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HASBE: A Hierarchical Attribute-Based Solution
for Flexible and Scalable Access Control
in Cloud Computing

Zhiguo Wan, Jun’e Liu, and Robert H. Deng, Senior Member, IEEE

Abstract—Cloud computing has emerged as one of the most
influential paradigms in the IT industry in recent years. Since this
new computing technology requires users to entrust their valuable
data to cloud providers, there have been increasing security and
privacy concerns on outsourced data. Several schemes employing
attribute-based encryption (ABE) have been proposed for access
control of outsourced data in cloud computing; however, most of
them suffer from inflexibility in implementing complex access con-
trol policies. In order to realize scalable, flexible, and fine-grained
access control of outsourced data in cloud computing, in this paper,
we propose hierarchical attribute-set-based encryption (HASBE)
by extending ciphertext-policy attribute-set-based encryption
(ASBE) with a hierarchical structure of users. The proposed
scheme not only achieves scalability due to its hierarchical struc-
ture, but also inherits flexibility and fine-grained access control in
supporting compound attributes of ASBE. In addition, HASBE
employs multiple value assignments for access expiration time to
deal with user revocation more efficiently than existing schemes.
We formally prove the security of HASBE based on security of the
ciphertext-policy attribute-based encryption (CP-ABE) scheme by
Bethencourt et al. and analyze its performance and computational
complexity. We implement our scheme and show that it is both
efficient and flexible in dealing with access control for outsourced
data in cloud computing with comprehensive experiments.

Index Terms—Access control, cloud computing, data security.

I. INTRODUCTION

LOUD computing is a new computing paradigm that
C is built on virtualization, parallel and distributed com-
puting, utility computing, and service-oriented architecture.
In the last several years, cloud computing has emerged as one
of the most influential paradigms in the IT industry, and has
attracted extensive attention from both academia and industry.
Cloud computing holds the promise of providing computing
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as the fifth utility [1] after the other four utilities (water, gas,
electricity, and telephone). The benefits of cloud computing
include reduced costs and capital expenditures, increased op-
erational efficiencies, scalability, flexibility, immediate time to
market, and so on. Different service-oriented cloud computing
models have been proposed, including Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS). Numerous commercial cloud computing
systems have been built at different levels, e.g., Amazon’s
EC2 [2], Amazon’s S3 [3], and IBM’s Blue Cloud [4] are
laaS systems, while Google App Engine [5] and Yahoo Pig
are representative PaaS systems, and Google’s Apps [6] and
Salesforce’s Customer Relation Management (CRM) System
[7] belong to SaaS systems. With these cloud computing sys-
tems, on one hand, enterprise users no longer need to invest in
hardware/software systems or hire IT professionals to maintain
these IT systems, thus they save cost on IT infrastructure
and human resources; on the other hand, computing utilities
provided by cloud computing are being offered at a relatively
low price in a pay-as-you-use style. For example, Amazon’s
S3 data storage service with 99.99% durability charges only
$0.06 to $0.15 per gigabyte-month, while traditional storage
cost ranges from $1.00 to $3.50 per gigabyte-month according
to Zetta Inc. [8].

Although the great benefits brought by cloud computing par-
adigm are exciting for IT companies, academic researchers, and
potential cloud users, security problems in cloud computing be-
come serious obstacles which, without being appropriately ad-
dressed, will prevent cloud computing’s extensive applications
and usage in the future. One of the prominent security concerns
is data security and privacy in cloud computing due to its In-
ternet-based data storage and management. In cloud computing,
users have to give up their data to the cloud service provider
for storage and business operations, while the cloud service
provider is usually a commercial enterprise which cannot be to-
tally trusted. Data represents an extremely important asset for
any organization, and enterprise users will face serious conse-
quences if its confidential data is disclosed to their business
competitors or the public. Thus, cloud users in the first place
want to make sure that their data are kept confidential to out-
siders, including the cloud provider and their potential competi-
tors. This is the first data security requirement.

Data confidentiality is not the only security requirement.
Flexible and fine-grained access control is also strongly desired
in the service-oriented cloud computing model. A health-care
information system on a cloud is required to restrict access of
protected medical records to eligible doctors and a customer
relation management system running on a cloud may allow



access of customer information to high-level executives of
the company only. In these cases, access control of sensitive
data is either required by legislation (e.g., HIPAA) or company
regulations.

Access control is a classic security topic which dates back to
the 1960s or early 1970s [9], and various access control models
have been proposed since then. Among them, Bell-La Padula
(BLP) [10] and BiBa [11] are two famous security models.
To achieve flexible and fine-grained access control, a number
of schemes [12]-[15] have been proposed more recently.
Unfortunately, these schemes are only applicable to systems
in which data owners and the service providers are within the
same trusted domain. Since data owners and service providers
are usually not in the same trusted domain in cloud computing,
a new access control scheme employing attributed-based en-
cryption [16] is proposed by Yu et al. [17], which adopts the
so-called key-policy attribute-based encryption (KP-ABE) to
enforce fine-grained access control. However, this scheme falls
short of flexibility in attribute management and lacks scalability
in dealing with multiple-levels of attribute authorities. We note
that in contrast to KP-ABE, ciphertext-policy ABE (CP-ABE)
[18] turns out to be well suited for access control due to its
expressiveness in describing access control policies.

In this paper, we propose a hierarchical attribute-set-based
encryption (HASBE) scheme for access control in cloud
computing. HASBE extends the ciphertext-policy at-
tribute-set-based encryption (CP-ASBE, or ASBE for short)
scheme by Bobba et al. [19] with a hierarchical structure
of system users, so as to achieve scalable, flexiblem and
fine-grained access control.

The contribution of the paper is multifold. First, we show
how HASBE extends the ASBE algorithm with a hierarchical
structure to improve scalability and flexibility while at the same
time inherits the feature of fine-grained access control of ASBE.
Second, we demonstrate how to implement a full-fledged ac-
cess control scheme for cloud computing based on HASBE.
The scheme provides full support for hierarchical user grant, file
creation, file deletion, and user revocation in cloud computing.
Third, we formally prove the security of the proposed scheme
based on the security of the CP-ABE scheme by Bethencourt et
al. [18] and analyze its performance in terms of computational
overhead. Lastly, we implement HASBE and conduct compre-
hensive experiments for performance evaluation, and our exper-
iments demonstrate that HASBE has satisfactory performance.

The rest of the paper is organized as follows. Section II pro-
vides an overview on related work. Then we present our system
model and assumptions in Section III. In Section IV, we de-
scribe in detail the construction of HASBE and show how it is
used in access control of outsourced data in cloud computing. In
Section V, we prove the security of HASBE and analyze its se-
curity by comparing with Yu et al.’s scheme. Then in Section VI,
we analyze computation complexity of HASBE and evaluate its
performance based on real implementation. Lastly, we conclude
the paper in Section VII.

II. RELATED WORK

In this section, we review the notion of attribute-based en-
cryption (ABE), and provide a brief overview of the ASBE
scheme by Bobba ef al. After that, we examine existing access
control schemes based on ABE.

A. Attribute-Based Encryption

The notion of ABE was first introduced by Sahai and Waters
[20] as a new method for fuzzy identity-based encryption. The
primary drawback of the scheme in [20] is that its threshold se-
mantics lacks expressibility. Several efforts followed in the lit-
erature to try to solve the expressibility problem. In the ABE
scheme, ciphertexts are not encrypted to one particular user as
in traditional public key cryptography. Rather, both ciphertexts
and users’ decryption keys are associated with a set of attributes
or a policy over attributes. A user is able to decrypt a cipher-
text only if there is a match between his decryption key and
the ciphertext. ABE schemes are classified into key-policy at-
tribute-based encryption (KP-ABE) and ciphertext-policy at-
tribute-based encryption (CP-ABE), depending how attributes
and policy are associated with ciphertexts and users’ decryp-
tion keys.

In a KP-ABE scheme [16], a ciphertext is associated with a
set of attributes and a user’s decryption key is associated with
a monotonic tree access structure. Only if the attributes asso-
ciated with the ciphertext satisfy the tree access structure, can
the user decrypt the ciphertext. In a CP-ABE scheme [18], the
roles of ciphertexts and decryption keys are switched; the ci-
phertext is encrypted with a tree access policy chosen by an en-
cryptor, while the corresponding decryption key is created with
respect to a set of attributes. As long as the set of attributes as-
sociated with a decryption key satisfies the tree access policy
associated with a given ciphertext, the key can be used to de-
crypt the ciphertext. Since users’ decryption keys are associated
with a set of attributes, CP-ABE is conceptually closer to tradi-
tional access control models such as Role-Based Access Control
(RBAC) [18]. Thus, it is more natural to apply CP-ABE, instead
of KP-ABE, to enforce access control of encrypted data.

However, basic CP-ABE schemes (e.g., [18]) are far from
enough to support access control in modern enterprise envi-
ronments, which require considerable flexibility and efficiency
in specifying policies and managing user attributes [19]. In a
CP-ABE scheme, decryption keys only support user attributes
that are organized logically as a single set, so users can only
use all possible combinations of attributes in a single set issued
in their keys to satisfy policies. To solve this problem, Bobba
et al. [19] introduced ciphertext-policy attribute-set-based en-
cryption (CP-ASBE or ASBE for short). ASBE is an extended
form of CP-ABE which organizes user attributes into a recursive
set structure. The following is an example of a key structure of
depth 2, which is the depth of the recursive set structure:

ept : , Role : Grad — Student,
D CS, Role : Grad — Stud
{CourscID : 101, Role : TA},
{CourselD : 525, Role : Grad — Student}} .

The above example represents a key structure assigned to a
graduate student in CS department of a university, who is the
TA for course 101 and has enrolled in course 525. It can be
seen that the same attribute can be assigned multiple values,
e.g., the attribute “Role” is assigned value “TA” and “Grad-Stu-
dent” in different sets. This feature renders ASBE more versatile
and flexible in supporting many practical scenarios. In this ex-
ample, the graduate student holding such a private key should
not be able to combine the attribute “Role: TA” with “CourselD:



525” so as to access course grades of other students who enroll
in course 525. Such a feature cannot be implemented with the
original CP-ABE algorithm.

ASBE can enforce dynamic constraints on combining at-
tributes to satisfy a policy, which provides great flexibility
in access control. In the recursive attribute set assigned to
a user, attributes from the same set can be combined freely,
while attributes from different sets can only be combined
with the help of translating items, whose function will be
explained later. Consider attributes for students derived from
courses they have taken. Every student has a set of attributes
(Course, Year, Grade) for each course he has taken. We want
to have a policy “Students who took a course that satisfies
300 < Course < 400 and Year > 2009 and Grade > 3.”
Enforcing such a policy with CP-ABE is difficult, since a stu-
dent could have taken multiple courses and obtained different
grades in them. The encryptor will have to ensure the student
cannot select and combine attributes from different sets to
circumvent the policy. In [19], several possible solutions with
plain CP-ABE are described, but none of them is satisfactory.
However, using ASBE, we can solve the problem simply by
assigning multiple values to the group of attributes in different
sets. For each course the student has taken, he gets a separate
set of values for the attributes (Course, Grade, Year). In this
way, ASBE can enforce efficient ciphertext policy encryption
for situations where existing ABE schemes are inefficient.

Furthermore, ASBE’s capability of assigning multiple values
to the same attribute enables it to solve the user revocation
problem efficiently, which is difficult in CP-ABE. The revoca-
tion problem can be solved easily by assigning different expira-
tion times.

The above desirable feature and the recursive key structure
is implemented by four algorithms, Setup, KeyGen, Encrypt,
and Decrypt:

Setup(d). Here d is the depth of key structure. Take as
input a depth parameter d. It outputs a public key PK and
master secret key MK.

KeyGen(MK, u, A) Take as input the master secret key
MK, the identity of user u, and a key structure A. It out-
puts a secret key SK,, for user u.

Encrypt(PK, M, T) Take as input the public key PK, a
message M, and an access tree 7. It outputs a ciphertext
CT.

Decrypt(CT, SK,,). Take as input a ciphertext CT and
a secret key SK,, for user u. It outputs a message m. If
the key structure A associated with the secret key SK,
satisfies the access tree 7, associated with the ciphertext
CT, then m is the original correct message M . Otherwise,
m is null.

These algorithms are essentially similar to those of CP-ABE,
except some extensions to support recursive key structure.
The public key and the master key of ASBE are extended
from CP-ABE to have components supporting recursive key
structure. For depth d, the corresponding public key component
is hy and f;. The master key is extended by adding a new
secret exponent 3, for depth d. The generated private keys
are also different in ASBE and CP-ABE. There are translating
components that enable attributes translation between different
key sets.

The missing part of ASBE is the delegation algorithm, which
is used in our proposed scheme to construct the hierarchical
structure. We adopt the same four algorithms of ASBE, and ex-
tend ASBE by proposing a new delegation algorithm.

B. Access Control Solutions for Cloud Computing

The traditional method to protect sensitive data outsourced to
third parties is to store encrypted data on servers, while the de-
cryption keys are disclosed to authorized users only. However,
there are several drawbacks about this trivial solution. First of
all, such a solution requires an efficient key management mech-
anism to distribute decryption keys to authorized users, which
has been proven to be very difficult. Next, this approach lacks
scalability and flexibility; as the number of authorized users be-
comes large, the solution will not be efficient any more. In case a
previously legitimate user needs to be revoked, related data has
to be re-encrypted and new keys must be distributed to existing
legitimate users again. Last but not least, data owners need to be
online all the time so as to encrypt or re-encrypt data and dis-
tribute keys to authorize users.

ABE turns out to be a good technique for realizing scalable,
flexible, and fine-grained access control solutions. Yu et al. [17]
proposed an access control mechanism based on KP-ABE for
cloud computing, together with a re-encryption technique for
efficient user revocation. This scheme enables a data owner to
delegate most of the computational overhead to cloud servers.
The use of KP-ABE provides fine-grained access control grace-
fully. Each file is encrypted with a symmetric data encryption
key (DEK), which is in turn encrypted by a public key corre-
sponding to a set of attributes in KP-ABE, which is generated
according to an access structure. The encrypted data file is stored
with the corresponding attributes and the encrypted DEK. If the
associated attributes of a file stored in the cloud satisfy the ac-
cess structure of a user’s key, then the user is able to decrypt the
encrypted DEK, which is used in turn to decrypt the file.

The first problem with Yu et al.’s scheme is that the encryptor
is not able to decide who can decrypt the encrypted data except
choosing descriptive attributes for the data, and has no choice
but to trust the key issuer. Furthermore, KP-ABE is not naturally
suitable to certain applications. An example of such applica-
tions is a type of sophisticated broadcast encryption, where users
are described by various attributes and the one whose attributes
match a policy associated with a ciphertext can decrypt the ci-
phertext. For such an application, a better choice is CP-ABE.

Wang et al. [21] proposed hierarchical attribute-based
encryption (HABE) to achieve fine-grained access control in
cloud storage services by combining hierarchical identity-based
encryption (HIBE) and CP-ABE. This scheme also supports
fine-grained access control and fully delegating computation to
the cloud providers. However, HABE uses disjunctive normal
form policy and assumes all attributes in one conjunctive clause
are administrated by the same domain master. Thus the same
attribute may be administrated by multiple domain masters
according to specific policies, which is difficult to implement
in practice. Furthermore, compared with ASBE, this scheme
cannot support compound attributes efficiently and does not
support multiple value assignments.
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III. SYSTEM MODEL AND ASSUMPTIONS

A. System Model

As depicted in Fig. 1, the cloud computing system under
consideration consists of five types of parties: a cloud service
provider, data owners, data consumers, a number of domain
authorities, and a trusted authority.

The cloud service provider manages a cloud to provide data
storage service. Data owners encrypt their data files and store
them in the cloud for sharing with data consumers. To access
the shared data files, data consumers download encrypted data
files of their interest from the cloud and then decrypt them. Each
data owner/consumer is administrated by a domain authority. A
domain authority is managed by its parent domain authority or
the trusted authority. Data owners, data consumers, domain au-
thorities, and the trusted authority are organized in a hierarchical
manner as shown in Fig. 1.

The trusted authority is the root authority and responsible
for managing top-level domain authorities. Each top-level do-
main authority corresponds to a top-level organization, such as
a federated enterprise, while each lower-level domain authority
corresponds to a lower-level organization, such as an affiliated
company in a federated enterprise. Data owners/consumers may
correspond to employees in an organization. Each domain au-
thority is responsible for managing the domain authorities at the
next level or the data owners/consumers in its domain.

In our system, neither data owners nor data consumers will
be always online. They come online only when necessary, while
the cloud service provider, the trusted authority, and domain au-
thorities are always online. The cloud is assumed to have abun-
dant storage capacity and computation power. In addition, we
assume that data consumers can access data files for reading
only.

B. Security Model

We assume that the cloud server provider is untrusted in the
sense that it may collude with malicious users (short for data
owners/data consumers) to harvest file contents stored in the
cloud for its own benefit.

In the hierarchical structure of the system users given in
Fig. 1, each party is associated with a public key and a private
key, with the latter being kept secretly by the party. The trusted
authority acts as the root of trust and authorizes the top-level
domain authorities. A domain authority is trusted by its sub-
ordinate domain authorities or users that it administrates, but
may try to get the private keys of users outside its domain.
Users may try to access data files either within or outside the
scope of their access privileges, so malicious users may collude
with each other to get sensitive files beyond their privileges. In

/ .
- / :
: Dept: DoD Agency: ;
| DARPA ;
Subset Ag i

. ’ \ S
/ \ \ o
Position: Position:
Director Coordinator

Fig. 2. Example key structure.

addition, we assume that communication channels between all
parties are secured using standard security protocols, such as
SSL.

IV. OUR CONSTRUCTION

In this section, we first present our HASBE scheme, which
extends the ASBE algorithm with a hierarchical user structure.
We then show how HASBE is applied for hierarchical user
grant, data file creation, file access, user revocation, and file
deletion.

A. Preliminaries

Bilinear Maps: Let G, G; be cyclic (multiplicative) groups
of prime order p. Let g be a generator of G. Thene: GX G — Gy
is a bilinear map if it has the following properties:.

* Bilinearity: for all u,v € G and a,b € Z,, e(u®,v*) =

e(u, v)®.

* Nondegeneracy: e(g,g) # 1.

G is called a bilinear group if the group operation and the
bilinear map e are both efficiently computable.

In our HASBE scheme, a data encryptor specifies an access
structure for a ciphertext which is referred to as the ciphertext
policy. Only users with decryption keys whose associated at-
tributes, specified in their key structures, satisfy the access struc-
ture can decrypt the ciphertext.

Key Structure: We use a recursive set based key structure
as in [19] where each element of the set is either a set or
an element corresponding to an attribute. The depth of the
key structure is the level of recursions in the recursive set,
similar to definition of depth for a tree. For a key structure
with depth 2, members of the set at depth 1 can either be
attribute elements or sets but members of a set at depth 2
may only be attribute elements. Consider the example shown
in Fig. 2, where {Dept DoD, Agency DARPA,
Position : Director, Level : 3}, {Position : Coordinator,
Level : 6}} is a key structure of depth 2. It represents the
attributes of a person who is both a director of level 3 for a unit
and a coordinator of level 6 for another unit in the Defense Ad-
vanced Research Projects Agency (DARPA) of the Department
of Defense (DoD).

The key structure defines unique labels for sets in it. For key
structures of depth 2, just an index of the sets at depth 2 is suf-
ficient to uniquely identify the sets. Thus if there are m sets
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at depth 2 then a unique index ¢ where 1 < 7 < m is as-
signed to each set. The set at depth 1 is referred to as set 0.
Using this convention, a key structure of depth 2 can be repre-
sented as A = {Ag., A1, ..., A}, where Ag is the set at depth
1 while A; is the ith set at depth 2, for 1 < i < m. In the
key structure in Fig. 2, {Dept : DoD, Agency : DARPA}
corresponds to Ag, {Position : Director, Level : 3} and
{Position : Coordinator, Level : 6} correspond to A; and
Ag, respectively. Individual attributes inherit the label of the
set they are contained in and are uniquely defined by the com-
bination of their name and their inherited label. For example,
attribute Dept : DoD is defined as (0, Dept : DoD). When
trying to satisfy a given policy, a user may only use attribute
elements within a set, but may not combine attributes across the
sets by default. However, if the encryptor has designated trans-
lating nodes in an access structure, users can combine attributes
from multiple sets to satisfy the access structure, as will be ex-
plained later in the scheme construction as well as in [19].

Access Structure: In our scheme, we use the same tree access
structure as in [19]. In the tree access structure, leaf nodes are
attributes and nonleaf nodes are threshold gates. Each nonleaf
node is defined by its children and a threshold value. Let num,
denote the number of children and %, the threshold value of
node z. An example of the access tree structure is shown in
Fig. 3, where the threshold values for “AND” and “OR” are 2
and 1, respectively.

The above access structure demands that only a director in
DoD or NSA of level larger than 5 can access the data files pro-
tected by the access policy. In CP-ABE schemes, a person who
has private keys corresponding to attributes on the key structure
shown in Fig. 2 would be able to access the data files, which
compromises the security of the access policy in Fig. 3. Such
problems are effectively prevented using attribute-set-based
encryption which forbids combining attributes across multiple
sets.

Let 7., be the access structure rooted at node z and 7
be the access structure rooted at the root node 7i. Without
loss of generality, we consider key structure of depth 2,
A = {Ag, Ay,..., Ay}, where 4;(0 < ¢ < m) is the ith
attribute set and ¢ is the label. We say that A satisfies 7 if and
only if a function 7 (A) returns a nonempty set S of labels. The
function 7 (A) is computed recursively and will be introduced
in the encryption algorithm later. A is said to satisfy 7 if

//'6<\\\\\ ,"/’C> \\\\ <:>The Trusted Authority
g d \\ Q Domain Authority

D Cloud User

/&L Attribute Set

) Attribute

S oy () Domain

Fig. 4. Hierarchical structure of system users.

it contains at least one set A;(0 < ¢ < m) that has all the
attributes needed to satisfy 7 and that the attributes belonging
to multiple sets in A cannot be combined to satisfy 7, except
when there are designated translating nodes in 7. If node =
is a translating node in 7, then if the attribute elements used
to satisfy the predicate represented by the subtree rooted at
x belong to a different set in A than those used to satisfy the
predicates represented by the siblings of xz, the decrypting user
is able to combine them to satisfy the predicate represented by
the parent node of x.

Several functions are defined for the purpose of dealing with
the access structure. We define parent(x) as the parent node
of z and index(z) as the index number of node . The function
att(r) is defined only if z is a leaf node and denotes the attribute
associated with the leaf node z in the tree.

B. HASBE Scheme

The proposed HASBE scheme seamlessly extends the ASBE
scheme to handle the hierarchical structure of system users in
Fig. 4.

Recall that our system model consists of a trusted authority,
multiple domain authorities, and numerous users corresponding
to data owners and data consumers. The trusted authority is re-
sponsible for generating and distributing system parameters and
root master keys as well as authorizing the top-level domain au-
thorities. A domain authority is responsible for delegating keys
to subordinate domain authorities at the next level or users in
its domain. Each user in the system is assigned a key structure
which specifies the attributes associated with the user’s decryp-
tion key.

We are now ready to describe the main operations of
HASBE: System Setup, Top-Level Domain Authority Grant,
New Domain Authority/User Grant, New File Creation, User
Revocation, File Access, and File Deletion.

System Setup: The trusted authority calls the Setup algo-
rithm to create system public parameters PK and master key
MK,. PK will be made public to other parties and MK will
be kept secret.

Setup(d = 2) — (PK,MKj). Here d is the depth of the
key structure. We describe the HASBE scheme for key struc-
tures of depth 2, and it can be extended to any depth d. The algo-
rithm selects a bilinear group G of prime order p with generator
¢ and then chooses random exponents «, 3; € Z,, Vi{1,2}. To



support key structure of depth d, ¢ will range from 1 to d. This
algorithm sets the public key and master key as follows:

PK = (6797 h’l = .9’817 fl = gﬁ,

hy = g™, fa=g% »e(g,g)”)
MK, = (/[317/62790)'

Top-Level Domain Authority Grant: A domain authority is
associated with a unique ID and a recursive attribute set A =
{Ao, A, .., Am}, where A; = {(J,.L'J, Qi 25 ees (1,1'7"} with Qi j
being the jth attribute in A; and n; being the number of at-
tributes in A;. When a new top-level domain authority, i.e., DA,
wants to join the system, the trusted authority will first verify
whether it is a valid domain authority. If so, the trusted authority
calls CreateDA to generate the master key for DA, . After get-
ting the master key, DA; can authorize the next level domain
authorities or users in its domain.

CreateDA(PK, MKy, A). This algorithm creates the
master key for top-level DA;. It selects a unique number
ri} for the domain authority, which is also for the set Ay,
and selects 7 random numbers "} € Z,, one for each set
A; € A. Furthermore, it picks a random number rf:} for each
a;;,0 <1 < m,1 < j < n; It computes the master key for
DA, as follows:

(o4)

MKi = (A,D = QT {u} {u}

Dig=g" - H(ai )",

uld . .
Dj;=g" for0<i<m, 1<j<n,
(T(“.}Jrry_(u))

E;=g 2 forlﬁiﬁm) .

In the above master key, F; is for translation from 'rfu} of A;
to 14} of Ay at the translating node. Elements E; and F; can
be used as E;/FE; to translate ri{,u} to 7, ul at the translating
nodes, we will give the details later in the Decrypt algorithm.

New Domain Authority/User Grant: When a new user,
denoted as u, or a new subordinate domain authority, de-
noted as DA, 1, wants to join the system, the administrating
domain authority, denoted as DA;, will first verify whether
the new entity is valid. If true, DA, assigns the new entity
a key structure A corresponding to its role and a unique
ID. Note that A is a subset of A, where A is the key struc-
ture of DA;. In A, every element is labeled the same as it
is in A. For example, A = {University : A, College: B,
{Course : 100, Grade : 80}, {Course: 101, Grade: 85}}
and A = {University : A, {Course: 101, Grade: 85}},
then {Course : 101, Grade : 85} is labeled as set A, in both
A and A, and Course : 101 is labeled as (2, Course : 101).

For a new user u, DA, calls CreateUser(MK;, u, A) to gen-
erate the secret key for this user. Otherwise, if it is a new domain
authority DA, 1, DA; calls CreateUser(MK,, DA;,1,A) to
generate the master key for DA, ;. Then DA, can authorize
the lower level domain authorities or users in its domain.

CreateUser(MK;, u, A). This algorithm uses the master key
of DA,, which is for the key structure A, and a new key struc-

Header body
A A
4 A4 )
ID CcT {DataFile}pek

Fig. 5. Format of a data file on the cloud.

ture ﬂ, which is a set of A. The master key of DA; is in the
form MK, = (A,D,‘Diyj,Déyj for0 < i <m1 < j<
1, By for 1 <4 < m). As in the CreateDA algorithm, this al-
gorithm randomly chooses a unique number 71} for each user
or domain authority, a random number 77, "} foreachset A; € A,
and a random number 7‘if]'-'} foreacha; ; € A. Then it computes
the new secret key as

SK, or MK, 4
o ~rar ~u ~{ul
_ (AD -D. f{{ }.,Di.j — Di,j . gTj 3 '

Dl =D . g7 fora, eh
i, — g g OT a4 4 3

~ ";{"’}_1_,;{”’} N ~
Ei:Ei'fZ K fOI‘AiE/q .

The new secret key SK,, or MK, is a secret key for the
key structure A. Because the algorithm rerandomizes the key,
a delegated key is equivalent to one received directly from the
trusted authority.

New File Creation: To protect data stored on the cloud, a
data owner first encrypts data files and then stores the encrypted
data files on the cloud. As in [16], each file is encrypted with a
symmetric data encryption key DEK, which is in turn encrypted
with HASBE. Before uploading to the cloud, a data file is pro-
cessed by the data owner as follows:

* Pick a unique ID for this data file.

* Randomly choose a symmetric data encryption key
DEK & x, where % is the key space, and encrypt the data
file using DEK.

* Define a tree access structure 7 for the file and encrypt
DEK with 7 using algorithm Encrypt(PK, DEK, 7) of
HASBE which returns ciphetext CT'.

Finally, the encrypted data file is stored on the cloud in the

format as shown in Fig. 5.

Encrypt(PK, M, 7). M is the message to encrypt. In the
New File Creation operation, M is the DEK of a data file. 7
is the tree access structure. Encrypt algorithm is the same as
that of ASBE [19]. The algorithm associates a polynomial ¢,
with each node « in the tree 7, which is chosen randomly in a
top-down manner from the root node 2. For every node = in 7,
the degree of ¢, is set to be one less than the threshold value
of 2 and denoted as d,,. If z is a leaf node, then d,, is set to 0.
For each nonroot node , ¢-(0) = Gparent(x)(index(z)). The
other d,, points of g,, are randomly chosen. For the root node I?,
qr(0) = s, where s € Z,, is a random number, and the other dg
points of qr are randomly selected. This algorithm computes
the Ciphetext as follows:

CT= +(T,6:M ceg, ) C=hs, C=h5,Vy € Y :
Cy=g"". C)=H (att(y)™",
Vo e X : ém:h,gvr(“))



where Y denotes the set of leaf nodes in 7, X denotes the set
of translating nodes in the access tree 7.

User Revocation: Whenever there is a user to be revoked,
the system must make sure the revoked user cannot access the
associated data files any more. One way to solve this problem is
to re-encrypt all the associated data files used to be accessed by
the revoked user, but we must also ensure that the other users
who still have access privileges to these data files can access
them correctly.

HASBE inherits the advantage of ASBE in efficient user
revocation. We add an attribute cxpiration_time to a user’s
key, which indicates the time until which the key is considered
to be valid. Then the policy associated with data files can
include a check on the cxpiration_time attribute as a numer-
ical comparison. For example, assuming a user v has a key
with cxpiration_timeX and a data file whose access policy
is associated with cxpiration_timcY’, then u can decrypt this
data file only when X > Y and the rest of the policy matches
u’s attributes. This numeric comparison of attributes can be
implemented by the “bag of bits” as in [18]. In practice, the
validity period of sensitive attributes must be kept small to
reduce the window of vulnerability when a key is compromised,
for example, a day, a week, or a month [19]. With this feature,
we allow multiple value assignments to the cxpiration_time
attribute so as to add a new expiration value to the existing
key. In this way, we can update user’s key without entire key
regenerating and redistributing at the end of expiration time.
On the other hand, the data owner can change the policy over
data files by updating the cxpiration_time attribute associated
with the leaf node in the access tree. The update of user’s key
and re-encryption of data files can be done as follows:

Key Update. Suppose that there is a user u, who is adminis-
trated by the domain authority DA;. DA; maintains some
state information about «’s key and adds a new value of
cxpiration_time to u’s existing key when it wants to up-
date u’s key. Then DA; computes the secret key compo-
nents corresponding to the expiration_time attribute and
sends them to «. Transmission of the secret key compo-
nents to the user can be accomplished with an out-of-band
channel between DA, and the user uw. While DA; is re-
quired to maintain some state information about user’s key,
DA, avoids the need to generate and distribute the entire
keys on a frequent basis. This reduces the workload on DA;
and saves considerable computing resources.

Data Re-encryption. When the data owner wants to
re-encrypt a data file, he changes the value of the
cxpiration_time attribute in the key policy and com-
putes the new ciphertext components C, and C;, where
y is the leaf node on the access tree corresponding the
cxpiration_time attribute. Then the data owner sends
these new ciphertext components to the cloud and the
cloud service provider can re-encrypt the data file by
simply updating these ciphertext components. So when
re-encrypting a data file, the data owner just needs to
compute the ciphertext components associated with the
cxpiration_time attribute while other parts of the cipher-
text remain unchanged, which effectively reduces the
workload of the data owner. Furthermore, in this process

the cloud just knows the two ciphertext components and
can not get the plaintext of the data file.

File Access: When a user sends request for data files
stored on the cloud, the cloud sends the corresponding ci-
phertexts to the user. The user decrypts them by first calling
Decrypt(CT, SK,,) to obtain DEK and then decrypt data files
using DEK. Decrypt(CT, SK,,) algorithm is as follows:

Decrypt(CT, SK,,). This algorithm accepts ciphetext CT
and user u’s key structure as input. The algorithm first calls
T(A) to verify whether the key structure A in SK,, satisfies
the tree access structure 7 associated with the CT. The func-
tion 7 (A) is performed recursively. For each node z in 7,
there is a set .S, of labels returned by 7,.(A). If A does not
satisfy 7, the algorithm returns null; otherwise the algorithm
picks one ¢ from the set returned by 7 (A), and calls function
DecryptNode(CT, SK,,, £, i) on the root node of T, where #
is a node from 7. DeeryptNode(CT, SK,,, ¢, ) is defined as
follows:

If £ is a leaf node, and if att(t) ¢ A;, where 4, € A, then
DceeryptNode(CT, SK,, ¢, i) = null. If att(t) = a;; € A,
where 4, € A, then DceryptNode(CT, SK,,, . 4)=
e(Di g, Cr)[e(D);,Ch) = elg, )" - 4:(0).

If ¢ is a nonleaf node, then DecryptNode(CT, SK,,, ¢,) is
defined as follows:

* Let By be an arbitrary k; sized set of child nodes z such
that z € B; only if (1) label i € S, or (2) label ¢/ € S,
for some ¢’ # i and z is a translating node. If no such set
exists then return null.

 For each node z € DB, if ¢+ € 5., then call
DecryptNode(CT, SK,,, 2, ¢) and store output in F,.

e For each node z € By, if i/ € S, and i’ # i, then
call DecryptNode(CT, SK,,, z, ') and store output in F.
Then if ¢ # 0, translate F to F, as follows:

F.=c(C..Ei[Ey) - F = c(g. g =,

Otherwise, if ¢ = 0, then translate F’ to F', as follows:

e(C,, Ey) 1
P = ( I3 = e(g,g) ~qz(0).
* Compute [; using polynomial interpolation as follows:
Ay g (0
Ft = HzEBt Fz ",Bz( )’ where Ii/ = 7:77/d(3.’13(2)7B; —

{index(z) : z € D}. So when i = 0, F} =
Jut, . Aut,
e(g,9)" 1) else wheni # 0, F, = e(g,g)" (0,

So the function DecryptNode(CT,SK,, ?,i) on
the root node /2 returns Fgr. If + = 0, then FF =
Frp = e(g,g)"‘{u}'q“(o) = e(g’g)r{”}-s. If i # 0, then
Fp = e(g,g)"v’,{“}‘s and F = e(C,, E;)/Fr = e(g,g)’“(n}'s.

Then the message M can be computed as M =
C - Fle(C,D).

File Deletion: Encrypted data files can be deleted only at the
request of the data owner. To delete an encrypted data file, the
data owner sends the file’s unique ID and its signature on this
ID to the cloud. Only upon successful verification of the data
owner and the request, the cloud deletes the data file.



V. SECURITY PROOF AND DISCUSSION

A. Security Proof

Though HASBE is extended from ASBE by Bobba et al. with
a hierarchical structure using a delegation algorithm similar to
the one described in the CP-ABE scheme by Bethencourt et al.,
we do not use the proof technique by Bobba et al. Instead, we
prove the security of our scheme directly based on the security
of CP-ABE. We show that if there are any vulnerabilities in
the proposed scheme, these vulnerabilities can be used to break
CP-ABE. Thus, HASBE is expected to have the same security
property as CP-ABE, which has been proven to be secure under
the generic bilinear group model and the random oracle model.
A generic security model to be defined below describes inter-
actions between an adversary and an encryption algorithm like
HASBE or CP-ABE. Identical to the model used in CP-ABE,
the security model allows the adversary to query for any private
keys that cannot be used to decrypt the challenge ciphertext.
In CP-ABE and HASBE the ciphertexts are associated with ac-
cess structures and the private keys are identified with attributes.
Thus, the security model requires that the adversary chooses to
be challenged on an encryption to an access structure A* and
can ask for any private key S such that S does not satisfy A*.

1) Formal Security Model: Before giving a formal proof
for the proposed scheme, we first describe the formal security
model for ciphertext-policy ABE schemes. In this model, the
adversary will choose to be challenged on an encryption to an
access structure A* and can ask for any private key S such that
S does not satisfy A*. The formal security model is defined as
follows between an adversary .4 and a challenger C:
* Setup. The challenger runs the Setup algorithm and gives
the public parameters, PK to the adversary.
* Phase 1. The adversary makes repeated private key
queries corresponding to sets of attributes Sp,...,S5,.
The challenger responds by running algorithm CrecatcDA
(Top-level domain) to generate the private key SK; cor-
responding to the attribute set .S;. Or else, the adversary
makes private key queries for a lower-level domain au-
thority (MK; 1) or end users (SK,, ) with the private key
MK; of an upper level domain authority. The challenger
responds by running algorithm CrecatcUscr to generate
the private key.
* Challenge. The adversary submits two equal length mes-
sages M, and M;. In addition, the adversary gives a
challenge access structure A* such that none of the sets
S1,.... 8, from Phase I satisfy the access structure. The
challenger flips a random coin b, and encrypts A} under
A*. The ciphertext CT™ is given to the adversary.
* Phase 2. Phase 1 is repeated with the restriction that none
of the sets of attributes Sy, +1,...,5, satisfy the access
structure corresponding to the challenge.
» Guess. The adversary outputs a guess ¥’ of b.
The advantage of the adversary A in this game is defined as
Pr[p’ = b] — (1/2).

Definition 1: A ciphertext-policy ABE scheme is secure if
all polynomial time adversaries have at most a negligible ad-
vantage in the above game.

Theorem 1: Suppose there is no polytime adversary who can
break the security of CP-ABE with nonnegligible advantage;
then there is no polytime adversary who can break our system
with nonnegligible advantage.

Proof: Suppose we have an adversary A with nonneg-
ligible advantage against our proposed scheme. Using A, we
show how to build an adversary, B, that breaks the CP-ABE
scheme with nonnegligible advantage. The adversary B3 can play
a similar game with the CP-ABE scheme. The CP-ABE secu-
rity model [18] is also composed of four steps: Setup, Phase 1,
Challenge, Phase 2 and Guess. That is to say, 3 can make private
queries during the game to obtain private keys in the CP-ABE
scheme.

« Initialization. The adversary B takes the public key of
CP-ABE PK' = {G,g,h = ¢?, f = g/ . c(g,9)*}, and
the corresponding private key (3, ¢*) is unknown to the
adversary.

+ Setup. The adversary B selects a random number ¢ € 7,
and computes the HASBE public parameters from PK’
as PK = {Gaga hl = .qg'/fl = .ql/gahQ = gtﬂ'/fé:
g c(g,g)*}. That is, the adversary B sets 51 =
and B2 = ¢t - 3. Then the public key PK is given to the
adversary.

* Phase 1. In this phase, 3 answers private key queries. Sup-
pose the adversary B3 is given a private key query for a set S
where S does not satisfy A*. In order to answer the query,
B makes a private key query to CP-ABE challenger for the
same set S twice. As a result, B obtains two different pri-
vate keys:

SK = (_D = g("*")/ﬂ,Vaj € S :
D;=y4"- H((Lj)rj,D; = g”)
SK' = (D = g(a""’/)//g,Vaj es:

3

D; = gT/ -H((L‘,-)T«;,D.’j = gT;)

where a;’s are attributes from S, and r, 7/, 75, 7“3» are
random numbers in Z,.

From SK and SK’, B3 can obtain g(" 7/ by dividing D in
SK with D in SK'. B selects random number ¢;,#; ; € Z,,,
and let 7* = t; — " and 7/ = ¢; ; — r’. Then B can
derive the private key requested by A as MK* = (D =
g(a+7’)/ﬂ’Di’j — gv’* . H(ai,j)’r”'/Dij — g'r” for0 < i <
m,1 < j<n; FB;i= g(v’+'r*)/(tﬁ)7 for 1 <4 < m). Then
the private key is returned to the adversary A.

Note that attribute a; in SK or SK’ may appear multiple
times in MK". The above private key derivation deals
with this issue by randomly selecting ¢; and ¢; ; from Z,,.
If the adversary A requests for a lower-level domain au-
thority’s private key or an end user’s private key, it is noted
that the master key MK of the domain authority DA; can
be obtained by querying CreateDA and CreateUser for
some times (CreatcUscr should be queried for multiple
times when there are multiple layers of domain authori-
ties). Though MK, may contain attributes that satisfy A,
only attributes in S are actually used in CreateUser. It fol-
lows that 5 can answer the adversary’s query by executing



the algorithm CreateUser using the attributes in S only,
and returns the result to A.

Challenge. When A decides that Phase 1 is over, it out-
puts an access structure 7 and two messages My, M, € G,
which it wishes to be challenged. B gives the two messages
to CP-ABE challenger, and is given the challenge cipher-
text CT = (7,0 = My - e(g,9)**,C = h*,\Vy € Y :
Cy = g™, 0 = H(att(y))® ).

Then B computes the challenge ciphertext for A from CT
as: CT* = (7,C = M, - e(g,9)**,C = hj,C =
h3Vy €Y : Oy = g2 Ol = H(att(y))") vz €
X :C, = h¥# ). mCT*, 0, C,, and C!, are readily ob-
tained from CT. Note that ¢,.(0) is a linear combination
of s and other known values, which are determined by the
public access structure. Thus /3 ©) can be computed from
h5 and other known values. Finally, the challenge cipher-
text CT™ is returned to the adversary A.

Phase 2. A issues queries not issued in Phase 1. 5 responds
as in Phase 1.

Guess. Finally, A outputs a guess &’ € {0,1}, and then B
concludes its own game by outputting & . According to the
formal security model, the advantage of the adversary 53
against HASBE is

Advg = |Pr[b=b]—-1/2] = Adv 4.

This means B has nonnegligible advantage against the
CP-ABE scheme, which completes the proof of the
theorem.

|

B. Discussion

In this subsection, we compare our scheme with the one pro-
posed by Yu ef al. [17] on security features in implementing
access control for cloud computing.

1)

2)

3)

Scalability: We extend ASBE with a hierarchical structure
to effectively delegate the trusted authority’s private at-
tribute key generation operation to lower-level domain au-
thorities. By doing so, the workload of the trusted root au-
thority is shifted to lower-level domain authorities, which
can provide attribute key generations for end users. Thus,
this hierarchical structure achieves great scalability. Yu et
al.’s scheme, however, only has one authority to deal with
key generation, which is not scalable for large-scale cloud
computing applications.

Flexibility: Compared with Yu ef al.’s scheme, HASBE or-
ganizes user attributes into a recursive set structure and al-
lows users to impose dynamic constraints on how those
attributes may be combined to satisfy a policy. So HASBE
can support compound attributes and multiple numerical
assignments for a given attribute conveniently. As illus-
trated with the example key structure in Fig. 2 and access
structure in Fig. 3, HASBE can enforce more complex ac-
cess policies than Yu et al.’s scheme.

Fine-grained access control: Based on HASBE, our
scheme can easily achieve fine-grained access control. A
data owner can define and enforce expressive and flexible
access policy for data files as the scheme in [17].

4) Efficient User Revocation: To deal with user revocation in
cloud computing, we add an expiration_time attribute to
each user’s key and employ multiple value assignments
for this attribute. So we can update user’s key by simply
adding a new expiration value to the existing key. We just
require a domain authority to maintain some state infor-
mation of the user keys and avoid the need to generate and
distribute new keys on a frequent basis, which makes our
scheme more efficient than existing schemes.

5) Expressiveness: In HASBE, a user’s key is associated with
a set of attributes, so HASBE is conceptually closer to tra-
ditional access control methods such as Role-Based Ac-
cess Control (RBAC) [18]. Thus, it is more natural to apply
HASBE, instead of KP-ABE, to enforce access control.

VI. PERFORMANCE ANALYSIS AND IMPLEMENTATION

In this section, we first analyze theoretic computation com-
plexity of the proposed scheme in each operation. Then we im-
plement an HASBE toolkit based on the cpabe toolkit devel-
oped for CP-ABE [18], and conduct a series of experiments to
evaluate performance of our proposed scheme.

A. Performance Analysis

We analyze the computation complexity for each system op-
eration in our scheme as follows.

System Setup. When the system is set up, the trusted au-
thority selects a bilinear group and some random numbers.
When PK and M K, are generated, there will be several
exponentiation operations. So the computation complexity
of System Setup is O(1).
Top-Level Domain Authority Grant. This oper-
ation is performed by the trusted authority. The
master key of a domain authority is in the form of
MK; = (R, D, D, , D;J- fora;; € A, B, for A; € A),
where A is the key structure associated with a new domain
authority, A, is the set of A. Let /N be the number of at-
tributes in A, and M be the number of sets in A. Then the
computation of MK; consists of two exponentiations for
each attribute in A, and one exponentiations for every set
in A. The computation complexity of Top-Level Domain
Authority Grant operation is O(2N + M).
New User/Domain Authority Grant. In this operation, a
new user or new domain authority is associated with an at-
tribute set, which is the set of that of the upper level domain
authority. The main computation overhead of this opera-
tion is rerandomizing the key. The computation complexity
is O(2N + M), where N is the number of attributes in
the set of the new user or domain authority, and M is the
number of sets in A.
New File Creation. In this operation, the data owner needs
to encrypt a data file using the symmetric key DEK and
then encrypt DEK using HASBE. The complexity of en-
crypting the data file with DEK depends on the size of the
data file and the underlying symmetric key encryption al-
gorithm. Encrypting DEK with a tree access structure 7
consists of two exponentiations per leaf node in 7 and one
exponentiation per translating node in 7. So the compu-
tation complexity of New File Creation is O(2|Y| + | X]|),
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TABLE 1
COMPARISON OF COMPUTATION COMPLEXITY

Operation | HASBE Yu’s Scheme [17]
System Setup | O(1) oY)
Top-level DA Grant | O(2N+M)
User/DA Grant | O(2N+M) o(|1))
File Creation | O(2|Y|+ |X|) | O(|1])
File Deletion | O(1) o(1)
User Revocation | O(1) oY)

where Y denotes the leaf nodes of 7 and X denotes the
translating nodes of T .

User Revocation. In this operation, a domain authority just
maintains some state information of users’ keys and as-
signs new value for expiration time to a user’s key when
updating it. When re-encrypting data files, the data owner
just needs two exponentiations for ciphertext components
associated with the expiration_time attribute. So the com-
putation complexity of this operation is O(1).

File Access. In this operation, we discuss the decrypting
operation of encrypted data files. A user first obtains DEKs
with the Decrypt algorithm and then decrypt data files
using DEKSs. We will discuss the computation complexity
of the Decrypt algorithm. The cost of decrypting a cipher-
text varies depending on the key used for decryption. Even
for a given key, the way to satisfy the associated access
tree may be various. The Decrypt algorithm consists of
two pairing operations for every leaf node used to satisfy
the tree, one pairing for each translating node on the path
from the leaf node used to the root and one exponentia-
tion for each node on the path from the leaf node to the
root. So the computation complexity varies depending on
the access tree and key structure. It should be noted that the
decryption is performed at the data consumers; hence, its
computation complexity has little impact on the scalability
of the overall system.

File Deletion. This operation is executed at the request of
a data owner. If the cloud can verify the requestor is the
owner of the file, the cloud deletes the data file. So the
computation complexity is O(1).

Computation complexity of each system operation is shown
in Table I, in which NV denotes the number of attributes in the
key structure, { is the attribute set of the data file, ¥ is the set
of leaf nodes of the access tree or policy tree, and X is the set
of translating nodes of the policy tree.

B. Implementation

We have implemented a multilevel HASBE toolkit based
on the cpabe toolkit (http://acsc.csl.sri.com/cpabe/) developed
for CP-ABE [18] which uses the Pairing-Based Cryptography
library (http://crypto.stanford.edu/pbc/). Then comprehensive
experiments are conducted on a laptop with dual core 2.10-GHz
CPU and 2-GB RAM, running Ubuntu 10.04. We make an
analysis on the experimental data and give the statistical data.
Similar to the cpabe toolkit, our toolkit also provides a number
of command line tools as follows:

hasbe-setup: Generates a public key PK and a master key
MK,.

hasbe-keygen: Given PK and MK, generates a private
key for a key structure. The key structure with depth 1 or
2 is supported.

hasbe-keydel: Given PK and MK, of DA;, delegates
some parts of DA, ’s private keys to a new user or DA, ;1 in
its domain. The delegated key is equivalent to generating
private keys by the root authority.

hasbe-keyup: Given PK, the private key, the new at-
tribute and the subset, generates a new private key which
contains the new attribute.

hasbe-enc: Given PK, encrypts a file under an access tree
policy specified in a policy language.

hasbe-dec: Given a private key, decrypts a file.
hasbe-rec: Given PK, a private key and an encrypted file,
re-encrypt the file. Note that the private key should be able
to decrypt the encrypted file.

Fig. 6(a) shows the time required to setup the system for a
different depth of key structure. Our scheme can be extended
to support any depth of key structure. The cost of this operation
increases linearly with the key structure depth, and the setup can
be completed in constant time for a given depth. Except for this
experiment, all other operations are tested with the key structure
depth of 2.

Top-Level Domain Authority Grant is performed with the
command line tool hasbe — keygen. The cost is determined by
the number of subsets and attributes in the key structure. When
there is only one subset in the key structure, the cost grows
linearly with the number of attributes as Fig. 6(b) shows. While
the number of attributes in the key structure is fixed to be 50,
the cost also increases linearly with the number of subsets as
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shown in Fig. 6(c). Results of these two figures conform to the
theoretic analysis.

With the command hasbe — keydel, a domain authority DA;
can perform New User/Domain Authority Grant for a new user
or another domain authority in his domain. The cost depends on
the number of subsets and attributes to be delegated. Assume
the domain authority DA; has a private key with 50 attributes.
When DA; wants to delegate 45 of the attributes, the cost grows
linearly with the number of subsets to be delegated as shown
in Fig. 7(a). If DA, delegates 1 of the subsets, the cost also
increases linearly with the number of attributes in the subset as
in Fig. 7(b).

User Revocation operation consists of two steps: Key Up-
date and Data Re-encryption. Key Update is implemented with
the command hasbe — keyup. The root authority or domain au-
thority can assign a new attribute to the user or domain authority.
Adding a new attribute to one subset of private key can be done
in constant time as the complexity is O(1). If the new attribute
needs to be assigned to several subsets, the cost is linear with
the number of the subsets, as shown in Fig. 7(c).

Data Re-encryption is performed with the command
hasbe — rec. The data owner can re-encrypt the data file. For
example, there is an encrypted file named test.cpabe which is
encrypted with a policy ¢ and b and the data owner re-encrypts
it with the command hasbe-recpub _keyprv_keytest.cpabe ¢,
then the new encrypted data file is associated with a policy a
and b and ¢. When a user is revoked, the associated data file
can be re-encrypted in this way, and the new attributes ¢ can
be assigned to valid user with command hasbe — keyup. The
cost of operation Data Re-encryption depends on the number

of attributes on the access tree, which is same as the encryption
operation, so we do not give the analysis here.

The data owner can use the command hasbe — enc to encrypt
a file to create a new encrypted file. The time for this operation
depends on the access tree structure. According to the number
of leaf nodes and the level of the access tree policy, the time
required to encrypt the file is shown in Fig. 8(a). We can see the
cost is linear with the number of leaf nodes on the access tree
and unrelated to the level of the access tree.

To access the file, decryption should be done with the
command hasbe — dec. The time of decryption is different
depending on the access tree and key structure. Here we assume
that there is just 1 subset with 50 attributes in the key structure
associated with the private key. As shown in Fig. 8(b), the
decryption time is proportional to the number of leaf nodes
needed for decryption, and the level of the access tree has no
impact on the decryption time.

In Fig. 8(c), assuming that the number of leaf nodes used for
decryption is 50, we show the relationship between the access
tree level and the time for decryption. We can see that the access
tree level have no impact on the cost.

VII. CONCLUSION

In this paper, we introduced the HASBE scheme for realizing
scalable, flexible, and fine-grained access control in cloud com-
puting. The HASBE scheme seamlessly incorporates a hierar-
chical structure of system users by applying a delegation algo-
rithm to ASBE. HASBE not only supports compound attributes
due to flexible attribute set combinations, but also achieves ef-
ficient user revocation because of multiple value assignments
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