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I. INTRODUCTION

This paper is concerned with decentralized planning and

scheduling where the information for decision making re-

sides within local agents. When considering a decentralized

approach, the goal is not primarily on achieving global

optimality. For instance, [Greenstadt et al. 2006] studies the

tradeoff in the Distributed Constraint Optimization (DCOP)

problem on efficiency, privacy and optimality. In principle,

even if the problem size does allow for a centralized ap-

proach, there is still a heavy penalty on the excessive sharing

of information. This penalty is a combined consequence of

issues such as information security/privacy. Furthermore, if

response time is critical, the network communication/latency

time becomes a limiting factor. The alternative extreme is

to have a fully decentralized scheme which may also not be

ideal in terms of excessive negotiations (in terms of number

or size of messages) needed to obtain global consistency.

An interesting research challenge is to derive a reasonable

balance between the two extreme approaches which best

suits the problem to be tackled.

This paper is primarily concerned with a fairly generic

multi-agent route planning and scheduling problem in logis-

tics, where each agent manages its own set of jobs and is

responsible for fulfilling them (via defining their routes and

schedules). Conflicts may arise since agents need to share

common network resources. Each agent seeks to minimize

its local performance function and the goal is for agents

to jointly derive a conflict-free solution that minimizes

the global function, which is the sum of agent objective

functions.

When deciding on how agents should interact with one

another, an important criterion which is often overlooked

in the literature is the relationships (or level of coupling)

between two or more agents. This paper seeks to establish

an effective measure of the coupling among agents managing

jobs that compete for network resources. Depending on the

level of coupling between agents, a hybrid conflict resolution

method that involves coalition formation and distributed con-

straint optimization is proposed to attain an effective balance

between communication efficiency, privacy and optimality.

Some examples of applications of our methodology in-

cludes convoy movement planning, [Chardaire et al. 2005]

and movement planning of AGVs [Lou et al. 2009] and

other transportation problems that have constraints either im-

posed by the transportation mode itself such as in rails sys-

tems or by the application context due to capacity constraints

such as taxi-route planning at airports [Mors et al. 2009].

In this paper, we discuss the application of our proposed

solution approach effectively to a real scenario where agents

manage the movement of convoys. In this application, agents

are assigned sets of convoys to manage, naturally decom-

posed into sets by means of their missions. The convoy

movement problem naturally fits the decentralized opti-

mization problem framework proposed due to the capacity

restriction on roads not to have more than one convoy at any

one time to avoid congestion.

II. PROBLEM DEFINITION

The unique property of the routing and scheduling prob-

lem addressed in this paper is that the underlying transporta-

tion network is considered a resource. Being a resource there

is a constraint in terms of capacity on the utilization of any

part of the network over a specific period of time. This ca-

pacity can be defined as an integer value or could be limited

to a value of one as in papers [Thangarajoo et al. 2008] and

others. This section will present the problem description for

this paper.

The network resource is defined as a directed graph G =
(V,E) with node set V = {v1, v2, ..., vg} and edge set E =
{e1, e2, ..., eh} ⊂ V × V . eq is the arc adjoining v1

q and v2
q .

There exists a set of agents A = {a1, a2, ..., an} where N
denotes the index set of n agents. Each agent i ∈ N holds

a mutually-exclusive set of qi jobs, and each job j ∈ Qi

consists of a start node sij ∈ V and a destination node

dij ∈ V . For simplicity, let Q denote the index set for jobs.

For each agent i, αij denotes the starting time and βij

denotes the route of job j from its start to destination node.

Route βij is a sequence of edges (eij1
, eij2

, ..., eijw
) such

that eijv
and eijv+1

are connected for 1 ≤ v ≤ w − 1. Let

C(βij) be time taken to execute the route βij , i.e.
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C(βij) =
w∑

v=1

L(eijv
)

min{pij , S(eijv
)} + γ

w−1∑
v=1

T (eijv
, eijv+1

)

(1)
For the first term of the equation, L(eijv

) is the length of

edge eijv
and pij is the speed of job j of agent i. S(eijv

)
is the maximum speed allowed on edge eijv

.
The second term of the equation captures the fact that

going through short links (edges) with many turns can be

slower than going through a straight long link where γ is a

number reflecting the relative weight given to this term and

T (eijv
, eijv+1

) indicates if there is a turn between the links

eijv
and eijv+1

.
U(αij , βij , e

′) is the time that job j reaches the end of

an edge e′. Hence, U(αij , βij , e
′) = αij + C(βij [eij1

, e′]).
The start and end times of a job are constrained by the

release time rij and the deadline tij . That is, a job starts

(i.e. a convoy departs) after its release time, i.e.

αij ≥ rij (2)

Similarly, the job finishes at (i.e. convoy reaches the end

of e” the last edge of the sequence) its destination before

its deadline, i.e.

U(αij , βij , e”) ≤ tij (3)

The non-overlapping time constraint between any two

jobs is defined as: for any two agents g �= h ∈ N and

two respective jobs u, v ∈ Q, (eguk
, e′, egul

) ⊆ βgu and

(ehvk
, e′, ehvl

) ⊆ βhv , we have,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U(αgu, βgu, e′) + lgu+ρ

min{pgu,S(egul
)} ≥ U(αhv, βhv, ehvk

)

if U(αgu, βgu, eguk
) ≤ U(αhv, βhv, ehvk

)
U(αhv, βhv, e′) + lhv+ρ

min{phv,S(ehvl
)} ≥ U(αgu, βgu, eguk

)

otherwise.
(4)

where ρ is the minimum physical distance between any

two jobs, lgu is the length of job u from agent g and

U(αgu, βgu, e′) is the time taken for job u of agent g to

reach edge e′, U(αgu, βgu, eguk
) is the time required for

the job g from agent u to reach the end of the edge eguk
.

Therefore, U(αgu, βgu, eguk
) = αgu + C(βgu[egul

, eguk
])

where βgu[egul
, eguk

]) in the subsequence of the route

βgu[egul
, eguk

]) = (egul
, egul+1,...,eguk−1

, eguk
). This con-

straint in essence limits the occupancy of an arc to one job at

any one time. This constraint can be generalized to limit the

simultaneous occupancy of an arc to a prescribed maximum

capacity.
The local agent subproblem is defined as follows: for each

agent i , given αi = {αi1, ..., αin}, βi = {βi1, ..., βin}, the

goal is to find vectors αi and βi minimizing:

F1(αi, βi) = max
j∈Q (αij + C(βij)) − min

j∈Q αij . (5)

The goal of the problem is to minimize the global objec-

tive function, which is the sum of the individual local agent

objectives, i.e. to find vectors αij and βij minimizing:

F2(αij , βij) =
N∑

i=1

(max
j∈Q (αij + C(βij)) − min

j∈Q αij). (6)

III. RELATED WORK

Coalition formation provides a natural option to resolve

the conflicts between agents. Coalition formation works well

when agents are tightly coupled, since conflicts are resolved

in a centralized fashion through the formed coalition. This

also means that agents need to send their information to a

central server, thereby compromising on information privacy.

While coalition serves to resolve conflict, unchecked or

excessive coalitions will lead to the loss of the benefits

of solving the problem in a decentralised manner in the

first place. Taken to the extreme, when all agents form a

single coalition, we in fact get the fully centralized approach.

The study by [Kutanoglu & Wu 2007] analyzes the size,

type, and timing of coalitions in a multi-agent production

scheduling problem. The possibility of achieving a high-

quality schedule with a reasonable number of iterations is

investigated by controlling the coalitions performed.

An alternative to coalition formation in conflict resolution

is for agents to negotiate and compromise on local objec-

tives. Negotiation is less efficient when the level of coupling

between agents is tight, since an excessive amount of infor-

mation may need to be sent across agents to resolve conflicts.

[Cox and Durfee 2003] for instance deals with identifying

the synergy between plans of hierarchical planning agents.

Coordination and agent planning are intertwined in

[Mailler & Lesser 2004] to provide a general method to

solve a DCOP, called OptAPO (Optimal asynchronous par-

tial overlay). It involves improving the value of the sub-

problem owned by each agent by mediation.

IV. SOLUTION APPROACH

As discussed above, when individual agent plans are

conflicting, there are generally two categories of methods to

resolve conflict - coalition formation and what is generally

categorized as non-coalition formation methods. While both

coalition and non-coalition methods have their own strengths

and weaknesses; in general coalition formation methods

perform better when the relationship between agents are

stronger. In our problem context, this relationship is in

terms of overlapping network resource requirements and

coinciding schedules. Ideally thus the level of this form of

inter-relationship between two agents should determine the

choice of method used.

Our proposed solution approach is a hybrid method in-

volving the combination of coalition formation and a non-

coalition method (or more precisely, a DCOP algorithm)

based on agent inter-relationship information. We introduce
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the notion of arc criticality in subsection IV-A, and measure

the inter-relationship (or the level of coupling) between

agents as a function of arc criticality, given in subsec-

tion IV-B. Subsection IV-C describes the logic of decision

making within each agent (that seeks to maximize its own

utility). Subsections IV-D and IV-E describe the coalition

formation and DCOP procedures respectively, and finally

subsection IV-F defines our proposed hybrid framework that

combines coalition formation and DCOP methods to solve

the decentralized route planning and scheduling problem.

A. Arc Criticality

Define C(βij) to be the cost of executing the route βij .

If this is the lowest cost route let it be C ′(βij) which can

also be represented by the start and end nodes C ′(β(vx, vy)
where vx is the start node and vy is the end node. For the

edge in concern er, which is the arc adjoining nodes v1
r

and v2
r , C ′(β(sij , v

1
r) + C ′(er) + C ′(β(v2

r , fij) is the lowest

cost route from the start to the finish node via er.

Before delving into the measurement of the agent

inter-relationships, it is important to define the notion of the

criticality of an arc with respect to an agent, which gives us

an indication of the probability that it is a bottleneck (for

the movement of convoys). More precisely, the criticality

with respect to each job on an arc would be 1 if the arc

falls on the shortest path for that job (moving from its start

to destination). Otherwise, this value would be a fraction

measured by the ratio of the shortest path distance over the

shortest path distance traveled via the specific arc. Hence,

the closer this value tends to one, the higher the probability

that this arc would be chosen as an arc in the agent solution

for performing that job.

Definition 1 (Job Criticality) For each agent i ∈ N
and job j ∈ Qi, define the job criticality σer (i, j) as

σer (i, j) =
C ′(β(sij , fij)

C ′(β(sij , v1
r) + C ′(er) + C ′(β(v2

r , fij)

Definition 2 (Arc Criticality) For each agent i ∈ N ,

define the arc criticality σer (i) as the sum of the job

criticalities:

σer (i) =
qi∑

j=1

C ′(β(sij , fij)
C ′(β(sij , v1

r) + C ′(er) + C ′(β(v2
r , fij)

B. Level of Coupling

The following steps define how the inter-relationships

between agents can be computed.

1) For each arc er and for each agent i, compute the arc

criticality σer (i).

2) For each arc er and for each pair of agents x, y, let

σer (x, y) denote the joint arc criticality between x and

y, which is computed as σer
(x) × σer

(y)
3) For each pair of agents x, y, compute the level of

coupling between x and y, which is the highest value

max σer
(x, y) among all arcs er.

C. Local Solution for Agents

The following pseudo-code gives the logic of decision

making within each agent. It consists basically of 2

modules (components): (1) Routing module and (2)

Scheduling module. Details of this algorithm is given in

[Thangarajoo et al. 2008]. The routing component utilizes a

standard shortest path algorithm (such as Dijkstra). Let the

function SHORTEST-PATH(vi, vj , D), vi, vj ∈ V , D ⊆ E,

compute the shortest path from node vi to node vj without

using the edges in D (which are the bottleneck edges to be

avoided).

procedure AGENT:
1. ∀j ∈ Q, Dj ← {}
2. ∀j ∈ Q, βj ← SHORTEST-PATH(sj , dj , Dj )

3. α ← SCHEDULE-ROUTES(β, r1, ..., rq )

4. obj ← F1(α, β)
5. while iter < maxIterations do
6. D ← UPDATE-LINKS(α, β)

7. ∀j ∈ Q, β′
j ← SHORTEST-PATH(sj , dj , Dj)

8. α′ ← SCHEDULE-ROUTES(β′, r1, ..., rq)

9. obj′ ← F1(α′, β′)
10. if obj′ > obj then do
11. α ← α′

12. β ← β′

13. end if
14. iter ← iter + 1
15. end while
16. output α, β

end procedure

D. Coalition Formation Procedure

The general idea of our proposed hybrid approach is

to form coalitions among agents whose levels of coupling

are high, and to perform conflict-resolution otherwise. In

this paper, we propose a very simple coalition formation

algorithm which involves combining agents whenever the

level of coupling between these agents exceeds a certain

threshold value. Due to the additive nature of arc criticality

and level of coupling defined above, we arrive at the

following proposition.

Proposition 1. When a pair of agents form a coalition, the

level of coupling of the coalition with the adjoining agents

cannot decrease.
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This justifies performing coalitions for all pairs of tightly-

coupled agents in any pairwise order. However, after a

coalition, the level of coupling of the new agent with other

agents proportionally increases, based on the larger number

of tasks in the new agent. To reflect the accurate relationship

between agents, ωxy is defined as

ωxy =
q2

qx × qy
σxy

Hence, our proposed coalition formation algorithm is

given as follows:

1) Set γ, a threshold level for the inter-relationship level

between a pair of agents.

2) Compute ωxy ∀ax, ay ∈ A, x �= y, which indicates the

inter-relationship level between all pairs of agents.

3) While there exist a pair of agents x, y such that

σxyωxy ≥ γ perform the following steps:

a) Form coalition between x and y, creating a new

agent.

b) Remove x and y from set A, and replace with

the new coalition agent.

c) Re-compute ωxy ∀ax, ay ∈ A, x �= y

E. DCOP Procedure

Our proposed method for solving DCOP is OptAPO

[Mailler & Lesser 2004] (which could be replaced with

other methods such as ADOPT). OptAPO has been cus-

tomized to suit the routing and scheduling problem defined

locally for an agent. The output of the DCOP algorithm is

a conflict-free solution among agents (if one exists). The

proposed algorithm can be divided into three parts, namely

initialization, negotiation and reiteration.

During initialization, each agent first constructs an optimal

assignment to its variables using the local search algo-

rithm presented in subsection IV-C above and communicates

the necessary information to a central server. According

to relationships and possible conflicts among agents, the

central server divides the agents into mediation groups

[Mailler & Lesser 2004]. In our routing and scheduling

problem, a possible conflict occurs when two or more agents

share a common link for an overlapping time period.

During the negotiation stage, the agents in each mediation

group resolve their conflicts via a mediation leader. The

mediation leader is the agent with the highest autonomy in

the group. The autonomy of an agent is given as a relative

number to the other agents’ autonomy. [Barber et al. 2000]

and [Scerri et al. 2002] explore the concept of adjustable

autonomy and its relationship to the behavior of agents. As

described in [Lau et al. 2008], the autonomy of an agent

refers to the priority of the agent’s objective over another

when a compromise has to be reached during conflict

resolution.

1) Agents receive the information of the member agents

in their mediation group, and their autonomy values.

2) Within each group, agents send their information to

their mediation leader, which includes its schedules

and routes, its identification and autonomy level, the

release times of its convoys, and its intention to

mediate.

3) The agents which have sent their information to their

mediation leader will set their mediation flag as active.

4) The mediation leader, upon receiving all information

from the group, will perform the mediation to resolve

conflicts between the agents. The starting time of

the convoys are defined by scheduling the convoys

onto their previously defined routes firstly in order

of the autonomy of the agent and secondly by the

individual convoy release time. If any conflicts are

detected during scheduling a particular convoy (with

the set of scheduled convoys), the release time of the

convoy is delayed to avoid the conflict.

5) Similar to the agent’s local solution algorithm, the

mediation leader’s improvement algorithm will focus

on minimizing the objective function. Hence, it will

randomly choose an agent, from the list of related

agents to improve on. The randomly chosen convoy to

re-route could be a convoy from another agent where

the conflict was detected.

6) The final results are sent to the agents.

The reiteration stage involves the agents updating their

respective revised local solutions to the central server who

checks for further possible conflicts and repeating the nego-

tiation stage if necessary:

1) Agents change their mediation status to passive. This

allows them to be involved in another mediation if

necessary.

2) Agents will consolidate the Initialization Information

as defined in the initialization phase and send them to

the central server.

3) If new relationships are formed the process will reit-

erate the negotiation phase

F. Hybrid Framework

Finally, with the above discussion, we present our pro-

posed hybrid framework, which is a 2-stage method that

combines the strengths of the coalition and DCOP method.

In the first stage, we form coalitions among agents based

on their coupling level. This is followed by stage two that

performs conflict-resolution via solving a DCOP.

V. RESULTS

In this section, we show the results of comparison on

large-scale random instances of the convoy routing and

scheduling problem.

A network graph with 1000 nodes was generated with

3000 links. Each agent solves a 5 or 10 convoy routing

and scheduling problem, generated with the coupling for the
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problem measured by the mean (ω) and standard deviation

(STD(ω)).
We compare a spectrum of hybrid approaches by varying

the value of γ from 0.9 ω to 1.2ω. γ = 0 indicates

a centralized approach while γ=2ω will indicate a pure

distributed approach. We show results of comparison on the

quality of solutions (measured by objective F2), efficiency

(measured by CPU time for mediation and local agent search

algorithm), as well as communication efficiency (measured

by the number of messages between agents). From the

standpoint of privacy, the centralized approach represents

the worst approach since all agent information need to be

sent to a central server; while the pure distributed approach

represents the best approach.

Problem Setting Objective CPU Time/s Mess.
Details. γ F2(α, β) Med. Local Sent

Search
Convoys 0 124297 0 152.5 0
/Agent=5 0.9ω 121184 495.91 61 16

ω 139252 524.38 76.3 20
ω = 12.75 1.1ω 121435 467.88 76.3 28
STD(ω) 1.2ω 103470 519.94 61 40

=1.95 2ω 85271 583.11 30.5 58
Convoys 0 239189 0 304 0

/Agent=10 0.9ω 226644 625.86 273.6 10
ω 209782 1718.38 212.8 22

ω = 51.67 1.1ω 191428 1581.77 91.2 40
STD(ω) 1.2ω 169763 1566.56 60.8 52

=5.18 2ω 167301 1804.31 30.4 58

Table I
HYBRID COMPARISON

From the solution quality standpoint, the pure distributed

approach performs best. This is because when two agents

are combined in a coalition, there is a natural loss in

the individual agent objective. Since search is performed

in a distributed fashion, the relevant computation time is

dependent on the size of the largest agent. Hence, local

search CPU time tends to decrease with an increase in γ
values.

We also note a superlinear increase in the number of

messages sent (Mess. Sent) as we increase the value of

γ. The results show that from the standpoint of balancing

communication efficiency and solution quality, the ideal γ
value varies between 1.1ω and 1.2ω.

VI. IMPLICATION OF RESULTS

The results above show that decision support is

required for the convoy routing and scheduling problem

to balance the tradeoff between privacy, communication

efficiency and optimality well. Each mission of convoys

(represented by agents, with their own local objective)

only share information with other agents to avoid conflicts

in their convoys’ movement plan. This is due to the

cost of transferred information between agents. This cost

is measured by the importance given to the proactive

enforcement of communication silence in periods of

tension. Maintaining privacy however has an impact on

communication efficiency. By limiting the information being

transferred, more messages may be required between agents

to maintain an equivalent level of optimality. However,

constraints due to network limitations also common in a

wartime scenario, may eventually lead to optimality being

compromised.
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