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Context-Aware Nearest Neighbor Query on

Social Networks�

Yazhe Wang and Baihua Zheng

Singapore Management University
{yazhe.wang.2008,bhzheng}@smu.edu.sg

Abstract. Social networking has grown rapidly over the last few years,
and social networks contain a huge amount of content. However, it can be
not easy to navigate the social networks to find specific information. In
this paper, we define a new type of queries, namely context-aware nearest
neighbor (CANN) search over social network to retrieve the nearest node
to the query node that matches the context specified. CANN considers
both the structure of the social network, and the profile information of
the nodes. We design a hyper-graph based index structure to support
approximated CANN search efficiently.

1 Introduction

Social network websites and applications have grown rapidly over the last few
years. Take Facebook as an example. From an initial website used by Harvard
students to one of the most famous social networking websites, it has currently
attracted more than 400 million active users worldwide [17]. Obviously, more and
more people start using social networks to share ideas, activities, and interests
with each other, and social networks contain a huge amount of content. However,
it might not be easy to navigate social networks to find specific information.
Consequently, we focus this paper on querying social networks.

We model the social network as undirected graph, and assume each node of
the graph maintains some profile information. Take the co-authorship network
G depicted in Fig. 1 as an example. Each node represents a researcher and
a link between two nodes states that those two researchers have collaborated
at least once. Some descriptive information (e.g., name, profession, and research
topics) of each node is maintained, as depicted in Fig. 1. A context-aware nearest
neighbor (CANN) query is defined to search over social network based on both
network structure and the profile information. It retrieves the nearest node to
the query node that matches the context specified, as well as the shortest path
between them. For example, Michael (i.e., node v3) may issue a CANN query
Q1 “finding me the shortest path to reach the nearest professor working in data
� We would like to acknowledge that this research/project was carried out at the Liv-

ing Analytics Research Centre (LARC), sponsored by Singapore National Research
Foundation and Interactive & Digital Media Programme Office, Media Development
Authority..
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Fig. 1. A collaboration social network G

mining”. Here, distance from the query node v3 to a node v is evaluated by the
shortest path distance; and the context is represented by keywords {professor,
data mining}. The answer to Q1 is node v4 with its shortest path {v3, v4}.
CANN query considers both the network distance and the context. It has a large
application base. For example, researchers can issue CANN to find potential
collaborators to start new research and employers can issue CANN to locate
qualified employees to work on specific tasks.

There are two naive approaches for CANN search. First, we can invoke tradi-
tional shortest path search algorithm to approach nodes based on ascending order
of their distances to the query node until one that matches the queried keywords
is found, denoted as SPA-based approach. Second, we can employ well-known in-
formation retrieval techniques to locate all the nodes that match the queried
keywords, and then order them based on shortest path distances, denoted as
IR-based approach. However, both approaches are inefficient, in terms of search
performance and storage consumption. On one hand, SPA-based approach tra-
verses the social network purely based on the distance but not context and hence
it might have to visit many unnecessary nodes before the answer node is found.
On the other hand, IR-based approach may find many nodes that match the
queried keywords as intermediate results and hence the ranking process based
on the distances between query node and all the intermediate nodes could be
very costly. In addition, the inverted index used by IR-based approach might
take up large storage space if the graph is big and/or the vocabulary of the
context is large.

Given the fact that the exact search of CANN query is relatively expensive
and some applications might be willing to trade in the accuracy for performance,
we propose an approach, namely hyper-graph based approximation, that provides
an approximated result to CANN queries with high performance and relatively
cheap storage requirement. It tries to utilize the unique power law degree distri-
bution feature of social network, and identifies some nodes with very high degree
(whose number will be small) as center nodes. It then partitions the social net-
work into disjoint sub-graphs with each centering around a center node. Based
on the assumption that a path linking a node in one sub-graph Gi to a node in
another sub-graph Gj is very likely to pass the corresponding center nodes of
Gi and Gj , it builds a hyper graph to index i) among sub-graphs, the shortest
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paths between center nodes; and ii) within each sub-graph, the shortest paths
between non-center nodes and the center node. Meanwhile, it attaches certain
signature information, called signature map, at each center node that facilitates
the space pruning based on queried keywords.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 defines CANN search and approximated CANN search. Section 4
presents the details of the hyper-graph based approximation technique. Section 5
analyzes the experimental results. Finally, Section 6 concludes this paper.

2 Related Work

In this section, we briefly review existing work related to CANN search, including
(approximated) shortest path search, keyword query and signature technique
used in information retrieval.

2.1 Shortest Path Search and Keywords Query

The most well-known shortest path search algorithm on graphs is the Dijkstra’s
algorithm [2]. It explores the graph in a best-first manner starting from the
query node until the target node is reached. Some faster solutions were pro-
posed to prune the graph exploration space based on domain-specific heuristic
and pre-processing, such as A* search [5] and reach based method [6]. The al-
gorithms mentioned above usually assume the searched graph can be stored in
main memory, and do not scale very well for very large graphs.

In recent years, efficient indexing techniques have been designed for shortest
path search on large graphs. Some index techniques are designed based on par-
tial pre-computation. For example, HEPV [10] and HiTi [11] build index based
on materializing local shortest paths of a number of disjoint subgraphs. The
global shortest path is then obtained by combining selected local shortest paths.
Recently, a novel tree decomposition based graph index structure has been pro-
posed [20], which supports efficient shortest path query with even smaller index
size. There are other works considering encoding all-pairs shortest paths of a
graph in small-sized indexes. For instance, [19] proposes a quadtree-structured
index utilizing the spatial coherence of the destination (or source and desti-
nation) nodes. Distance signature method [8] pre-computes the distance from
each node v to a set of objects of interests, and maintains this information as
a signature at v. Compact BFS-tree [21] is another example. It exploits sym-
metry properties of graphs to reduce the index size of all-pairs shortest paths.
However, it is only applicable to un-weighted graphs. All these discussed ap-
proaches support efficient shortest path search for given source and destination
nodes. However, none of them considers the context of the nodes, or supports
the queries that do not specify the destination at the query time.

There are some techniques designed for approximated shortest path/distance
queries. Spanner [1] is a subgraph obtained by deleting edges from the original
graph. Due to the smaller size, the search performed on the spanner is much
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faster. However, it is hard to decide which edges should be deleted in order to
generate a good spanner so that the distances between nodes do not change
substantially. Spanners perform worse on dense graphs with large girth. Distant
labeling and embedding techniques [4,18] assign each node of a graph a label such
that the (approximated) distance between two nodes can be directly computed
based on the corresponding labels. However, these approaches can only provide
distance information but not the paths.

Keyword query on graphs [7, 9, 12, 16] also considers both the distance and
context information. It is to find closely connected clusters of nodes in the graph
which contain specific keywords. Based on different query semantic, the result of
the query could be rooted trees or subgraphs embedded in the graph. Obviously,
the definition of keyword query is different from our CANN search.

2.2 Signature

Signature techniques have been studied extensively in information retrieval [13,
15]. A signature is basically an abstract of the keyword information of a data
item. Given a set of keywords that index the data item i, the signature Si is
typically formed by first hashing each keyword in the set into a bit string and
then superimposing (i.e., bitwise-OR, ∨) all these bit strings into a signature.
Note that the size of a signature equals to the size of the bit string.

To decide whether a data item i matches/contains the query keyword Q, a
query signature SQ is generated first, based on the same hash function. There-
after, SQ is compared against the signatures Si using bitwise-AND (∧). The
signatures match if for every bit set in SQ, the corresponding bit in the com-
pared signature Si is also set. If SQ does not match Si, then data item i does
not match query Q. While, if a match happens, it could be a true match that
the data item is really what the query searches for; or it could be a false drop
that the data item in fact does not satisfy the search criteria.

3 Problem Definition

In this section, we first describe the graph model of the social network, and then
formally define the context-aware nearest neighbor (CANN) query and approxi-
mated CANN (ACANN) query.

In general, we model a social network as an undirected graph G(V, E), with V
being a set of nodes and E being the set of edges. An edge e(vi, vj) ∈ E represents
that nodes vi and vj are connected in the network. The weights of edges are
captured by W . A non-negative weight w(vi, vj) ∈ W of edge e(vi, vj) ∈ E
represents the strength of the linkage. In this paper, we assume that the context
of each node vi ∈ V is maintained as a set of keywords, denoted as vi.k. The
domain of keywords for a graph G is represented by L with L = ∪vi∈V vi.k.
Given two nodes vi and vj of a graph G(V, E), a path and the shortest path
connecting them are described in Definition 1.
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Definition 1 Path and Shortest Path. Given a social network G(V, E) and
two nodes vi, vj ∈ V , a path P (vi, vj) connecting vi and vj sequentially passes
nodes vp1 , vp2 , · · · , vpm , denoted as P (vi, vj) = {vp0 , vp1 , vp2 , . . . , vpm , vpm+1},
with vp0 = vi and vpm+1 = vj. The length of P (vi, vj), denoted as |P (vi, vj)|,
is

∑m
n=0 w(vpn , vpn+1). The shortest path SP (vi, vj) is the one with the shortest

distance among all the paths between vi and vj, and its distance, denoted as
||vi, vj || (= |SP (vi, vj)|), is the shortest distance between vi and vj. �

Take the social network in Figure 1 as an example. Path P (v1, v3) = {v1, v9, v4,
v3} is a path from v1 to v3 via nodes v9 and v4, and path P ′(v1, v3) = {v1, v2, v3}
is another one via v2. Assume G(V, E) is an unweighted graph with ∀e(vi, vj) ∈
E, w(vi, vj) = 1, the path P ′(v1, v3) is the shortest path between v1 and v3, i.e.,
SP (v1, v3) = {v1, v2, v3} and ||v1, v3|| = |SP (v1, v3)| = w(v1, v2)+w(v2, v3) = 2.

With vj .k capturing the context of vj , CANN search is to locate the nearest
node with its context matching the queried keywords, as given in Definition 2.

Definition 2 Context-aware Nearest Neighbor Search (CANN). Given
a graph G(V, E), a CANN search Q specifies a query node Q.v and a set of
queried keywords Q.k, and it asks for a shortest path P to a node vj ∈ V such that
the context of vj matches queried keywords and its distance to Q.v is the shortest
among all the nodes with context matching Q.k. In other words, CANN(Q) =
〈vj , P 〉 ⇒ vj .k ⊇ Q.k ∧ P = SP (Q.v, vj), and meanwhile �vi ∈ V such that
Q.k ⊆ vi.k ∧ ||Q.v, vi|| < |P |. �

As the exact search of CANN query is relatively expensive, we, in this paper,
focus on supporting an approximated CANN search as defined in Definition 3.

Definition 3 Approximated CANN Search (ACANN). Given a graph
G(V, E), an ACANN search Q specifies a query node Q.v and a set of queried
keywords Q.k. It returns a path P to a node vj ∈ V such that the context of
vj matches queried keywords. However, it does not guarantee that i) vj is the
nearest node that satisfies the query; or ii) P is the shortest path from Q.v to
vj. The quality of the approximation is measured by the ratio of the length of the
returned path of ACANN search to that of CANN query, i.e., |ACANN(Q).P |

|CANN(Q).P | . �

4 Hyper-Graph based Approximation

In this section, we present an index structure, namely hyper-graph, to support
approximated CANN search. We first explain the basic idea of hyper-graph index
based approximation, then present the structure of hyper-graph index and its
construction algorithm, and finally explain the corresponding search algorithm.

4.1 Basic Idea

The idea of hyper-graph index comes from the intuition of how we search for
information in the real social network. Usually, there are a small number of
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important persons who have strong connections with people in their local social
network. For example, Prof. Jiawei Han is a distinguished researcher in the data
mining field. If a UIUC graduate wants to build a connection with another data
mining researcher, it is very likely that Prof. Han can provide great help.

Based on this finding, we first identify a small set of important persons as
center nodes in the social network, and divide the social network into disjoint
partitions Pi with each around one center node ci. We then employ the center
node as the knowledge hub of its partition, i.e., each center node carries distance
information and context information of the nodes within its partition. We assume
the center nodes serve as glues to connect nodes. In other words, a path linking
nodes within a partition Gi will pass the center node ci, and a path linking
a node in partition Gi to a node in another partition Gj will pass the center
nodes ci and cj , i.e., it is very likely that center nodes lie on the shortest paths
between nodes. Consequently, we index the shortest paths from each node within
a partition Gi to the center nodes, and the shortest paths from center nodes to
the center nodes of their neighboring partitions, namely hyper graph. With the
help of hyper graph, an ACANN query issued at a node v can be first forwarded
to the center node ci of the partition that covers v via a local search conducted by
the center node ci within its own partition. Meanwhile, ci expands the search to
its neighboring partitions via expanded search. The construction of hyper graphs,
and the details of local search as well as expanded search will be presented in
the following subsections.

4.2 Hyper Graph Index

The hyper graph index construction contains three steps, i.e., center node selec-
tion, network partition, and hyper graph formation, as detailed in the following.

Center Nodes Selection. There are multiple ways to select center nodes, such
as random selection and betweenness-based selection. The former picks center
nodes randomly while the latter selects those nodes with highest betweenness
scores1. However, random selection may pick nodes that do not lie on many
shortest paths, and betweenness based selection may suffer from very high com-
putation cost. Consequently, we propose degree-based selection. The rationale is
that in social network, the persons with wide social connections tend to exist on
many shortest paths linking different nodes. We will evaluate those center node
selection methods in Section 5.

Network Partition. Once the center nodes are fixed, we assign other nodes to
their nearest center nodes for network partition, as formally defined in Defini-
tion 4. In case a node shares the same distance to multiple center nodes, it is
randomly assigned to one of them. Accordingly, we need to locate the shortest
paths from each node to center nodes. The graph partition could be computed
in time O(|E| + |V | + |V | log(|V |)|) using the algorithm proposed in [3].

1 The betweenness score of a node equals the number of shortest paths crossing it.
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Definition 4 Network Partition. Given a social network G(V, E) and a set
of center nodes C ={c1, c2, · · · , cr} with C ⊂ V , a network partition PG =
{G1(VG1 , EG1), G2(VG2 , EG2), · · · , Gr(VGr , EGr)} is a set of subgraphs Gi that
i) ∀ci ∈ C, ci ∈ VGi ; ii) ∀v ∈ V , ∃Gi ∈ PG, v ∈ VGi ; iii) ∀v ∈ VGi ∧ ∀j(�= i) ∈
[1, r], ||v, ci|| ≤ ||v, cj ||; iv) ∀v, v′(v �= v′) ∈ VGi , if e(v, v′) ∈ E, e(v, v′) ∈ EGi ;
and v) ∀i, j(i �= j) ∈ [1, r], VGi ∩VGj = ∅∧EGi ∩EGj = ∅∧⋃

1≤i≤r EGi ⊆ E. �

Hyper Graph Formation. As explained before, ACANN search contains lo-
cal search and expanded search. In order to support local search, within each
partition Gi, we store the shortest paths from each non-center node v to the
center node ci, via a two-tuple vector 〈ci, vnext〉. Here, the shortest path from a
non-center node v to the center node ci is identified during the social network
partition process, and vnext is the next-hop node on SP (v, ci).

In addition, to support space pruning based on queried keywords, each center
node ci maintains signatures representing the context of the nodes within its
partition, via the signature map, denoted as cmap

i . To be more specific, within
each partition Gi, we order the non-center nodes based on their distances to
the center node ci and cluster them into groups. For each group, a signature is
generated by superimposing the signatures of the context of the nodes within
the group. Thereafter, when a search reaches a center node ci, we compare the
queried keywords with the signatures of ci’s groups, and examine the nodes
within a group only when its signature indicates a match.

Obviously, how to cluster the nodes into groups affects the search efficiency.
In general, given a hash function for signature generation (i.e., a fixed signature
size), the more the nodes clustered into a group are, the higher the false drop
rate is. In this work, we pre-define a false drop rate threshold γ (e.g., 0.01) and
decide the maximal number of distinct keywords, denoted as η, that could be
represented by a signature with approximated false drop rate bounded by γ,
based on Equation (1) [14]. Here, |sig| is the length of the signature.

η = � |sig| · (loge2)2

−logeγ
� (1)

The clustering algorithm then works as follows. First, all the nodes vj within
a partition Gi are sorted based on ascending order of their shortest distances
to ci, maintained in a queue Que. Next, we dequeue the head node vj from
Que, insert vj into set S, and check the total number of keywords associated
with nodes in S, denoted as ϕ. There are three cases. Case (i) ϕ > γ: all the
nodes in S, except vj , form a new group gl, with S = {vj}; Case (ii) ϕ = γ:
all the nodes in S form a new group gl, with S = ∅; and Case (iii) ϕ < γ: no
action. This process continues until Que is empty. Notation cmap

i [l] is used to
represent the signature map for the l-th group gl w.r.t. the center node ci, in
the format of 〈sig, dis, nodes〉. Here, cmap

i [l].sig is the signature generated based
on all the keywords associated with nodes within the group gl, cmap

i [l].dis is the
lower bound of the shortest distance from any node within group gl to the center
node ci (i.e., ∀vj ∈ gl, ||vj , ci|| ≥ cmap

i [l].dis ∧ ∃v′ ∈ gl, ||v′, ci|| = cmap
i [l].dis),

and cmap
i [l].nodes records all the nodes within group gl.
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Fig. 2. An example of the hyper graph index

In order to support expanded search, we pre-compute the shortest paths be-
tween two center nodes whose partitions are adjacent. Two partitions Gi, Gj are
adjacent, denoted as Gi �Gj , if there is an edge in G that connects a node in Gi

to a node in Gj . Then, we build hyper graph which includes all the center nodes
as vertexes, and the shortest paths between center nodes of adjacent partitions.

Definition 5 Hyper Graph. Given a social network G(V, E) and a set of cen-
ter nodes C = {c1, c2, . . ., cr}, the hyper graph GH(VH , EH) consists of the set
of center nodes, and the connections between those center nodes with their corre-
sponding partitions are adjacent, i.e., VH = C, and EH = ∪Gi�Gj∧|SP (ci,cj)|�=∞
e(ci, cj) with w(ci, cj) = |SP (ci, cj)|. �

An example of the hyper graph index is depicted in Fig. 2. Assume the number
of center nodes is three. Using degree-based selection, nodes v4, v7, and v9 with
the top-three maximal degrees are selected as the center nodes. Thereafter, the
network partition takes place. Each non-center node is attached to its nearest
center node as demonstrated by the dashed circle in Fig. 2. Once the social
network is partitioned, we proceed to form hyper graph. As all the partitions
are adjacent, the hyper graph actually is a complete graph with vertices VH =
C = {v4, v7, v9} and edges EH = {e(v4, v7), e(v7, v9), e(v4, v9)}. The content of
each center node signature map is also depicted. Take center node v7 as an
example. Its partition has three nodes, and they are sorted based on ascending
order of their shortest distances to the center node v7. Suppose each signature
contains up to four keywords (i.e., η = 4). Nodes v6 and v7 are clustered into the
first group, and node v8 is clustered into the second group. For each group, the
signature is formed by superimposing the signature of each node and the distant
is set to the shortest distance between the first node of the group to v7.

4.3 Approximated Search Algorithm

The hyper graph based ACANN search assumes that a path from a node v within
a partition Gi to node v′ within a partition Gj (i �= j) must pass corresponding
center nodes ci, cj , i.e., a center node serves as the only entrance to and the exit
from its partition. To be more specific, a path from v to v′ consists of three path
segments, the one from v to ci, the one from ci to cj , and the one from cj to
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v′. Algorithm 1 lists the pseudo code of ACANN search. For an ACANN query
Q issued at node Q.v, if the query node matches the queried keywords Q.k, the
search terminates (lines 2-3). Otherwise, we locate the center node cq that covers
Q.v via Q.v’s two-tuple vector 〈ci, vnext〉, with d being the shortest distance from
Q.v to cq. We then enqueue cq into Que, a priority queue maintaining center
nodes of those partitions that might deserve examinations (line 6). All the entries
in Que are two-tuple vectors 〈ci, ||ci, cq||〉, ordered based on ascending order of
the distance between center nodes ci and cq.

Algorithm 1: ACANN Search based on Hyper Graph Index

Input: a social network G(V, E) with corresponding context L and weight W , a
hash function H , hyper graph GH(VH , EH), an ACANN query Q

Output: the approximated answer node vans, dans, and Pans

vans = ∅, dans = ∞;1

if Q.k ⊆ Q.v.k then2

return vans = Q.v, dans = 0, Pans = {Q.v};3

for each ci ∈ VH do4

dci = ∞;5

cq = Q.v.ci, Que = 〈cq, 0〉, d = ||cq , Q.v||;6

while Que is not empty do7

〈ci, ||cq , ci||〉 = dequeue(Que);8

if (d + ||cq , ci||) ≥ dans then9

return vans, dans, Pans;10

for each cmap
i [l] ∈ cmap

i do11

if (d + ||cq , ci|| + cmap
i [l].dis) ≥ dans then12

break;13

else if H(Q.k) ∧ cmap
i [l].sig = H(Q.k) then14

for each vj ∈ cmap
i [l].nodes do15

if Q.k ⊂ vj .k and (d + ||cq , ci|| + ||ci, vj ||) < dans then16

vans = vj ; dans = d + ||cq , ci|| + ||ci, vj ||;17

Pans = append(SP (Q.v, cq), P (cq, ci), SP (ci, vj));18

for each neighboring node cn of ci in GH do19

if dci + ||ci, cn|| < dcn then20

enqueue(〈cn, dci + ||ci, cn||〉); P (cq, cn) = append(P (cq, ci), e(ci, cn));21

dcn = dci + ||ci, cn||;22

Thereafter, we continuously dequeue the head entry from Que until it becomes
empty. Every time when a head entry 〈ci, ||ci, cq||〉 is dequeued, the lower bound
of the approximated distance from Q.v to any node in partition Gi centered at ci

(i.e., d + ||ci, cq||) is compared against the approximated distance dans from Q.v
to the current answer node. If the lower bound is longer than dans, the partition
Gi can be safely discarded. Similarly, all the entries in Que, due to larger ||c′i, cq||
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values, are pruned away to terminate the search (lines 9-10). Otherwise, partition
Gi needs examination. We use cmap

i to filter out unnecessary nodes. The first
filtering condition is based on distance. We calculate (d + ||ci, cq||+ cmap

i [l].dis),
the lower bound of the approximated distance from a node in cmap

i [l].nodes to
Q.v. If it is longer than dans, there is no need to examine nodes within this l-th
group and the following groups (lines 12-13). The second filtering condition is
based on the context. We could safely discard cmap

i [l].nodes if cmap
i [l].sig does

not match the query context Q.k. If this l-th group is not filtered out by the
previous two conditions, we need examine the nodes in this group one by one,
and update the answer when the nodes vj ∈ cmap

i [l].nodes that match the search
context are found(line 14-18). Up to this point, we have examined the partition
centered at ci, i.e., the local search is finished. We then start the extended search
by inserting all the unexamined neighboring center nodes of ci in GH for further
examination (lines 19-22).

5 Experiments

In this section, we report the experimental evaluation. First, we evaluate various
center node selection schemes for the hyper graph index construction. Next, we
test the hyper graph index based ACANN search performance, including pre-
processing time, storage overhead, query time, and approximation quality.

Two real social network datasets are used, including dblp and gamma. The
former is extracted from DBLP (http://dblp.uni-trier.de/xml/). We sample dblp
graphs with number of nodes changing from 0.5K to 8K. For each node, we
extract 20 keywords from papers published by the author as the context. The
latter is provided by MyGamma, a mobile social networking service provider
(http://m.mygamma.com/). We sample mygamma graphs with node number
changing from 10K to 20K. Each node has on average 10 keywords, including
user’s nickname, race, country and so on extracted from user’s profile. For both
datasets, the graphs are unweighted (i.e. the weight on every edges is 1). We
implemented all the evaluated schemes in C++, running on an AMD 2.4GHz
Dual Processors server with 4GB RAM. In addition, the false drop rate γ is set
to 0.01 and the size of the signature |sig| is set to 128 in our implementation.
Due to the space limitation, we skip some results w.r.t. gamma that share the
similar trends as dblp.

5.1 Evaluating Center Node Selection Schemes

As mentioned in Section 4, there are three center nodes selection schemes, includ-
ing random selection, betweenness based selection, and degree based selection,
denoted as Random, Betweenness, and Degree respectively. In the first set of ex-
periments, we compare the performance of these three approaches in terms of
selection time and the quality of approximation.

The test results on a 5K nodes dblp graph is reported in Fig. 3 as a repre-
sentative. Fig. 3(a) shows the selection time when the number of center nodes,
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Fig. 3. Performance of the center node selection schemes (dblp, |V | = 5K)

presented as the percentage of the dataset size, changes. As we can see, Random

is the most efficient in terms of selection time. Degree takes more time than
Random, but is still efficient. However, Betweenness is very time consuming due
to the high cost of computing nodes betweenness. Fig. 3(b) reports the approx-
imation quality of ACANN under different schemes. The approximation qual-
ity is measured by |ACANN(Q).P |/|CANN(Q).P |, as defined in Definition 3.
We run 200 random queries with each having 1 to 5 keywords randomly se-
lected from the keywords vocabulary and report the average result. As shown
in the figure, Random leads to very inaccurate results, while Betweenness offers
the highest quality. The result on Degree is very close to that of Betweenness.
Consider both the center node selection time and approximation accuracy, we
set Degree as the default center node selection approach in the following
evaluation.

5.2 Performance of ACANN Search Algorithm

Next, we evaluate the performance of ACANN search with the help of hyper
graph index. Two algorithms are implemented as the comparison in our evalua-
tion. One is the naive SPA-based approach introduced in Section 1, referred as
Naive. Started from the queried node, it explores the graph based on distance
and does not rely on any index structure. The other method is based on the
pre-computed all-pairs shortest paths, referred as AllPath. In AllPath, for each
node v in G, we construct a signature map for each of its neighboring node nv

i as
described in Section 4.2. The signature map summarizes the context of the nodes
u which can be reached from v via nv

i (i.e. the shortest path from v to u passes
nv

i ). When a query is performed on v, the signature map could efficiently direct
the search towards the potential result node whose context actually matches the
query. We also implement the hyper graph index method, referred as HGI.

Pre-processing Time. First, we evaluate the pre-processing time of different
approaches vs. size of the datasets, as reported in Fig. 4(a). Note that Naive

does not require any index structure and hence it is not reported. It is observed
that as the graph size grows, the index construction time increases as well.
AllPath takes longer construction time due to the need of computing all-pairs of
shortest paths, and the construction time increases sharply with the increase of
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Fig. 5. HGI performance vs. # center nodes. (dblp, |V | = 5K)

graph size. On the other hand, HGI takes much shorter construction time and
hence the hyper graph based algorithm has a better scalability. We also report
the preprocessing time of HGI with various number of center nodes selected, as
depicted in Fig. 5(a). Generally, when the number of center nodes increases, the
index construction time increases.

Storage Costs. Next, we evaluate the storage costs of various approaches in
Fig. 4(b). Notice that Naive does not request any index. For other methods,
we record the storage space taken by the social network and the corresponding
indexes. We observe that for both datasets, the storage cost increases with the
graph size growing, and HGI takes up much less space than AllPath. In addition,
compared with Naive, the extra space consumed by HGI is smaller than 5% for
both datasets. The storage cost of the hyper graph index is also affected by the
number of center nodes selected. As shown in Figure 5(b), the more the selected
center nodes are, the larger the hyper graph is.

Query Time. The query performance is evaluated by the query time and the
approximation quality. We first test the query time of different approaches under
different size of graphs, as reported in Fig. 6. Generally, Naive performs the worst,
especially on large sized graphs. This is because it has to visit a large number of
nodes with extremely long processing time. On the other hand, AllPath and HGI

both significantly shorten the query time by precomputing certain information.
For the dblp graphs, HGI even takes shorter query time than AllPath. This is
probably because that there are more nodes in a dblp graph with their contexts
matching the query keywords, thus it takes more time for AllPath to filter out
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the non-result nodes based on distance. While, for the gamma graphs, HGI, in
most cases, incurs similar query time as AllPath. Then, we fix the graph size and
change the number of center nodes selected, and report its impact on the query
time of HGI in Figure 8. Similar as previous observation, the more the selected
center nodes are, the larger the index is, thus the longer the search time is.

Approximation Quality. We then evaluate the approximation quality of the
ACANN search under hyper graph index. First, we study the impact of dataset
size on the approximation quality of HGI, as depicted in Fig. 7. For the dblp
datasets, the approximated shortest path returned by HGI is 0.3 times longer
than the real shortest distance as shown in Figure 7(a). Given that shortest
distances between nodes of the dblp/gamma datasets are short (usually less
than 5 for dblp datasets, and around 3 for gamma datasets), the approximated
shortest paths are usually only one or at most two steps further, compared to
the real shortest paths. Consequently, for those applications with high demand
on search performance, our ACANN search algorithm can provide considerably
good approximations with fast response time.

We further study the impact of the number of center nodes selected on the
approximation quality of HGI, as reported in Figure 9. Again as observed from
the results, the more the selected center nodes are, the better the approximation
quality for HGI is. It is because that when more center nodes are selected, the
graph is partitioned into finer partitions. Consequently, each partition contains
less non-center nodes and the average distance from a non-center node to its
nearest center node is shorter.
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Fig. 8. HGI query time vs. # center nodes (γ = 0.01, |sig| = 128)
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Fig. 9. Approximation quality vs. # center nodes

To sum up, we evaluate the pre-processing time, storage overhead, query time,
and approximation quality of the HGI method. The results demonstrate that HGI

has relatively low preprocessing and storage overhead with certain sacrifice of
the query accuracy. However, the average error factor is less than 1.3.

6 Conclusion

Motivated by the fact that social networking is growing rapidly, we, in this paper,
formulate a new type of queries, namely context aware nearest neighbor search,
over social networks. It returns a node that is closest to the query node, and
meanwhile has its context matching the query condition. A hyper graph index
structure is designed to support approximate CANN search. Through extensive
evaluation tests, hyper-graph based approaches provide relative accurate results
with low preprocessing and storage overhead.
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