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Abstract-This paper presents MediAlly, a middleware for 
supporting energy-efficient, long-term remote health monitor­
ing. Data is collected using physiological sensors and trans­
ported back to the middleware using a smart phone. The key 
to MediAlly's energy efficient operations lies in the adoption 
of an Activity Triggered Deep Monitoring (ATDM) paradigm, 
where data collection episodes are triggered only when the 
subject is determined to possess a specified context. MediAlly 
supports the on-demand collection of contextual provenance 
using a novel low-overhead provenance collection sub-system. 
The behaviour of this sub-system is configured using an 
application-defined context composition graph. The resulting 
provenance stream provides valuable insight while interpreting 
the 'episodic' sensor data streams. The paper also describes 
our prototype implementation of MediAlly using commercially 
available devices. 

I. INTRODUCTION 

Remote health monitoring services promise significant 
improvements in healthcare delivery and chronic disease 

management by providing new and detailed insights into 
an individual's biomedical data or activity patterns. Such 

remote monitoring and automated medical analytics are 

becoming increasingly plausible, thanks to recent develop­
ments in miniaturized physiological sensors and low-power 

radios, powerful handheld computing devices and almost­

ubiquitous wireless connectivity. A logical three-tier archi­
tecture [2], comprising a server for backend integration, a 

cellular phone/handheld device based personal gateway and 
a body-worn set of sensors, seems most suited to support 

such a remote health monitoring service. 

The act of monitoring, processing and transporting the 

medical sensor streams is associated with a non-trivial 
energy cost, that manifests itself as a resource bottleneck 

when we employ battery powered devices [5]. In untethered 

deployments, there is thus a clear tradeoff between the 
system lifetime and the rate of data generation. For example, 

[12] supports longer deployment periods for low data rate 
sensors, whereas [3] and [4] support higher data rates 

for shorter durations. To address this tradeoff, we suggest 

the Activity Triggered Deep Monitoring (ATDM) paradigm 
(introduced in [6]), whereby high fidelity sensor data 

streams are collected and transported only when the subject 

satisfies a set of contextual constraints (e.g., we collect ECG 
data only when the subject is exercising, where the exercise 

context is defined by the subject's medical practitioner.). By 

978-1-4244-5328-3/091$25.00 ©2009 IEEE 125 

employing a context-triggered monitoring approach, ATDM 

produces streams of health sensor data that are episodic and 
have varying granularity and duration. 

This paper describes MediAlly, a remote health moni­

toring service that conforms to the ATDM paradigm and 

supports a low overhead sub-system for collecting, storing 
and replaying the contextual provenance associated with 

the monitored sensor data streams. Here, provenance refers 
to MediAlly's ability to collect, store and (at a future 
time) reconstruct the subject's contextual states that acted 

as ATDM triggers. Such reconstructed context provides 

invaluable insight for the interpretation of the episodically­
captured data streams. For example, a doctor would find it 

useful to know if a data stream corresponding to "30 minutes 
of elevated heart rate" , recorded a month ago, occurred 

while the subject was actually exercising at a healthclub 

or seated at his home. For practical considerations, the 
MediAlly service architecture is designed to potentially in­

terwork with third party personal health repositories (PHR), 

such as Google Health™or Microsoft HealthVault™, by 
a) logically separating the 'health' data streams from the 

'context' metadata stream, and b) providing programmatic 
APIs to combine these streams as and when necessary (as 

illustrated by the overlaid explanatory context in Figure 1). 

Thus the key contributions of the paper are: 

• We present a functional architecture for explicit col­
lection and reconstruction of the contextual metadata 

that supplies the necessary provenance to the captured 

health data and describe a simple programming model 
that allows application developers to control the gran­

ularity of the captured contextual metadata. 
• We develop a new graph-based model for efficiently 

representing, capturing and reconstructing the time­

varying contextual metadata, at different levels of gran­
ularity and at diferent levels of "context composition". 

The model employs a novel lazy capture principle to 

significantly reduce overheads, while preserving the 
accuracy of provenance reconstruction. 

The rest of the paper is organized as follows. Section II 

elucidates the ATDM paradigm and the role of contextual 

metadata in providing provenance for the collected health 
data. Section III explains the MediAlly functional archi­

tecture and develops the programming model. Section IV 
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elaborates on our low overhead provenance model, that pro­
vides capture and replay functionalities. Section V describes 

our prototype implementation using a Nokia N95 cell phone 

and discusses some of the open issues that need further 
investigation. We present the related work in section VI 

before concluding in section VII. 

II. HARNESSING THE ATOM PARAD IGM 

Our analysis reveals that continuous transmission of high 
data rate medical data streams can often impose impractical 

traffic loads on existing wireless PAN technologies likely to 
be used between the sensors and the mobile gateway. For 

example, low power IEEE 802.15.4 radios have maximum 

bandwidth of 250 kbps; while Bluetooth may provide greater 
data rates « I Mbps), it has significantly higher higher 

energy costs. Moreover, the continuous transmission of mod­

erately high-data rate sensor streams back to the server will 
quickly deplete a phone's battery, leading to unnacceptably 

frequent recharge cycles. As an illustrative example, the 
manufacturers claim for a Nokia N95 8GB cell phone with 

the 1200 mAH BL-6F battery (with an operating voltage 

of 3.7V) is 280 hours of standby time, which drops to 6 
hours while talking or streaming data over a 3G connec­

tion. Accordingly, we proposed the Activity Triggered Deep 

Monitoring (ATOM) paradigm in [6] as an energy saving 
tradeoff, where the sensor devices are activated and data 

streams collected and relayed by the mobile gateway only 
when the monitored individual's context is determined to 

satisfy certain predicates. This is analogous to the use of 

a low-power wireless surrogate radio [8] to trigger the 
primary radio only when a transmission is imminent. 

Clearly, determining the correct context itself requires the 

use of sensor-generated inputs and will itself be subject to 
some degree of estimation uncertainty and error. We claim 

that the user context can be determined, to an acceptable 
accuracy level, by using a combination of both on-board 

sensors (located on the mobile device) and remote data 

sources, with significantly lower power consumption. 
Thus, under the ATOM paradigm, the mobile gateway 

takes on the additional role of a personal activity coordinator 

that uses information available from its internal sensors to 
infer the subject's context. For example, on-board GPS sen­

sors can provide location information, the microphone can 

provide ambient noise levels and the onboard accelerometer 
can double as a pedometer. The mobile device also has 

access to personal information, e.g., the subject's calender. 
More importantly, there is an increasing amount of generic 
and personalized context that is stored in the network cloud. 

For example, www.weather.com can be be used to obtain 
enviromental parameters (such as temperature and air quality 

measurements) in the subject's current location. Addition­

ally, appropriate mining and reasoning over personal data 
and activities expressed via channels such as blogs (e.g., 

Google BloggerTM), microblogs (e.g., Twitter™) and social 
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networking sites (e.g., FacebookTM) can provide context of 
sufficient accuracy to control the duty cycle of the external 

physiological sensors and, more generally, alter the data 

stream processing logic on the mobile gateway. 

Power 

Location 

Activity 

� 
�SI, 

� rrv � User in 'bad' 

location and �ser activity low 

sentiment low 
---

GSR 

ECG 

Tues Sep 22 Wed Sep 23 

Figure 1. Illustrating the sporadic nature of data collection under the 
ATDM paradigm. Replaying the contextual provenance helps a medical 
professional understand the non-medical aspects of the medical data stream. 

A. The Utility of Context as Provenance 

By adopting the ATOM paradigm, MediAlly can realize 

significant energy savings because of reduced sampling and 
transmission costs. However, the health data streams are 

neither continuous nor always at the same granularity (see 

Figure 1); rather, the contextual information dictates when 

and what data streams are to be generated and collected. 
The prevalent contextual state that triggered a change in 
the data generation/ processing logic constitutes the "con­

textual provenance" of the system and helps the medical 

practitioner to later interpret the sensor data with greater 
awareness. For example, the doctor can classify a period 

of elevated heartbeat as normal if she has the information 

that the subject was at a healthclub. The ability to store 
and replay such ancillary contextual data is thus a key 

requirement of any ATOM-based remote monitoring service. 
In our design we distinguish between the medical sensor 

data and the explanatory contextual data for two practical 
reasons. Firstly, current generation PHR systems are tuned 

to store time-indexed medical data as numerical values. They 

do not readily lend themselves to storing the contextual state, 
specially with different levels of granularity, or the cross­

indexing needed (that we shall describe in Section IV) to 

support appropriate reconstruction. Secondly, the contextual 
data stream has an innate uncertainty and is therefore subject 

to lesser oversight (e.g., FDA certification is not required). 
Thus, MediAlly infers the subject's context, using a 

combination of on-board and 'cloud' sensors, and adapts 



Tab le I 
CONTEXTUAL TRIGGERS AND MONITORING ACTIVITIES FOR A CANDIDATE STRESS MONITORING ApPLICATION 

Medical Rationale Triggering Contextual Sensors For Recommended Sensor Streams 
for Monitoring State Infering Context Action Monitored 
Terminate monitoring Phone power < 5 'Yo Phone b attery sensor None None 
due to low b attery and charger disconnected 
User may be indulging ( In Forbidden Area for � 5 mins) II GPS, Sentiment, Collect and trx. GSR, 
in depressive b ehavior (Sentiment=low && Avg. Activity (5 mins)=low) Accelerometer noise and stress microphone 
User disturb ed ( @Home)&& (Sociability-low) && GPS, ECG, Collect and trx. GSR, ECG , 
at night (Avg HR high) && (lOpm < t < 6am) Calendar Activity noise, ECG and stress microphone 
User may be isolated ( @Home)&& ( Sentiment-low) && GPS, Sentiment, Collect and trx. GSR, 
or depressed (Avg. Activity (30 mins) =low) && tam < t < 9pm Accelerometer noise and stress microphone 

the processing logic on the mobile gateway in response to 

changes in context. This metadata is explicitly collected as 

an auxiliary data stream by the system and replayed on 
demand. 

B. Sample ATDM-based Applications 

The ATOM-based monitoring paradigm, as embodied by 

the MediAlly system, can be used for both physiological 
and psychological monitoring. It is well known that cardiac 

failure, a chronic disease, is triggered by a combination 

of physiological (e.g. high-intensity running), psycholog­
ical (e.g. depression or anxiety) and environmental (e.g. 

pollution and ozone levels) factors. Accordingly a subject 

can be equipped with a set of sensors (e.g. ECG, GSR 
and pedometer) and a mobile device, so that MediAlly can 

collect medical data whenever the subject's context indicates 
physical or emotional stress. 

For our implementation, we focused on an application 

where activity and physiological data are used as an in­

dicator of mental or emotional well-being, an area that 

has been largely ignored in prior remote healthcare mon­
itoring systems. This is motivated by our interactions with 

clinical psychologists, who have a) confirmed that current 

psychological treatments rely purely on periodic clinic-based 
interactions, b) traditionally placed a lot of faith on user 

reported data and c) expressed excitement about the prospect 

of using longitudinal context-triggered remotely monitored 
data to improve treatment of psychological ailments (e.g., 

post-traumatic stress disorder or depression) [7]. Table I 
illustrates a subset of context rules that are used by the 

system in an "activity-driven stress monitoring" application. 

The high level condition (coll) is decomposed into a set of 

contextual predicates (col 2), which are evaluated using the 

sensors in col 3. Columns 4 and 5 respectively indicate the 

resulting action associated with a successful evaluation and 
the sensors that get invoked. 

III. THE MED IALLY FUNCTIONAL ARCHITECTURE AND 

PROG RAMMING MOD EL 

MediAlly is a client-server based pervasive middleware 
designed to support ATOM-based monitoring with the fol­

lowing overall goals: 
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• Low-overhead Context Provenance: It must allow the 

contextual history to be captured, with low communica­

tion energy overheads, at appropriately granularity and 
stored in a way amenable to future reconstruction. 

• Extensibility and Portability: It should be easy to a) ex­
tend the middleware to evaluate context corresponding 

to additional sensors and b) operate on a large set of 

mobile devices. 
• Context Reusability: It should allow developers of new 

monitoring applications to reuse (and, if needed, cus­

tomize) the context inferencing logic already developed 
for prior applications. 

The MediAlly server component is responsible for a) deriva­
tion of appropriate cloud context and b) collection, stor­

age and replay of contextual provenance data. The client 

component of MediAlly is deployed on the personal mobile 
gateway (e.g., an individual's cellphone) and performs the 

following functions: 

a) Coordinates communication between the personal gate­

way and external sensors. 

b) Determines local context and retrieves appropriate 
global context. 

c) Collects appropriate contextual provenance metadata 

and transfers this data to the backend. 
d) Performs on-board processing of medical data streams 

and transmits them to the backend PHR repository. 

The component-level functional architecture of the system 

is shown in Figure 2. This architecture supports context­

dependent event monitoring, with contextual triggers dynam­
ically altering the set of monitored sensors and the local 

stream analytics. 

At the heart of the client-side infrastructure is a Context­

Dependent Event Processing Engine (CEPE), responsible 

for applying the event processing logic to the incoming 
medical data streams. Note that these streams are modeled 

as a sequence of time-value tuples. To improve the energy 

efficiency of event processing, the CEPE supports both push 
and pull based data streams and optimizes the data transfer 

between the sensors and the phone, based on the operational 

cost of a particular sensor. (These optimizations are not a 
focus of this paper and are thus not discussed any further.) 

A Data Transmission SUb-component pushes relevant data 



streams to the PHR repository. 

The Activity and Context Trigger (ACT) component is 
responsible for inferring valid contextual states. It notifies 

the Provenance Manager (PM) about the temporal evolution 

of such states. Details about this interaction is provided in 
Section IV. The PM collects these notifications and subse­

quently uploads the contextual provenance to the Personal 

Context Provenance (PCP) repository. The PCP is managed 
by the Contextual Provenance Server (CPS) at the server 

end. 

The Dynamic Sensor Control (DSC) component imple­

ments the 'on-demand' data collection logic. It is responsible 
for duty-cycling individual sensors and for adjusting appro­

priate collection and transmission parameters like sampling 

rates, transmission power, schedules etc. 

The Sensor Adaptation (SA) component consists of a 
collection of device/schema-specific adapters, that transform 

an individual sensor's device-specific data formats into a uni­
form event-tuple representation. To accommodate complex 

sensor data types but also allow quick retrieval of canonical 
data properties, we use a combination of object-oriented 
(name, value) and XML-based event representation schema. 

The Virtual Sensor (VS) component serves to shield the 
CEPE from device specific features of individual sensors 

by providing an uniform abstraction across local sensors 

on the phone, external physiological sensors and context 
sensors in the Internet cloud. It also serves as a means for 

reusing existing context composition logic by exposing the 
derived contextual states as additional sensor objects that 

other applications can leverage upon via a uniform interface. 

The VS also enforces additional access control policies to 

sensors 

.. Sensor 
Adaptation 

VS 

r Modify Access • 

Control Policies " "  i 

ACbVlty and Context 
Trigger (ACT) 

C nfigurations � L ! Specify on emand 
! data rebie al Specify context 

history 
Admin 

Dynamic Se nsor 
Control (DSC) Provenance 

Manager 

Adapt Senso� : 
Parameters \ '11.tt.tt ...... It. t., t " I'" 

I
----------------------------------------------------� 

: Legend: � : 
'.. . r ..... , 
, Medical Data Flow Control & Me tadata Flow : Poli cy Flow , 
t 'I" t 

I ____________________________________________________ J 

Figure 2. The MediAlly component-level architecture, illustrating the 
separation of context ( provenance) and medical stream monitoring 
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the logical sensor streams by arbitrating across multiple 
applications. 

The Context Server (CS) is responsible for implement­

ing the context sensor connectors. For example the CS 
can periodically retrieve textual content from the subject's 

Twitter™ posts, run a sentiment analysis algorithm on the 

text and return a score to the appropriate client-side VS. 

A. The MediAlly Programming and Distribution Model 

MediAlly's programming model is meant to ease the 

development of a runtime infrastructure capable of sup­
porting the ATDM paradigm, which requires applications 
to adapt their processing in response to appropriate context 

triggers, as well as specify what contextual data needs to be 
monitored and stored. To support extensibility (though we 

have not focussed on this in the first version of our software 
prototype), we envision the model being supported by both a 
context composition capability and by an accessible catalog 

of components. The compositional capability implies that 
sophisticated runtime behaviour of applications can be built 

up from more primitive behaviours. This kind of object­

oriented abstraction allows application developers to special­
ize their context inferencing logic by reusing and modifying 
(as needed) existing context inferencing components. An 
example is as follows. A developer wants to build a new 

application that is a superset of VS event streams X and 

Y. He builds and implements a new component Z with 
new rules and triggers, fusing the streams supplied by other 

components specifying X and Y. Note that this brings us 

to the component catalog. We also envision that rule-trigger 
components will be described and stored in some way that is 
easily accessible to the developer (much like Java classes and 
documentation can be explored and reused using Eclipse), 

allowing the developer to browse and choose components X 

and Y (as above) while constructing his new component. 
In other words, we shall employ a unified process for 
composition. 

We structure each application as a set of 
<ContextuaITrigger, Action> tuples. Whenever the 

predicate specified by ContextualTrigger is satisfied, the 

data collection and processing logic in the corresponding 
Action element is invoked. Note that, for example, in 

Table I, each ContextualTrigger itself is likely to involve 

a process of context composition over the underlying 
data streams. This process of context composition is 

modeled as a stream operator graph, with individual nodes 
representing different contextual states. (Different nodes in 

this context composition graph can also be encapsulated 
as Virtual Sensors, enabling other monitoring applications 
to directly utilize the corresponding inferred context in 

their context composition process.) After specifying the 

operator graph, the application programmer is responsible 
for implementing it within the CEPE, as well as making 

sure that appropriate changes in the contextual state are 



reported to the Provenance Manager. The Action element of 
each tuple is also implemented as an operator graph over a 

set of streams from underlying Virtual Sensors. The output 

of the Action element is a set of "event streams". 

IV. LOW-OVERHEAD CONTEXTUAL PROVENANCE 

CAPTURE AND REPLAY 

MediAlly's low overhead contextual provenance capture 

mechanism relies on the application-specific definition of 

a Context Composition Graph (CCG). The CCG is a 

construct defined by the developer/programmer of each re­

mote monitoring application that represents the hierarchical 
process by which high-level contextual inferences are made 

by composing low-level sensor-generated data samples. For­
mally, a CCG is defined as a graph < V, E, F > (V being a 

set of nodes, connected by a set of edges E and associated 

with a set of dependency functions F), where a node Vi E V 
corresponds to either a specific contextual state or a simple 

'logic operator' (either AND, OR or NOT) that expresses 
how higher level contextual states may be obtained from the 
values of underlying contextual state nodes. The nodes are 

connected by directed edges eij E E, such that an edge from 
a contextual state Vi to a contextual state Vj implies that Vi 

is a higher level context state, whose computation involves 

the composition of context represented by Vj. In this case, 
Vi = PARENT(vj) and Vj = CHILD(Vi) . Similarly, 

edges from state nodes to logic operator nodes imply that the 

state is computed by applying the corresponding operator 
to the 'child' states, while edges emanating from logic 
operator nodes point to the sources of underlying context 
to which the operator is applied. Furthermore, each edge 

is associated with a causative function iij , that specifies a 

causative relationship between an value of the contextual 

node Vi at time t and the present or past values of the 
contextual node Vj. In general, this functional relationship 

may be viewed as conforming to the Time-Value Centric 
(TVC) model [14] previously proposed for representing 

dependencies in medical stream analytics. 

Figure 3 illustrates this model for a subset of the contex­

tual states defined by the wellness monitoring application 
presented in Table I. The nodes on the right represent 

progressively 'higher' levels of context inferred by the 

composition of 'lower-level' context nodes to the left. In this 
simplified figure, each node is assigned a unique Context/D. 

For example, node "015" represents the contextual state of 
the 'user being at home within the hours of lOpm-6am'. 

While most of the causative functions have an 'identity 

mapping' 1(.), implying that Vi(t) depends only on the value 
Vj (t), observe, for example, that the 'average activity' value 

in node014 depends on the 'per-minute step count' values 

of the past 5 minutes (nodeo14(t) <- node201(t-5, t) . The 
CCG is thus a representation of the logical process of context 
computation, with the computed state of CHI LD( Vi) acting 
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as an input to the computation of the state represented by 
Vi· 

The static CCG specification for an application is defined 
a priori by the application designer and it is programmat­
ically communicated to the CPS (server-side provenance 
component) during application registration. The MediAlly 

runtime tracks the temporal history of each of the node 

in the CCG and pushes out any change in the value of a 
node to the PM client. For example, node201 represents 

the contextual value step count per minute; whenever its 

value changes, the latest value is reported to the client-side 

Provenance Manager. If step count per minute is low for five 
minutes the state average activity over 5 mins becomes low 

in node016 becomes 'true' and is reported to the Provenance 

Manager. We note two key aspects of our CCG-based model 
of contextual provenance collection: 

• We view the process of context composition as one of 

applying a processing graph over a set of either raw 

or derived streams. Thus changes in an intermediate 
contextual state correspond to a new element from the 

corresponding 'logical' data stream. Unlike conven­
tional stream processing, where raw stream values are 

proactively pushed into the leaf nodes of the processing 

graph, MediAlly uses a combination of bottom-up and 
top-down processing, with some lower-level contextual 

states being computed on-demand. We discuss this in 

the following subsection. 
• Each application defines its own CCG, which in turn 

controls the granularity of the contexual provenance 
that is stored. Even though the application may have 

computed additional finer grained context internally, 

it is not tracked by the MediAlly CPS component 
unless it is explicitly modeled in the CCG. This allows 

for a tradeoff between the context granularity and the 

energy burden imposed by the provenance collection 
mechanism. 

A. Collection of Dynamic Provenance State and The Prin­

ciple of Lazy Capture 

To support the easy capture and replay of contextual 
provenance data, each new value of a node in the CCG as 

formally represented by the tuple r: 

< ContextID, timestamp, value, childMaxOrder > 

(1) 

Here ContextI D refers to the ID of the context state 
(node) in the CCG for which this new value is generated, 

timestamp refers to the local time at which this new value is 

computed and value represents the newly computed value 
for that contextual state. The use of the childM axOrder 
element is explained shortly. The value element is one of 

several primitive data types, such as boolean (node002), 
integer (node201) or double. The temporal evolution of a 

context state is a sequence of such tuples. For example, 



o Conjunction 

Q Disjunction 

201: "StepCount" 14--=-;""';';>="":""':::'::"":"">';;"";;;;""""-1 

202: "CalendarEntries" 

1(.) 
001: "Phone battery low" 

002: "User suspected of 

depressive behavior 

003: "User experiencing 

mental stress" 

004: "User experiencing 

isolation" 
018: "Average Activity over 

30 mins = Low" 

Figure 3. Representing the compositional logic of context as a directed graph. 

our prototype Well ness Application may generate successive 
tuples of < 201,100,50,0 > and < 201,101,40,0 > if the 

user takes 50 and 40 steps in the 100th and 101st minute 

respectively. The PM client receives such tuples from the 
ACT and transmits them to the backend, for storage in 

Context! D-specific tables. 
We employ two techniques to reduce the overhead of 

contextual data capturing process. The first technique is 

straightforward and based on delta transmissions. The CPS 

caches the last tuple for every unique Context! D and 
propagates a tuple only if the value or childM axOrder 
elements change. The second technique involves the use 

of logical operators in the CCG, whereby the sub-trees of 
a contextual predicate are evaluated only when they are 

necessary to help resolve an ambiguity in the resultant 
contextual state. Thus the CEPE evaluates contextual states 

in a top-down fashion and computes the values for child 

nodes only if these values materially affect the value of the 
parent node. This technique is similar in spirit to approaches 

for database query optimizations. To illustrate the point, 

consider the CEPE trying to determine if the value for 
node002 is true. It will initially evaluate node012 and if its 

value is true then does not evaluate node013 and node014 . 
We call this the principle of lazy capture. 

With lazy capture, the contextual states of sub-graphs in 

the CCG will not be evaluated at all times. A subtle fallout is 

that the backend repository might have an incorrect view of 
the temporal evolution of certain context states. For example, 

let us say that the value for node014 is high at time TlOo. 

At time Tllo , node012 becomes true and therefore node014 
is no longer evaluated. In the absence of any further updates 

from node014, we are uncertain about its value after Tllo. 
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The key insight is that such inconsistencies in the lower­
level contextual state are irrelevant to the accuracy of the 

provenance reconstruction process if we also store the set 

of child sub-graphs that were explicitly evaluated. Thus we 
implicitly define a specific order (e.g., 'left-to-right') for 
evaluating the child nodes of any logical operator and use the 

childM axOrder value to indicate the index of the highest 
child node that was actually evaluated. In the example above, 

if the value of node002 is true on account of node012 then 
we get a tuple of the form < 002, timestamp, true, 1 >. 

On the other hand, i f  node013 and node014 are responsible 

for the value of node002 being true, then the corresponding 
tuple is < 002, timestamp, true, 3 > .  By using a combi­

nation of a pre-defined evaluation order for child nodes and 

the information in the childM axOrder element, we can 

reconstruct the provenance using known good values. 

B. Reconstructing Contextual Provenance 

The CPS stores the static CCG during application registra­
tion and receives (from the PM) and stores the context state 

tuples generated during application runtime. By combining 
such static and dynamic data, one can recreate the relevant 

contextual conditions at any past instant, using the basic 

pseudo-code shown in Figure 4. Assuming a time-based 
causative relationship, it is used to recover the provenance 

for children of a given contextual state Vi at time t. This 

reconstruction logic can be used recursively to reconstruct 

the relevant historical values of contextual states at arbitrary 
depths. 



ResolveContextDependency(ParentID, Timestampt t, 
Value v, int childMaxOrder) 
1. ChildContextSet=0; 
2. childNodeIDs= getChildrenFromCCG(ParentID); 
II retrieves child node IDs from CCG 
3. for (intj = O;j <= childMaxOrder;j + +) 
4. f = getDependency(ParentlD, childNodeID[j]); 

Illookup dependency function 
5. startTime = t - f.start; endTime = t - f.end; 

Ilassumes a time-based TVC-rule 
6. Causativej= SELECT tuple from TABLE (childID) 

WHERE tuple.startTime > startTime && 
tuple.endTime < endTime; 

7. ChildContextSet = ChildContextSet U Causativej 
8. endfor 

} 

Figure 4. Reconstruction of Contextual Provenance 

V. IMPLEMENTATION AND RESULTS 

A. Hardware Details 

We chose to implement our external sensors on Realtime 

System's Shimmer platform, details of which can be found 
in [1]. This is a lightweight and self-powered platform 

that can be integrated with a number of physiological 
sensors using its extension pins. We use the onboard class 

2 Bluetooth module to provide connectivity between the 
sensors and the mobile gateway and keep the emissions 

below FDA approved thresholds. In our setup we used the 
onboard Freescale MMA 7260Q accelerometer to develop a 

pedometer, that provides a step count every minute. 

For the mobile gateway we used a Nokia N95 8GB 

cell phone, a Symbian S60 v3 device with 64 MB SDRAM, 
GSM, HSDPA, Wi-Fi, and multi-profile Bluetooth capabili­
ties. The N95 implements support for MIDP 2.0 (JSR 117) 

as well as JSR 179 (location), and JSR 82 (Bluetooth). 

B. Software Details 

Our Medially prototype comprises an Internet-connected 

mobile phone (including all its internal programmatic ca­
pabilities), a platform-independent MIDlet suite implement­

ing the device-resident logic, and programmable Shimmers 

providing data streams. Server side logic resides on an 
Internet addressable desktop. In addition, we setup a set of 
series of cloud (i.e., calendar, blog and social networking 
sites) context sources and seeded them with values from 

our 'demo' user, corresponding to the various cloud context 

states that we wished to investigate. 

For development and testing, we used the NetBeans IDE, 

the Nokia S60 SDK, plugins, and Emulator for NetBeans, 
and Nokia PC Suite for PC-to-phone syncs. With the appro­

priate bands or connectors, Shimmers can easily be attached 

to a demo user's ankles or chest to provide pedometer 
or ECG data streams. Because it is difficult to test rules 

whose triggers are biomedical readings (wihout conducting 
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medical trials with real patient populations), we also created 
emulated sensor readers for all of our sensor types- but 

especially for the ECG and GSR data that is harder to 

'control' - to make testing and demonstration of MediAlly 
feasible. 

Medical rules 

A
CIOUd Context 

provenance,:
-+"C 0 Sources (schedules, 

Web access,l : _ blo gs, etc.) ' " - "��;o �. Log;�: egend: 

Function 

Physical 
sensor 

Figure 5. Artifacts comprising the use cases 

Figure 5 illustrates the artifacts supporting our use cases. 

Electrocardiogram (ECG), Galvanic Skin Response (GSR) 
and pedometer biometric sensor data was gathered from 

physical sensors. The MIDlet suite embodies our software 

that interworks with device-resident sensing capabilities: 
Battery level/charging status, location (via JSR 179 and the 

GPS receiver), and microphone (noise) levels. The user's 

mood/sentiment is derived by a custom logic component 
on a server, as described further in Section V-CO To run 
our tests, we instrumented the MID let to be able to toggle 
between real Shimmers and emulated streamed data sources 

(which we could control to recreate appropriate contextual 

conditions). 

Figure 6 illustrates, in greater detail, the relationship 

between MediAlly components on the mobile device, the 
server, the cloud, and the database tier. The MID let suite 

includes the CEPE module that interprets the rules that 

comprise the medical use case. The Provenance component 
ensured that the appropriate provenance messages were 

stored and transmitted to the Provenance service on the 
server. The Virtual Sensor (VS) objects act as gateways to 

individual sensors (e.g., VS objects may be commanded by 

the CEPE to change streaming rates or "turn off", which 
in turn causes an appropriate change on the Shimmer). 

The MIDlet is designed to communicate back to the Ser­

vices we installed on our Tomcat instance. These include a 
Provenance Service (for storing provenance data), a Cloud 

Service (embodying the interworking and rules of cloud data 
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Figure 6. High level implementation architecture 

integration), a Personal Health Record (PHR) service (to 

which our MID let posted data streams), and a Diagnostic 
Service. 

C. Experimental Cloud Service for Opinion Mining 

To obtain mood or sentiment context, we implement a 

real-time opinion mining (OM) component on the backend 
server. We achieved this by applying OM analysis to an 

aggregated set of the user's recent blog and microblog posts 

(we used Blogger.com and Twitter.com respectively). Our 
OM implementation utilizes an experimental usage of the 

SENTIWORDNET software development kit (SDK), which 
allowed us to build custom OM heuristics around the basic 

functionality of the SDK, which is to provide Objectivity, 

Positivity, and Negativity rankings of English words and 
synsets from WordNet [9]. 

D. Database and PHR Tier 

We utilized HTTP-based clients to post both the sensor 

data streams and the provenance data from the cell phone 
to the server-side Web Services components (named PHR 

service and Provenance Service, respectively, in the figures). 

A combination of Tomcat's in-memory database and a 
MySQL database was used to store the provenance and 

medical sensor data. Finally, to allow us to view the streamed 
and saved provenance and health data, we built a Web­

based front end (serving as a mock-up of commercial PHR 

systems) to the database. The front end uses, among others, 
the Google Visualization API to implement an annotated 

timeline for plotting sensor readings over time, much like 

one sees on commercial PHR sites. 

E. Expected Energy Savings 

The true energy savings in the MediAlly system, arising 

from reduced sampling and transmission overheads, will be 
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revealed only in a medical trial and will vary based on 
the application and the sensors in use. Given that we are 

yet to conduct the necessary clinical experiments, Table 

II lists the volume of data generated in an illustrative, 
highly-simplified, cardiac monitoring application, where a 

medical practitioner monitors the patient's ECG pattern 
during periods of elevated heartbeat, specially when the 

subject is active. A ECG sensor is sampled at 250Hz, with 

16 bits/sample. In the default (non-ATDM)case, the ECG 
data stream is transmitted from the sensor to the phone via 

the Body Area Network (BAN) and relayed to the PHR 

repository over the Wide Area Network (WAN). Now let 
us assume that a pedometer provides the activity context 

(step count/minute) to the mobile gateway. If the application 
considers high activity as being represented by a step count 

of more than 10 steps/minute, then the ECG data would be 

collected only when this predicate is satisfied. Let us assume 
that a subject crosses the high activity threshold 10% of 

the time throughout the day. With ATDM (but without lazy 

capture), this automatically reduces our traffic load to 4Mb, 

including the additional 3600B of pedometer data stream 
(1 byte/min) that must now be stored. Now let us assume 
that the pedometer reports 50 crossings of the '10 step/min' 

threshold during the day-this will generate only 50 elements 

in the provenance data stream. Our lazy capture technique 
will then generate only 50 provenance tuples (8 bytes/tuple 
) daily from the phone to the backend (instead of the 3600B 

of provenance data). 

Tab le II 
DATA GENERATION IN A CARDIAC MONITORING APPLICATION. 

Activity( \0%) Network Non-ATOM Context Provenance 
Rules capture 

ECG stream 
BAN 42Mb 4.2Mb 4Mb 
WAN 42Mb 4.2Mb 4Mb 

Pedometer stream 
BAN 0 3.6Kb 3.6Kb 
WAN 0 3.6Kb 0 

Provenance stream 
BAN 0 0 0 
WAN 0 0 400b 

F Open Questions and Issues 

MediAlly continues to be a work-in-progress, with several 
open questions whose resolution requires the conduct of 

user trials or experiments. Two important unknowns are 

the (application-dependent) practical accuracy of the context 
inferencing logic and the actual observed savings in energy 

overheads. 

In MediAlly, incorrect context inference not only provides 
misleading provenance data but can also cause the activation 

of the wrong event processing logic over the medical sensor 
streams. One common problem in context inferencing is the 

issue of hysteresis, caused by the fact that an instantaneous 

change of context (e.g., walking to sitting) will not be ac­
companied by an instantaneous change in biomedical values 

(i.e., the heart rate will not instantaneously drop below 70). 



This can be countered by embedding a sufficiently long win­
dow of evaluation in the event processing logic. Additionally, 

to accommodate the reality that multiple contextual states 
may be determined to be simultaneously valid (with different 
confidence levels), we plan to extend the CCG formalism 

and lazy capture to apply to the simultaneous storage of 
multiple sub-trees of the CCG. 

To establish the practical savings in energy expenditure 

observed with the adoption of an ATDM paradigm, we are 
working towards the collection of real activity data for a 

limited set of individuals. However, based on past experi­

mental data (e.g., observed with the Harmoni prototype in 
[15]), we expect the system to provide significant savings 

in communication overhead, especially if the data is stored 

and then transmitted opportunistically, in bulk, via WLAN 
hotspots rather than 3G connections. 

VI. RELATED WORK 

Many pervasive system prototypes have explored the idea 

of using a cellphone or PDA as a gateway for collecting 
health data from a variety of medical sensors. While initial 

prototypes focused on using the cell phone merely as a relay 
for very infrequently collected medical data (e.g., daily 

glucose readings [12]), subsequent prototypes have explored 

the use of localized processing on the mobile device to 
enable continuous monitoring of health sensor data streams. 

These include the AMON system [10] for multi-parameter 

(Sp02, pulse and temperature) monitoring, the MoteCare 
system [13] for personalized health monitoring and the 

COSMOS middleware [11] for ubiquitous monitoring using 
ZigBee-based sensors. More recently, the Harmoni proto­

type [15] used activity context as a trigger for dynamically 

altering the stream-processing logic on the cellphone, with 
a view to reducing the transmission overheads of medically 

unimportant data. The Micro-blog middleware [16] was one 

of the first to comprehensively demonstrate how the on­
board sensors of a collection of commodity mobile phones 
(e.g., camera, GPS, accelerometers) could be used to develop 
useful insight into real-world context state. The Mercury 

project [17] is a more recent and innovative middleware that 

improves the lifetime of monitoring by dynamically altering 
the sensing and data transmision profiles (from the sensors to 

a base station), based on designated lifetime objectives and 

fluctuating channel conditions. While Mercury does share 
the notion (with MediAlly) of using context to modulate 

the transmission of sensor data streams, its focus is more 
on extending the sensor lifetimes (as opposed to our focus 

on extending the lifetime of the gateway device). Moreover, 
Mercury does not consider the use of both local and global 
context to modulate the data collection process. In all of 

this prior work, there has been no notion of tracking and 
storing the individual's personal and global context with the 
aim of providing explanatory provenance on the underlying 

historical health data. 
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The idea of using a combination of locally-generated and 
cloud context to provide a better situational awareness of an 

individual's activity has been explored recently-e.g., [20] 

explored the use of an individual's calendar context and 
cloud traffic context in building an enhanced, personalized 

navigation system. Our use of cloud-based sentiment context 
is based on a variety of machine-learning and classification 

based techniques that have been recently explored for au­

tomatic inference of sentiment, including the classification 
of product reviews [18] and the detection of an individual's 

mood changes through blog analysis [19]. 

Our work on a contextual provenance system architecture 
borrows from several recent advances in the field of process 

and data provenance, investigated primarily for scientific 

worklows [21], file systems [22] and databases [23]. Our 
model of representing the logic of context composition as a 

graph is similar to [24], which uses a graph-like representa­
tion to support low-overhead process provenance tracking in 

stream-based applications. Our work, however, has two key 

differences with [24]. First, while [24] focuses on merely 
capturing the edge linkages between the graph nodes (repre­

senting stream operators), we are interested in additionally 

efficiently capturing the evolution of each individual node 
(context state). Moreover, we explicitly dynamically modify 

the provenance capture to track the states of only those 
nodes which actually affect the triggering context at any 

instant. Our method of contextual provenance representation 

and reconstruction also utilizes the low-overhead model­
based TVC approach to stream provenance introduced in 

[14]. In this approach, the dependencies between the output 

and input elements of any stream operator are specified in 
terms of a functional model, enabling easy reconstruction of 

incoming data elements (in our case, finer-grained context) 
that contributed to the generation of an output data element 

(in our case, higher-level composed context). 

VII. CONCLUSIONS 

In this work, we have presented MediAlly, a mobile 
phone-based system for capturing relevant medical data 

streams from a remote subject. MediAlly is a context­
aware system that processes the medical data streams based 

on user-specified context rules. Additionally the system 
produces a metadata stream describing the contextual prove­

nance surrounding the data collection process. We have 

currently tested our setup in a laboratory environment. In 
ongoing work, we are working with medical practitioners to 

launch clinical trials. In the future, such trials will give us 

a clearer understanding of the accuracy of context inference 
for specific application needs, as well as establish the 

increase in operational lifetime observed in actual practice. 
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