^, the path from the root VQ to vd can be uniquely
identified by a distinct non-decreasing sequence (p(vo), p(vl), . . . , p(vd)) , The total number of slack units
consumed by the path is given by y^f=o p(vi). Thus, the number of different paths in T(i, j) which consume
some n slack units is equivalent to the number of integer partitions of n into d or less parts such that each
part does not exceed I - 1, which is the coefficient of X" of the following generating function.
Fact 1. The generating function for integer partition into d or less parts such that each part does not
exceed k is

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Hence, the number of paths in T which consumes S slack units is given by the coefficient of z s in the
generating function

I J 7-1 D , i

F (x) = nn n E X"".

;=l j=l 1=1 m = l

As there is no known formula that computes integer partitions, we upper-bound the above generating
function by the following:

/ 1 \ I 2 J

Fact 2. Given differentiable functions f and g over z such that f (X) = g(x)' for some integer constant
r , then the nth derivative o f f with respect to X may be expressed as

Fact 3. If g(x) = &, then gn(0) = n!.

From facts 2 and 3, we get

where r = 12J. Thus, the coefficient of xn in F (x) is given by

n- 1 n - i i Fi(0) - = E [T T - ;] -.
n !

i = O
i !

By induction, one can prove that the above recurrence has the closed form

Relating back to BT, the total number of paths in T which consume S or less units is thus given by

Hence, P<s is independent of K . Furthermore, if we assume that I and J are constants, then Pcs is
polynomial in S . Now the number of nodes in T is at most the depth of T times P<& which equals
O(I<I) - Pcs. Every node represents one recursion step which incurs 0 (K) time. ~ h u s , the worst-case
complexitfof BT given S slack units, denoted tirneBr(S) is given by

which is pseudo-polynomial assuming that I and J are constants. Comparing the time complexities of
algorithms EG and BT, we may conclude that BT is superior to EG unless

S J
< I 2 . -

logs + 1 log J '

5.3 Experimental Resul ts
We test the performance of BT with random instances of M-CSAP. Recall that I is the scheduling period,
J is the number of shifts, I< is the number of workstretches and S is the number of slack units. An instance
of M-CSAP is generated as follows. Randomly generate a I< X I cyclic show-up schedule and for each day,
distribute the S slack units in proportion to the number of slots. (In the real world setting, this is often
the case.) The demands for all J shifts are then randomly generated based on the cyclic schedule and
distribution of slack units.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Manpo wcr Scheduling 97

First, we fix I = 7, J = 3 and vary K and S. For each pair of K and S, we generate 1000 instances
which include both feasible and infeasible instances. Table 1 shows the results of the experiment. The results
indicate that our branch and bound algorithm works hardest when the ratio of slack units to slots (denoted
e) is between 0.1 and 0.2. In those cases, the maximum number of nodes over all instances expanded grows
exponentially with S, but the average number of nodes is still bounded by a lower-degree polynomial of S.
In all other cases, both the maximum and average number of nodes expanded are polynomial relative to
K, I , J and S.

We next investigate the effect of varying J while fixing K = 20, e = 0.1 and I = 7. Again for each
J, we generate and test 1000 instances. Table 2 shows the experimental results. Here, we learn that the
maximum number of nodes generated by branch and bound grows quadratically with K, I, J and e, while
the average number of nodes grows linearly.

Table 1. I = 7 and J = 3

11 Max nodes 1 Avg nodes
S expanded expanded
7 555 45

Table 2. K=20, 7 = 7 and ~ 0 . 1

Max nodes
expanded

188
2129

61874
1 91156

242535
' 247343

285831

Avg nodes
expanded

139
223
737
1551
2444
3412
3617

6 Conclusion
In this paper, a sequel to [g], we have presented combinatorial algorithms to solve the more difficult cases of
the Changing Shift Assignment Problem (CSAP). For the most general version, we proposed an algorithm
based on network flows. One could have proposed other approaches such as branch and bound methods, but
we believe that network-based approaches give much more insights into the operation and structure of the
problem. Furthermore, network flows are well-studied and there exist efficient computational procedures
which we can use rather than invent new ones. It remains an open problem whether there exists a polynomial-
time algorithm for CSAP with slack demands and monotonic shift change constraints.

Acknowledgements
I would like to thank Osamu Watanabe for discussions and comments.

References
[l] N. Balakrishnan and R. T. Wong. A network model for rotating workforce scheduling problem. Net-

works, 20:25-32, 1990.
[2] L. Bianco, M. Bielli, A. Mingozzi, S. Ricciardelli, and M. Spadoni. A heursitic procedure for the crew

rostering problem. Euro. J. Ops. Res., 58:272-283, 1992.
[3] F. T. Boesch and J. F. Gimpel. Covering the points of a digraph with point-disjoint paths and its

application to code generation. J. Assoc. Comput. Mach., 24(2):192-198, 1977.
[4] R. N. Burns and G. J. Koop. A modular approach to optimal multiple-shift manpower scheduling.

Ops. Res., 35(1):100-110, 1987.
[5] P. Carraresi and G. Gallo. A multi-level bottleneck assignment approach to the bus drivers' rostering

problem. Euro. J. Ops. Res., 16:163-173, 1984.
[6] G. M. Guisewite and P. M. Pardalos. Minimum concave-cost network flow problems: Applications,

complexity and algorithms. Annals Ops. Res., 25:75-100, 1990.
[7] C. M. Khoong and H. C. Lau. ROMAN: An integrated approach to manpower planning and scheduling.

In 0. Balci, R. Sharda, and S. Zenios, editors, CS & OR: New Development in Their Interfaces, pages
383-396. Pergammon Press, 1992.

[8] M. M. Kostreva and K. S. Jennings. Nurse scheduling on a microcomputer. Computers Ops. Res.,

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

9 8 H. C. Lau

18(8):106-117, 1991.
[g] H. C. Lau. Manpower scheduling with shift change constraints. In Proc. 5th Int 'l. Symp. Algorithms

and Computation (ISAAC), pages 616-624. Springer Verlag Lect. Notes Comp. Sci. (834), 1994. Full
version in Trans. Inf. Proc. Soc. Japan, 36(5) 1995.

[l01 S. Martello and P. Toth. A heuristic approach to the bus driver scheduling problem. Euro. J. Ops.
Res., 24(1):106-117, 1986.

[l11 J . Tien and A. Kamiyama. On manpower scheduling algorithms. SIAM Review, 24(3):275-287, 1982.

Hoong Chuin Lau
Dept. Computer Science
Tokyo Institute of Technology
Meguro-ku, Ookayama
Tokyo 152, Japan
(hclau@cs.titech.ac.jp)

Appendix A: Construction of Fixed-Cost Network

In the following procedure, the ranges of variables are as follows: 1 < i < 1,1 < j < J , 1 < k < K , 1 <
J'l 5 J , 1 5 J'2 < J 1 1 < P < Dj,i, l < q < DSLi, 1 < PI 5 Djl,ilj 1 5 q1 < DSLil 1 1 < P2 < , and
1 < 92 < DSLi2.

procedure Construct-Network (i.e. Step 2 of Algorithm F):
1. For all k, create W-node W[k] and set b(W[k]) = 14.
2. For all j, i and p, create D-node Db, <p] and set b(D[7,i, p]) = -1.
3. For all j, i and q, create *-node *\j, i, q] and set b(*[j, i, q])=O.
4. For all i, create slack node SL[i] and set b(SL[{\) = DSLi.
5. For all j l , j2, p i , pz, ql, 92, and adjacent layers il and i2 (i.e. 1 < il < I - 1 and i2 = il + l) ,

do the following: add arcs from D[jl, i ll pi] to D[j2, i2, p2] if bji ,j2 = 1; add arcs from D\j\, i1 , pl]
to *[j2, i2, q2] if jl = j2; add arcs from *hl1 ill ql] to D[j2, i2,p2] if = 1; and add arcs from
*[jl, h , ql] to * [j 2 , i2, q2] if jl = j2. For each such arc (U, v), set Zbuv = 0, ubuv = CO and hw = 1.

6. For all k, j, i, p and q, add arcs from W[k] to D\j, i,p] and *[j,i, q] if workstretch k starts on day i.
For each such arc (U, v) where U = W[k], set lbuv = 0, ubuv = CO and huv = 1.

7. For all j , i and q, add arcs from all *[j, i, q] to SL[i]. For each such arc (U, v), set lbuv = 0, ubuv = 1
and huv = 0.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1996

	Combinatorial approaches for hard problems in manpower scheduling
	Hoong Chuin LAU
	Citation

	tmp.1481677274.pdf.qgpFe

