
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Information 
Systems School of Information Systems 

6-2008 

Advances and Challenges for Scalable Provenance in Stream Advances and Challenges for Scalable Provenance in Stream 

Processing Systems Processing Systems 

Archan MISRA 
Singapore Management University, archanm@smu.edu.sg 

Marion BLOUNT 
IBM TJ Watson Research Center 

Anastasios KEMENTSIETSIDIS 
IBM TJ Watson Research Center 

Daby SOW 
IBM TJ Watson Research Center 

Min WANG 
IBM TJ Watson Research Center 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
MISRA, Archan; BLOUNT, Marion; KEMENTSIETSIDIS, Anastasios; SOW, Daby; and WANG, Min. Advances 
and Challenges for Scalable Provenance in Stream Processing Systems. (2008). Provenance and 
Annotation of Data and Processes: Second International Provenance and Annotation Workshop, IPAW 
2008, Salt Lake City, UT, June 17-18, 2008: Revised Selected Papers. 5272, 253-265. Research Collection 
School Of Information Systems. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/678 

This Conference Proceeding Article is brought to you for free and open access by the School of Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Advances and Challenges for Scalable Provenance in
Stream Processing Systems�

Archan Misra, Marion Blount, Anastasios Kementsietsidis, Daby Sow, and Min Wang

IBM T.J. Watson Research Center
Hawthorne, NY, USA

{archan,mlblount,akement,sowdaby,min}@us.ibm.com

Abstract. While data provenance is a well-studied topic in both database and
workflow systems, its support within stream processing systems presents a new
set of challenges. Part of the challenge is the high stream event rate and the low
processing latency requirements imposed by many streaming applications. For
example, emerging streaming applications in healthcare or finance call for data
provenance, as illustrated in the Century stream processing infrastructure that we
are building for supporting online healthcare analytics. At anytime, given an out-
put data element (e.g., a medical alert) generated by Century, the system must be
able to retrieve the input and intermediate data elements that led to its generation.
In this paper, we describe the requirements behind our initial implementation of
Century’s provenance subsystem. We then analyze its strengths and limitations
and propose a new provenance architecture to address some of these limitations.
The paper also includes a discussion on the open challenges in this area.

1 Introduction

To enable an emerging class of cyber-physical computing applications, several stream
computing platforms and middleware have been developed (e.g., Aurora [1], SPC [2])
to provide scalable, high throughput processing of sensor-generated data streams. In
such systems, the arriving data are essentially ephemeral; to support low-latency pro-
cessing of the data streams, stream operators perform only one pass over the arriving
data, which are then typically discarded. In turn, this typically limits the forms of prove-
nance in these systems to process provenance, i.e., determining which stream operators
contributed to the generation of a particular data item.

Remote health monitoring represents an extremely important application domain for
stream computing. To enable automated near-real time analysis of high volumes of med-
ical sensor streams, we have been building, over the past year, an infrastructure, called
Century [3], that permits the scalable deployment of online medical analytics. Stream
analysis in the medical domain requires the Century infrastructure to support both pro-
cess and data provenance, to support capabilities such as “offline dependency analysis”
or “historical data replay”. From a technical standpoint, data provenance imposes a

� This work was supported by the IT R&D program of MIC/IITA under the project/grant/funding
number 2006-S-602-01 (Development of Stream-based Distributed Interoperable Health care
Infrastructure Supporting Provenance and QoE).

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 253–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



254 A. Misra et al.

Fig. 1. Illustrating Data Provenance in a Stream Analysis Infrastructure. An application is repre-
sented as a directed acyclic graph (DAG) of nodes, with each node representing an operator or
a Processing Element (PE). Provenance reconstruction involves determining the set of causative
data elements belonging to streams that lie upstream of a particular data element.

novel challenge in data streaming systems, that of stream persistence [10,12]. At any
point in time, given an output (e.g., a medical alert) generated by a stream processing
graph, the Century Provenance system must not only recreate the processing graph that
created the output, but also provide all the elements of the intermediate data streams
that generated it. A data provenance solution for streams faces a couple of challenges:

– It must preserve the high processing throughput of the infrastructure, implying that
the provenance solution cannot introduce significant additional processing over-
head for every individual stream data element.

– It must not impose a prohibitive storage load, both in terms of the volume of data,
as well as the insertion rate of data items requiring storage.

To support data provenance for such high throughput environments, we have previ-
ously introduced a model-based provenance solution, called Time-Value-Centric (TVC)
provenance [17], which uses an explicit specification of the dependency relationship be-
tween input and output streams at every node (hereafter called a Processing Element or
PE) in the processing graph. The notion of data provenance, involving the identifica-
tion of multiple stream elements at upstream PEs belonging to a processing graph, is
graphically illustrated in Figure 1.

This paper first describes some challenges with data provenance, based on our initial
experiences with a TVC-based provenance solution for Century. The TVC approach
does result in lower processing overhead, compared to the conventional annotation ap-
proach (which would require every element of every data stream to carry along a much
longer set of stream elements as metadata). However, our experience reveals two new
challenges for a pure model-based approach:



Advances and Challenges for Scalable Provenance in Stream Processing Systems 255

– Fundamentally, it has to contend with the increased storage insert rate that results
from the need to persist the individual elements of every data stream occurring
within a stream processing graph.

– The provenance model must reconcile and track potential discrepancies between
the granularity at which stream data are produced and consumed by PEs within a
processing graph. This discrepancy surfaces in extensible stream computing sys-
tems, where the data is not strongly typed, where the set of operators (PEs) is not
closed and where different PEs choose to consume data at different granularities.

While both of these features need to be addressed, the issue of much larger stream
storage rates is fundamentally more challenging and requires a change in the basic
provenance model. The need to store both external and intermediate streams will im-
pose an infeasibly high workload on commercial database systems. Accordingly, we
shall propose a new hybrid provenance architecture, called Composite Modeling with
Intermediate Replay (CMIR) that solves the problem of stream persistence by defining
TVC-style dependency relationships only over a set of PEs (rather than at each individ-
ual PE) and by using data replay to recreate the data elements of streams internal to the
PE set. We shall also discuss a set of open challenges and issues, with a goal of soliciting
new approaches from the provenance community for tackling these challenges.

The rest of this paper is organized as follows. Section 2 provides an overview of the
basic TVC primitives and their use in a representative analytic application, and then
introduces two observed challenges. Section 3 introduces the suggested CMIR model
for data provenance in stream computing platforms, and then describes the related tech-
nical challenges. Section 4 describes our current solution for resolving the granularity
mismatch between output and input data elements. Section 5 then surveys prior relevant
work and the paper concludes in Section 6 with a summary of the main points.

2 The TVC Model for Century and Resulting Limitations

The TVC model [17] specifies a set of primitives that are used to define a causative
relationship between the data elements generated at the output port of a PE and the
data elements arriving at its input ports. The TVC model differs from conventional
annotation-based approaches for data provenance, which would need to embed a poten-
tially large set of input data identifiers as metadata in every output data element (owing
to the statefulness of stream operators, which implies that each output may be influ-
enced by a large number of input data samples). TVC exploits the observation that the
input-output dependencies for most PEs can be specified in terms of some invariants–
while each output data element may have a variable set of causative input elements, this
set may be indirectly determined through the application of these invariant primitives.

The TVC model supports the following primitives for dependency specification:

– Time: This primitive captures dependencies where an output data element is gen-
erated based on a past time window of past input data elements. For example, the
notation Om1(t) ← In1(t − 10, t − 2) indicates that an output element generated
at a time t = 80 on output port m1 depends only on those input elements that were
timestamped with values in the interval (70, 78), on input port n1.



256 A. Misra et al.

– Value: The ‘value’ primitive defines a dependency in terms of predicates over the
attributes of the input data elements. For example, a value primitive like Om2(t) :
{alertLevel = 1} ← In2(t) : {(systolic > 130)&&(diastolic > 100)} in-
dicates that an output element with ‘alertLevel=1’ depends only on all past input
samples that satisfy the corresponding predicates over the (systolic, diastolic) at-
tributes.

– Sequence: The ‘sequence’ primitive expresses dependencies in terms of the se-
quence number of arriving elements. For example, a sequence primitive Om3(t)←
In3(i− 30, i) indicates that an output element depends on the most recent 30 sam-
ples of input data.

A TVC dependency relationship may be composed by arbitrary conjunctions and
disjunctions of these basic primitives. Moreover, for significantly enhanced expressive-
ness, the specifications allow each TVC term to specify a combination of (time, se-
quence, value) triples. Each element of such a triple has a unique ‘order’ term, which
defines an evaluation order for these primitives, with the output sub-stream of a lower
order primitive acting as the input stream for a higher order primitive. As an example,
the dependency relation O45(t)←I97{(t−1d, t, order = 2), (systolic > 130, order=
1)} implies that the causative set for an output element of port 45 may be reconstructed
by first obtaining the sub-stream of input elements on port 97 that have ‘systolic >
130’ and then picking all the elements of this sub-stream that have been received in
the last day. Figure 2 shows the specification of TVC primitives in a sample processing
graph in Century.

Fig. 2. Graph of a Representative Arrythmia Monitoring Application in Century. (The TVC-based
dependency relationship for two PEs is explicitly highlighted.)



Advances and Challenges for Scalable Provenance in Stream Processing Systems 257

RetrieveCausativeData(Event e) {
ts= e.Timestamp; oport= e.phyOutputPort
{PE, logOutPort}= lookupDynamic(oport); // find the logical (PE,port) pair
tvcTerms = lookupTV C(PE, logOutPort); // find statically specified TVC terms
for (i ∈ InputPorts) {

dataElements= retrieveElements(i); // retrieve incoming data elements
/*use TVC to identify the causative subset */
causativeInput= filter(tvcTerms, dataElements);
causList.add(causativeInput);

} return causList;
}

Fig. 3. Data Provenance Reconstruction Algorithm

Assuming that all elements of all data streams are persisted, deriving the set of input
causative data sample is a fairly straightforward process captured by the simple high
level pseudo-code in Figure 3. Recursive application of this pseudo-code enables the
reconstruction of data dependencies at progressively upstream points in the processing
graph.

2.1 Challenges in the Practical Application of Model-Based Provenance

Applying the generic TVC description above to an actual stream computing environ-
ment, however, gives rise to two practical challenges:

– Intermediate Stream Persistence and the Resulting Storage Load: Streaming sys-
tems supporting data provenance require the data elements of each stream to be per-
sisted. The TVC framework is no exception. Let Om, In denote the stream flowing
between output port m and input port n. To reconstruct the entire data provenance
along the entire path for ECG in Figure 2, the system must store both the incoming
ECG samples (O1, I2) and all the intermediate streams (O13, I8, O13, I10, O25, I45,
O24, I41). The persistence of high volume data streams is already known to be a
potential performance bottleneck for state of the art database systems. In [12], the
authors show both analytically and experimentally that the persistence of Electro-
cardiogram data streams with a state of the art database system could only scale up
to a few hundreds of patients; capturing data provenance further acerbates the prob-
lem by causing a multiplicative increase in the stream insert rate on the backend
storage system. Conceptually, we require an enhanced solution that can eliminate
this requirement for storing every intermediate data stream.

– Granularity Mismatch of Output and Input units for a Data Stream: Consider a
pair PE1 and PE2 of PEs where the output of PE1 results in a stream that is one
of the input streams of PE2. In loosely-typed or extensible systems, it is entirely
possible that the granularity at which PE2 consumes streaming elements differs
from the granularity at which PE1 generates streaming elements. This difference
may occur for two distinct reasons:
• The ‘data type’ of the elements produced by PE1 and those consumed by

PE2 need not be identical. In many systems that permit type extensions and



258 A. Misra et al.

Fig. 4. Role of TEs vs. SEs in a generic stream-based analytic infrastructure. (The TE → SE
mapping can be either one-one, one-many or many-one.)

inheritance (e.g., Tribeca [14]), and where stream bindings are based upon
type-based subscriptions (e.g., SPC [2]), downstream PEs may bind to any out-
put PE that produces the specific data type or its super-type (i.e., the consumed
data is only part of the produced data element.) In most cases, the child PE
merely consumes a sub-set of the data elements produced by a parent PE. As
an example, PE1 may be producing a person’s ‘vitalsigns’ data type (which
contains the elemental types: blood pressure (BP), heart rate and SpO2), while
PE2 may be using only the BP values; data reconstruction for a provenance
query should then expose only the BP data.
• PE1 may package multiple elements of a given data type into a single, larger

transport element (TE), as this promotes more efficient transport of data within
the processing runtime, by amortizing the transport-layer overhead over multi-
ple data elements1, especially when an individual data element may correspond
to a sample of only a few bits. Figure 4 illustrates this for ECG signals that are
collected in variable-sized TEs. This results in a potential incompatibility be-
tween the units of data produced by PE1 and the unit of data consumed by
PE2. As an example of this, PE1 may be an ECG PE that produces TEs con-
taining a variable number of ECG ‘samples’, while PE2 is a QRS detector
PE that produces a QRS value based on the ECG samples in the last 60 sec-
onds. Let’s assume that PE2 assumes an input rate of 1 TE (comprising 5 ECG
samples) every 5 seconds, and therefore 12 TEs are used. Then, the TVC rule
O(t) ← I(i − 12, i) captures the provenance of QRS outputs in PE2. What
if we replace PE1 with a PE′

1 that uses a different rate, generating, say, one
TE (comprising 1 sample) every 1 sec? How does this innocent change af-
fect provenance? It is not hard to see that our TVC rule would now need to

1 This issue does not arise in more restrictive systems, such as Aurora [1], where data units are
both defined and transported as fixed tuples.



Advances and Challenges for Scalable Provenance in Stream Processing Systems 259

change to O(t)← I(i−60, i)! Ideally, the provenance design should allow the
TVC relationship specification to remain invariant of the specific granularity at
which the data elements arrive at its input ports (as different ‘parent’ PEs can
provide varying transport encapsulations of the data elements).

The above examples demonstrate that, in terms of data provenance, it does not
suffice to focus our attention solely on models that describe the output/input de-
pendencies within a single PE. Additional techniques are needed to capture the
discrepancies that might arise between the units in which the data is produced by
the parent PE and in which the data is consumed by the receiving PE.

3 Looking towards the Future: The CMIR Data Provenance
Framework

We now propose a novel approach to provenance for stream-based environments that
preserves the explicit model-based dependency specification of the TVC approach, yet
does not require the persistence of all intermediate streams (but perhaps, only a smaller
set of streams). The new approach, called Composite Modeling With Intermediate Re-
play (CMIR), aggregates a cluster of PEs into a virtual PE, such that only streams that
act as either input to or are output by the virtual PE are persisted. Moreover, the TVC
relationships are then defined in terms of the output and input streams of the virtual PE,
thus enabling the set of causative elements of input streams (of the virtual PE) to be
determined for any given output stream element. The individual ‘real’ PEs, and their
associated bindings, within such a virtual PE, are opaque to this model-based prove-
nance framework, which treats the virtual PE as a ‘black box’. The greater the size
of the cluster, the smaller the number of streams that become ‘external’ to the virtual
PE, thereby reducing the storage burden. Figure 5 illustrates the concept of CMIR-
based provenance–in this case, the provenance relationships are captured over the out-
put and input streams of PEV 1, a virtual PE defined by aggregating the ‘real’ PEs,
{PE1, PE2}.

The process of virtualizing a group of PEs must also be supplemented by a mecha-
nism that recreates, on-demand, the streams internal to the virtual PE, since data prove-
nance inherently demands the reconstruction of data elements along the entire path of
a specific processing graph. Our approach for this involves the use of a replay mech-
anism. To achieve this, one firstly requires the knowledge of the internal structure of
the virtual PE, including the various real PE instances and the associated stream bind-
ings. The dynamic provenance information must be extended to capture the association
between the virtual PEs and the ’real’ PEs.

The bigger challenge arises from the potential statefulness of the real PEs; such state-
fulness implies that the set of output stream objects produced by a PE will depend not
only on its fixed processing logic, but also its current internal or external state. For
CMIR, each individual PE must be provenance-aware–i.e., it must be responsible for
checkpointing its internal state to the provenance store, and, conversely, for recreating
its internal state based on such retrieved historical data. In the TVC model, the state of
each individual PE is captured in provenance metadata externalized to the provenance
infrastructure (typically, by annotating the state within the output stream elements).



260 A. Misra et al.

Fig. 5. The CMIR Framework and the Use of Virtual PEs

However, in the CMIR model, PEs internal to a virtual PE are not externalizing that
metadata, so relevant state must be externalized in this way. In addition to such check-
pointing, a CMIR based provenance system must also have a Replay component that
dynamically instantiates, within the runtime, the set of PEs (along with their corre-
sponding state evolution) corresponding to a virtual PE.

3.1 Challenges in CMIR-Based Provenance System Design

While the application of a CMIR-based solution for Century is still in its initial design
phase, we are already aware of a few challenges that we must address. In particular, two
very interesting open challenges are:

– Models for Persisting State: To support accurate replay of a PE’s internal logic,
the CMIR framework requires the persistence of the PE’s internal state. Our ini-
tial thoughts are to have the provenance system treat this ‘state information’ as an
opaque byte-stream, implying that each PE has the freedom to generate its own cus-
tom representation of its own state. It is, however, likely that the state information
of the vast majority of PEs is likely to contain some common objects (examples of
such likely state objects include command line arguments, the PE’s load, the IDs of
the individuals whose streams are being monitored, etc.); in such a situation, it may
be worthwhile to define a more structured format for the object state. Moreover,
it may also be desirable that this state representation lend itself easily to partial
changes (as state change is often incremental), thereby allowing a PE to express its
evolving state to the Provenance storage infrastructure in a more efficient fashion.
The issue of appropriate representation formats for such state information, which
balance efficient storage and easy reconstruction, appears to be an open research
question.



Advances and Challenges for Scalable Provenance in Stream Processing Systems 261

– Techniques for Composing Provenance Dependencies: The use of virtual PEs
within the CMIR framework implies the need for the system to be aware of the
output-input dependency relationships at the virtual PE-level. Virtual PEs are, how-
ever, merely a runtime artifact of the provenance system; the basic TVC-style re-
lationships will continue to be expressed for each individual PE (as individual PE
developers shall specify the dependency logic of only their authored PEs). The
provenance system must thus programmatically cascade the TVC relationships of
individual PEs to derive the ‘macro’ dependency relationships of the virtual PE.

An interesting question that arises here relates to what types of dependencies
are composable and what aren’t. As a simple example, a time interval-based de-
pendency primitive is composable in a fairly-straightforward fashion. If PE1 has a
time based relationship O11(t) ← I11(t − 10, t) and PE2 has also a timed based
relationship O21(t) ← I21(t − 5, t), then as shown in Figure 5 the composed rule
for the virtual PE PEv1 is O21(t) ← I11(t − 15, t). However, other primitives of
the basic TVC model do not lend themselves to such relationship cascading. For
example, if PE2 has a value-dependent relationship, such that O21(t) depends on
the last 10 values generated by PE1 with ‘attr1 > 10’, while PE1 has the same
time based relationship as before, then the input-output relationship of the virtual
PE can no longer be expressed using the primitives of the basic TVC model.

This example illustrates the central role that the choice of primitives in the de-
pendency model have on the feasibility of deriving dependency relationships for
the virtual PEs. Accordingly, we need to develop an enhanced composable prove-
nance dependency model, such that its primitives, while being adequate expressive,
are ‘closed’ (in set-theoretic terms) under the operation of cascading. The issue of
cascading is further complicated by the fact that, in many applications and scenar-
ios, provenance is not used simply for backward reconstruction of data elements in
a processing graph, but for forward reconstruction as well. As an example based on
our own experiences with Century, a medical stakeholder who detects a faulty ’ar-
rhythmia’ analysis for a given patient may need to look ‘downstream’ and cleanse
the system of faulty alerts generated as a result of this incorrect intermediate value.
To support such ‘forward provenance’ semantics, the primitives of the provenance
specification language must also be reversible (even if they are not very precise).
Overall, we believe that the development of a set of expressive provenance primi-
tives, with the necessary composable and reversible properties, constitutes an im-
portant open problem for stream-based provenance.

4 Resolving Granularity Differences between Stream Data
Producers and Consumers

In Section 2, we illustrated how discrepancies in the granularity of stream elements
produced by PEs, and the elements consumed by other PEs, directly influence our abil-
ity to accurately apply model-based provenance across PEs. One alternative to address
this problem has already being hinted in Section 2. Instead of associating a single TVC
rule for a particular PE, one can associate a set of rules, one for each output stream
granularity (of the parent PE) that is known a priori. Unfortunately, this is a bad design



262 A. Misra et al.

choice for extensible stream systems, where new PEs, data types or stream encapsu-
lations (containing the data type desired by a consuming PE) may become part of the
stream computing infrastructure at any point; in such systems, the behavior of potential
suppliers of specific data types cannot be predicted at PE design time. There are two
other alternative, and better, design choices available:

– We may require the data types (and super-type) definitions to be externalized in a
global type repository, with stream consumption by PEs being rigidly enforced to
observe such type definitions. In such a system, a PE must indicate the exact data
type, say DTc, that it consumes on any input port, and the runtime must then en-
sure that this particular PE is able to receive only that exact data (i.e., for a parent
PE that generates data elements belonging to data type DTs that is a super-type of
DTc, the runtime must eliminate all extraneous data attributes and fields in DTs,
before making only DTc available to the consuming PE). Such a strongly-typed
system may become cumbersome for an open and extensible streaming infrastruc-
ture, where different organizations may define their own PEs, each of which may
utilize multiple elements/fields within, or straddling different, data ‘types’.

– Alternately, we can require the specification of a separate set of ‘mapping functions’
that perform the conversion between data elements of an output port and the data
elements consumed by an input port. For flexibility, such mapping functions must
be user-definable, thus supporting arbitrary mappings. Each stream binding (i.e.,
output, input) port combination is associated with one such function. Conceptually,
such a mapping can itself be viewed as a TVC-style dependency rule, applied to
an ‘invisible PE’ that simply transforms the data output by the stream’s source to
the data elements consumed by the stream’s sink. This mapping function captures
the discrepancy arising out of either inexact matches between the data ‘types’ or
different TE encapsulations at the transport layer.

Either approach allows us to separate the TVC provenance logic (which uniquely
captures the internal data dependencies of an individual PE) from the data element
conversion logic (which is a function of the data formats and encapsulation, rather than
a PE’s processing logic). However, an implementation of either approach must choose
between proactive vs. reactive conversion: the mapping from output to input element
granularity may be performed either proactively (when elements are transported within
the runtime) or reactively (in response to data provenance queries). Both approaches
involve tradeoffs between the processing load and the resulting complexity of the data
storage system, and thus require further investigation.

4.1 Granularity Resolution in Current Century Implementation

Century’s current implementation is based on the second solution, namely the use of
‘mapping functions’ that convert output elements transported by the SPC runtime to
input elements consumed by downstream PEs. In SPC, data is transported within the
runtime in units known as Stream Data Objects (SDOs)–each SDO thus corresponds
to a single TE. The provenance (TVC) specifications are themselves defined in terms
of the elements (which we call Stream Elements (SEs)) consumed by a PE. Note that
an individual SDO can contain both multiple elements of the same type (e.g., a batch



Advances and Challenges for Scalable Provenance in Stream Processing Systems 263

Fig. 6. Century’s current TVC-based Provenance Architecture. Currently, provenance is tracked
for a specified subset of PEs, and TEs are proactively converted to SEs prior to storage.

of ECG samples) or elements belonging to different data types (e.g., carry both ‘QRS’,
‘ECG’ and ‘BP’ data in the same SDO). Figure 6 shows the resulting component level
architecture of Century’s current provenance architecture design. To provide the needed
SDO→SE conversion, Century currently requires the use of developer-specified ‘con-
version classes’, stored in the class store.

5 Related Work

Provenance support for workflow-based systems has been investigated relatively re-
cently, primarily in the context of scientific workflows. The Karma provenance frame-
work [11] uses a publish-subscribe architecture for capturing and propagating process
and data provenance for data-centric workflows in computational grids. Similarly, the
PreServ provenance solution [9] provides a service for explicitly documenting and stor-
ing the process provenance in scientific experiments. More recently, the CoMaD prove-
nance framework [4] for scientific applications presented an annotation-based approach
reduces the volume of provenance information recorded for a workflow, by allowing
provenance annotations on collections to cascade to child elements. All of these ap-
proaches involve explicit provenance annotations and are thus geared towards transac-
tional systems, where events between workflow components have a much lower rate.

Data provenance has been explored more actively in the context of databases.
The overview paper [15] classifies existing works into two categories, namely, the



264 A. Misra et al.

annotation [8,13] vs. the non-annotation [6] approaches, based on whether, or not, ad-
ditional meta-data are required to compute the provenance of data. The data provenance
problem without the use of annotations has also been studied by Cui et al. [7], Bune-
man et al. [5], and Widom [18]. However, none of the works mentioned here considers
streaming environments or the associated scalability issues.

The relatively limited work on scalable provenance for stream-oriented computing
systems includes an efficient process provenance solution in [16], which focuses on
identifying and storing dependencies among streams (by encoding, as a tree, the IDs of
ancestor streams of a derived stream), rather than the data dependencies for individual
stream elements. Our earlier work in [17] was one of the first to explore a model-based
solution for data provenance in stream computing platforms.

6 Conclusions

We have described the initial implementation of a model-based data provenance solu-
tion (using TVC primitives) within Century, an extensible, high-performance stream
processing system we are building to support online health analytics over medical sen-
sor streams. While a TVC based approach incurs much lower overhead than annotation-
based approaches, its scalability is limited by the resulting need to store elements of all
data streams in persistent storage. To overcome this practical limitation, we proposed
a new provenance architecture, called CMIR, which implements model-based prove-
nance over PE clusters, and uses data replay to recreate stream elements within the
cluster. To support CMIR, the Provenance system has to implement new functions such
as state persistence and recovery, cascaded replay of data streams and automated com-
position of provenance specifications for virtual PEs. This architecture also requires
technical innovations for a) creating useful provenance primitives that are cascadable
and reversible, and b) for mediating differences in the granularity of production and
consumption of data stream elements. We are addressing these challenges in ongoing
work.

References

1. Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., Zdonik, S.: Aurora: A New Model and Architecture for Data Stream Management.
VLDB Journal 2(2), 120–139 (2003)

2. Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King, R., Selo, P., Park, Y., Venkatramani,
C.: SPC: A Distributed, Scalable Platform for Data Mining. In: SIGKDD 2006 Workshop on
Data Mining Standards, Services, and Platforms, pp. 27–37 (August 2006)

3. Blount, M., Davis II, J.S., Ebling, M., Kim, J.H., Kim, K.H., Lee, K., Misra, A., Park, S.,
Sow, D.M., Tak, Y.J., Wang, M., Witting, K.: Century:Automated Aspects of Patient Care.
In: 13th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA 2007) (August 2007)

4. Bowers, S., McPhillips, T., Ludascher, B.: Provenance in Collection-Oriented Scientific
Workflows. Concurrency and Computation: Practice & Experience, special issue on the First
Provenance Challenge (in press, 2007)



Advances and Challenges for Scalable Provenance in Stream Processing Systems 265

5. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations through
views. In: Proceedings of the ACM PODS Conference (2002)

6. Chiticariu, L., Tan, W.C.: Debugging Schema Mappings with Routes. In: Proceedings of the
VLDB Conference (2006)

7. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environ-
ment. ACM Trans. Database Syst. 25(2) (2000)

8. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and Querying
Databases through Colors and Blocks. In: Proceedings of the International Conference on
Data Engineering (ICDE) (2006)

9. Groth, P., Luck, M., Moreau, L.: A protocol for recording provenance in service-oriented
grids. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 124–139. Springer, Hei-
delberg (2005)

10. Hildrum, K., Douglis, F., Wolf, J.L., Yu, P.S., Fleischer, L., Katta, A.: Storage optimization
for large-scale distributed stream-processing systems. ACM TOS 3(4), 1–28 (2008)

11. Simmhan, Y.L., Plale, B., Gannon, D., Marru, S.: Performance Evaluation of the Karma
Provenance Framework for Scientific Workflows. In: International Provenance and Annota-
tion Workshop (IPAW) (May 2006)

12. Sow, D., Lim, L., Wang, M., Kim, K.H.: Persisting and querying biometric event streams
with hybrid relational-XML DBMS. In: Proceedings of the International Conference on Dis-
tributed Event-Based Systems (DEBS), pp. 189–197 (June 2007)

13. Srivastava, D., Velegrakis, Y.: Intensional associations between data and metadata. In: Pro-
ceedings of the ACM SIGMOD Conference, pp. 401–412 (June 2007)

14. Sullivan, M., Heybey, A.: Tribeca: A System for Managing Large Databases of Network
Traffic. In: Proceedings of the 1998 USENIX Annual Technical Conference (June 1998)

15. Tan, W.C.: Provenance in Databases: Past, Current, and Future. IEEE Data Eng. Bull. 30(4),
3–12 (2007)

16. Vijayakumar, N., Plale, B.: Towards Low Overhead Provenance Tracking in Near Real-Time
Stream Filtering. In: International Provenance and Annotation Workshop, IPAW (May 2006)

17. Wang, M., Blount, M., Davis, J., Misra, A., Sow, D.: A Time-and-Value Centric Provenance
Model and Architecture for Medical Event Streams. In: ACM HealthNet Workshop, pp. 95–
100 (June 2007)

18. Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In:
Proceedings of CIDR (2005)


	Advances and Challenges for Scalable Provenance in Stream Processing Systems
	Citation

	Advances and Challenges for Scalable Provenance in Stream Processing Systems
	Introduction
	The TVC Model for Century and Resulting Limitations
	Challenges in the Practical Application of Model-Based Provenance

	Looking towards the Future: The CMIR Data Provenance Framework
	Challenges in CMIR-Based Provenance System Design

	Resolving Granularity Differences between Stream Data Producers and Consumers
	Granularity Resolution in Current Century Implementation

	Related Work
	Conclusions
	References


