
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

8-2006

An energy-efficient and access latency optimized
indexing scheme for wireless data broadcast
Yuxia YAO
Nanyang Technological University

Xueyan TANG
Nanyang Technological University

Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Aixin SUN
Nanyang Technological University

DOI: https://doi.org/10.1109/tkde.2006.118

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
YAO, Yuxia; TANG, Xueyan; LIM, Ee Peng; and SUN, Aixin. An energy-efficient and access latency optimized indexing scheme for
wireless data broadcast. (2006). IEEE Transactions on Knowledge and Data Engineering. 18, (8), 1111-1124. Research Collection
School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/126

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/tkde.2006.118
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

An Energy-Efficient and Access
Latency Optimized Indexing Scheme

for Wireless Data Broadcast
Yuxia Yao, Xueyan Tang, Member, IEEE, Ee-Peng Lim, Senior Member, IEEE, and

Aixin Sun, Member, IEEE

Abstract—Data broadcast is an attractive data dissemination method in mobile environments. To improve energy efficiency, existing

air indexing schemes for data broadcast have focused on reducing tuning time only, i.e., the duration that a mobile client stays active in

data accesses. On the other hand, existing broadcast scheduling schemes have aimed at reducing access latency through nonflat data

broadcast to improve responsiveness only. Not much work has addressed the energy efficiency and responsiveness issues

concurrently. This paper proposes an energy-efficient indexing scheme called MHash that optimizes tuning time and access latency in

an integrated fashion. MHash reduces tuning time by means of hash-based indexing and enables nonflat data broadcast to reduce

access latency. The design of hash function and the optimization of bandwidth allocation are investigated in depth to refine MHash.

Experimental results show that, under skewed access distribution, MHash outperforms state-of-the-art air indexing schemes and

achieves access latency close to optimal broadcast scheduling.

Index Terms—Wireless data broadcast, energy conservation, latency, indexing, scheduling, mobile computing.

�

1 INTRODUCTION

THE rapid development of wireless communication
technology and battery-powered portable devices is

making mobile information services increasingly popular. It
is envisaged that a variety of information will be accessible
through mobile devices (e.g., laptop computers, PDAs, and
mobile phones) from anywhere at any time [5]. In mobile
environments, a base station or a satellite is often deployed
to disseminate data to mobile clients through wireless
channels. Data broadcast is an attractive dissemination
method in such context. First, the bandwidth resource of
wireless networks is scarce. Broadcast allows simultaneous
accesses to the data by a massive number of clients and is,
thus, preferable to point-to-point delivery. Second, most
wireless systems are asymmetric in that the downlink
communication capacity from the base station to the clients
is much higher than the uplink capacity in the opposite
direction. In push-based broadcast, data are disseminated
proactively and the clients simply filter and pick the data
they want, thereby alleviating the load on the uplink
channel. As a result of these advantages, data broadcast is
receiving much attention from both academic and industrial
communities [1], [2], [3], [22].

The limited battery capacity of mobile clients makes
energy efficiency a critical issue in the design of broadcast
systems [20]. Mobile clients can operate in two different
modes: active mode and doze mode. They can retrieve data

from broadcast channels in the active mode only. However,
the clients have much higher rates of energy consumption
in the active mode than in the doze mode. Therefore, to save
energy, it is desirable for mobile clients to switch to the doze
mode as much as possible when waiting for the requested
data. The performance of broadcast systems is often
characterized by two metrics: access latency and tuning time
[10], [22]. Access latency refers to how fast the client can
access the requested data. It reflects the responsiveness of
the system. Tuning time, on the other hand, refers to the
duration for which the client stays active. It measures the
energy consumed by the client in the active mode. A good
broadcast system should achieve both low access latency
and low tuning time.

The tuning time can be reduced by means of air indexing

[10]. The basic idea is to interleave the index information
with data in the broadcast schedule to assist the client in
locating data. Following the links in the index structure, the
client alternates between the active and doze modes until
the requested data arrive. However, most existing air
indexing schemes were designed for flat broadcast in which
all data items are broadcast at the same frequency (see
Section 2 for details) [7], [9], [10], [22], [23]. This sacrifices
responsiveness when client accesses are not uniformly
distributed among data items. To reduce average access
latency under nonuniform access distribution, popular data
items should be broadcast more frequently than unpopular
items. This is known as nonflat data broadcast. However,
most existing schemes of nonflat broadcast scheduling did
not consider air indexing [4], [17], [19]. Without indexing,
the client has to stay continuously active and monitor the
broadcast channel until the requested data arrive. This
consumes significant amount of battery power and sacri-
fices energy efficiency.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006 1111

. The authors are with the School of Computer Engineering, Nanyang
Technological University, Nanyang Avenue, Singapore 639798.
E-mail: yaoyuxia@pmail.ntu.edu.sg,
{asxytang, aseplim, axsun}@ntu.edu.sg.

Manuscript received 24 Jan. 2005; revised 20 Oct. 2005; accepted 21 Feb.
2006; published online 19 June 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0034-0105.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

pp. 111-1124
https://doi.org/10.1109/tkde.2006.118

Different from existing work, our objective is to optimize
responsiveness and energy efficiency in an integrated
fashion. In this paper, we propose a novel indexing scheme
called MHash for wireless data broadcast. MHash constructs
the broadcast schedule using a two-argument hash function
for indexing purpose. The two-argument nature of the hash
function allows each data item to be mapped to an adjustable
number of slots in the schedule, thereby enabling nonflat
data broadcast. Under this framework, we further investi-
gate the issues of generating hash functions that produce
broadcast schedules free of unoccupied slots; improving
access latency by properly spacing the broadcast instances of
each data item in the schedule; and optimally allocating the
bandwidth among data items. Experimental results show
that under skewed access distribution, MHash outperforms
state-of-the-art air indexing schemes and achieves access
latency close to optimal broadcast scheduling.

The rest of this paper is organized as follows: Section 2
summarizes the related work. Section 3 presents the
MHash indexing scheme and investigates a variety of
issues to refine MHash. Section 4 describes the experimental
setup and discusses the experimental results. Finally,
Section 5 concludes the paper.

2 RELATED WORK

Data broadcast in mobile environments has received much
attention in recent years. The simplest broadcast scheme is
flat broadcast, in which all data items are scheduled in a
round-robin manner. Although simple, flat broadcast
shows poor access latency when data accesses are not
uniformly distributed. Acharya et al. [4] proposed a scheme
called broadcast disks that takes into consideration of
nonuniform data access distribution. In this approach, the
items with similar access rates are grouped together to form
logical disks. Each disk is assigned a relative broadcast
frequency: those with more popular items are assigned
higher frequencies. The broadcast schedule is then con-
structed by circularly picking up items from the disks based
on their relative broadcast frequencies. There also exists
work on optimal broadcast scheduling for nonuniform data
accesses [19]. The average access latency is shown to be
minimized when each item is allocated a bandwidth
fraction proportional to the square root of its access
probability and the broadcast instances of each item are
equally spaced in the schedule. Recent work has studied
time-critical broadcast scheduling [25]. However, none of
the above work has considered air indexing. Without
indexing, tuning time is as high as access latency, which
would result in significant waste of energy.

To cater for limited battery power, some air indexing
techniques have been proposed to assist the client in
predicting the arrival time of requested data [7], [10], [12],
[16], [22], [23]. Lee and Lee [12] proposed a signature-based
indexing method. Specifically, a broadcast cycle is divided
into a number of frames. Each frame is preceded by a
signature of its data items in the broadcast schedule. This
allows the client to check whether a requested item is in the
frame by examining the signature only. However, a
signature does not provide the arrival times of data items.
Thus, when a match is found in a signature, the data items

indexed by the signature have to be searched sequentially.
Moreover, since a signature does not contain global
information about the broadcast, data accesses require
sequential scans of signatures. Imielinski et al. [10] applied
the tree-based index designed for traditional disk storage to
wireless data broadcast. The index nodes in the tree are
interleaved with data items in the broadcast schedule.
Starting from the root index node, the client follows the
links in the tree and tunes to selected index nodes to locate
the requested item. Chen et al. [7] and Shivakumar and
Venkatasubramanian [16] further showed that under non-
uniform data access distribution, the average tuning time
can be reduced by an imbalanced index tree. In their
approaches, popular items are placed closer to the root of
the index tree and unpopular items are placed deeper in the
tree. Xu et al. [22], [23] extended tree-based indexes by
constructing multiple index trees that share links. The
resultant index structure allows searching to start at
anywhere in the broadcast. Unfortunately, most tree-based
indexes are applicable to flat broadcast only because they
require data items be ordered by their key values in the
broadcast schedule. Nonflat broadcast schedules generally
do not have this property. Thus, when applied to nonflat
broadcast, the indexes can only be built locally for short
segments of broadcast, where each segment holds a
sequence of items with increasing key values. These
segments have to be searched sequentially in data accesses
[8], [22], [23], [27]. As a result, the effectiveness of indexing
diminishes significantly.

Besides tree-based indexes, hash functions can also be
used for indexing purpose to map data items to the slots in
the broadcast schedule [9]. A salient feature of hash-based
index is that it eliminates the need to broadcast index
structures (e.g., trees)—only a hash function is broadcast
together with data. While the broadcast overhead of a tree-
based index structure normally increases with the number
of data items, the broadcast overhead of a hash function is
largely independent of the latter. Furthermore, hash-based
indexes allow searching to start anywhere in the broadcast.
In hash-based indexes, multiple items are likely to be
hashed to the same slot. Imielinski et al. [9] resolved such
collisions by pushing overflow items into succeeding slots
and pushing forward the items originally hashed to the
succeeding slots. This approach, similar to linear probing,
introduces an extra tuning time of one slot to all the items
hashed to the succeeding slots. Moreover, the indexing
scheme proposed in [9] neither considered nonflat data
broadcast nor addressed the problem of producing broad-
cast schedules free of unoccupied slots. In this paper, we
propose a novel indexing scheme using a two-argument
hash function. Our proposed scheme gracefully incorpo-
rates hash-based index with nonflat data broadcast. It
naturally reduces both access latency and tuning time for
popular items. We also propose a new chaining method for
collision resolution to reduce the penalty in tuning time and
investigate how to generate broadcast schedules without
any unoccupied slot.

Other related work on air indexing and broadcast
scheduling includes air indexing of spatial data [26], [28],
semantic data broadcast [11], adaptive broadcast scheduling

1112 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

[13], channel allocation of data broadcast [14], and client
caching under data broadcast [24], [21]. They complement
our study in various aspects.

3 MHASH INDEXING SCHEME

This section presents our MHash indexing scheme. We start
with an overview of MHash in Section 3.1. Section 3.2 shows
how to produce broadcast schedules free of unoccupied
slots. Section 3.3 discusses the spacing of broadcast instances.
Finally, Section 3.4 analyzes the optimal bandwidth alloca-
tion among different data items under MHash indexing.

3.1 Overview

The key idea of MHash is to construct an energy-efficient
index that allows different items to be broadcast with
different frequencies. We consider a system that repeatedly
broadcasts a set of data items in cycles. A broadcast cycle
consists of a sequence of slots, each of which accommodates
one item. All slots in the cycle are numbered sequentially: 0,
1, 2, . . . , N � 1, where N is called the cycle length. MHash
first maps each item to a given number of M slots. The item
is then placed and broadcast in a subset of these slots. To
reduce average access latency, popular data items are
placed in more slots than unpopular items, thus enabling
non-flat data broadcast. M is a tunable parameter repre-
senting the maximum allowable number of times each item
can be broadcast in one cycle. We refer to M as the
replication bound.

We use a two-argument hash function Hðk; lÞ to map a
data item to a list of slots, where k is the key of the item
and l is a sequential identifier. The function maps the key
to the slots Hðk; 1Þ, Hðk; 2Þ, . . . , Hðk;MÞ. If the item is to
be broadcast c �M times in a cycle, it is then placed and
broadcast in the first c slots on the list, i.e., Hðk; 1Þ,
Hðk; 2Þ, . . . , Hðk; cÞ. They are called the hashed slots of the
item and we say that the item is hashed to these slots. As
will be discussed shortly, choosing a prefix of the list
allows the tuning time to be further reduced by pruning
in data accesses. The remaining slots, i.e., Hðk; cþ 1Þ,
Hðk; cþ 2Þ, . . . , Hðk;MÞ, are called the cheating slots, since
the item would not actually be broadcast in these slots.

It is likely that multiple items are hashed to the same slot.
This is known as collision. Meanwhile, there might be some
slots such that no item is hashed to them. We refer to these
slots as empty slots. In the following, we propose a chaining
method to resolve collisions. In Section 3.2, we shall
investigate, under our collision resolution method, how to
construct hash functions that produce broadcast schedules
without any unoccupied slot where no item is placed.

To resolve collisions, all items hashed to the same slot are
sorted in decreasing order of access probability. The first
item (i.e., the most frequently accessed one) is placed in the
hashed slot. The remaining items are sequentially placed in
subsequent empty slots. To facilitate data accesses, a
distance pointer is recorded in each slot to refer to the next
slot accommodating an item with the same hashed slot. The
distance pointer of the last item is set to 0. The purpose of
broadcasting the items hashed to the same slot in decreas-
ing order of access probability is to reduce the average
access latency.

Fig. 1 shows an example of MHash indexing. The data
items, listed in decreasing order of access probability, are A
to J . Suppose the broadcast cycle consists of 17 slots. Item A
is broadcast four times in the cycle, items B to E are
broadcast twice each, and the remaining items are broadcast
once each. Suppose the replication bound M ¼ 4. Fig. 1a
shows a hypothetical hash table. Accordingly, the items
hashed to each slot are shown below the slot in Fig. 1b. As
can be seen, slots 2, 5, 7, 10, 13, 14, and 15 are empty slots
where no item is hashed. Items B, G, and J are all hashed to
slot 1. To resolve the collision, B (the most popular item
among B, G, and J) is placed in its hashed slot 1 and G and
J are placed in empty slots 2 and 5, respectively. Slot 1 has a
distance pointer 1 since the next item hashed to slot 1 (i.e.,
G) is broadcast one slot away in slot 2. Slot 2 has a distance
pointer 3, indicating the next item hashed to slot 1 (i.e., J) is
broadcast three slots away in slot 5. The distance pointer of
slot 5 is 0 since J is the last item hashed to slot 1. As shown
in Fig. 1b, the distance pointers link the items hashed to the
same slot in a chain. Similarly, items D and E are both
hashed to slot 3. So, D is placed in its hashed slot 3. Since
empty slot 5 has been occupied, E is placed in the following
empty slot 7.

YAO ET AL.: AN ENERGY-EFFICIENT AND ACCESS LATENCY OPTIMIZED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 1113

Fig. 1. An example of MHash. (a) Hash table. (b) Broadcast cycle.

Algorithm 1 describes the algorithm for data accesses.
We illustrate the access process with the example in Fig. 1.
Note that item C is broadcast twice in the cycle at slots 10
and 16, which correspond to hashed slots HðC; 2Þ ¼ 8 and
HðC; 1Þ ¼ 16, respectively.1 Suppose the client tunes to slot 5
at the initial probe and would like to access item C, given its
key. The client first calculates the M slot numbers where the
key is mapped (step 1 of Algorithm 1). Following the
hash table in Fig. 1a, the slot numbers where C is mapped
are 16, 8, 12, and 3. They are the potential locations of the
target data item. These slot numbers are then sorted in
increasing order of their distances ahead of the initial
probing slot (step 2). In our example, the sorted list of slot
numbers is 8, 12, 16 and 3. Intuitively, the client should tune
to all of these slots sequentially to look for item C. However,
we note that the slot numbers can be short-listed for
searching purposes. For example, since HðC; 2Þ ¼ 8 pre-
cedes HðC; 3Þ ¼ 12 and HðC; 4Þ ¼ 3 on the sorted list,
HðC; 3Þ and HðC; 4Þ can be pruned. This is because if the
target item is broadcast at least twice in the cycle, HðC; 2Þ is
a hashed slot and the client would be able to retrieve item C
from it (possibly by following the distance pointers). On the
other hand, if the item is broadcast fewer than two times in
the cycle, all slots HðC; lÞ, where l � 2 are cheating slots and
the client would not be able to find item C from any of
them. So, in either case, there is no need for the client to
tune to slot HðC; 3Þ or HðC; 4Þ after checking HðC; 2Þ. In
general, if the sorted list of slot numbers is Hðk; l1Þ, Hðk; l2Þ,
. . . , Hðk; lMÞ where k is the key, and l1, l2, . . . , lM is a
permutation of 1, 2, . . . , M, the client can get rid of all slots
Hðk; liÞ where min1 � j � i�1 lj < li (step 3). As will be shown
in Section 4, this pruning technique makes tuning time
grow slowly (logarithmically) with M.

Algorithm 1 Data Access

Input: Key k

Output: Target data item with key k

1: Calculate slot numbers Hðk; 1Þ, Hðk; 2Þ, . . . , Hðk;mÞ;
2: Sort the slot numbers in increasing order of their

distances ahead of the initial probing slot: Hðk; l1Þ,
Hðk; l2Þ,. . . ,Hðk; lMÞ, where l1, l2, . . . , lM is a

permutation of 1, 2, . . . , M;
3: Remove all slot numbers Hðk; liÞ where

min1 � j � i�1 lj < li;

4: Put remaining slot numbers in a searching set Q;

5: repeat

6: Tune to the nearest slot q 2 Q ahead;

7: if Bcast[q].data.key ¼ k then

8: Probe success and return Bcast[q].data;

9: else

10: Read the distance pointer d of q;

11: end if

12: if d > 0 then

13: Insert q þ d to Q;

14: end if

15: Remove q from Q;

16: until Q is empty;

17: Probe failure;

The slot numbers left after pruning constitute a searching
set Q (step 4). The client repeatedly tunes to the nearest slot
q 2 Q ahead. If the target data item is not found in slot q, the
client reads the distance pointer d from the slot. If d > 0, Q
is updated by replacing q with q þ d. If d ¼ 0, q is removed
from Q (i.e., the item broadcast in slot q is the last item
hashed to its hashed slot). The process continues until the
target data item is found or Q becomes empty2 (steps 5
to 16). The latter case leads to a failure of data access, i.e.,
there does not exist any item with the requested key in the
broadcast schedule (step 17).

In our example, the initial searching set Q includes
HðC; 2Þ ¼ 8 and HðC; 1Þ ¼ 16. The client first tunes to slot 8
and finds that the item broadcast in slot 8 is not item C. It
then reads the distance pointer 2 and replaces 8 with 10 in
Q. Now, the updated Q includes slot numbers 10 and 16.
The client tunes to slot 10 and retrieves item C. Thus, after
the initial probe at slot 5, the client only tunes to slots 8 and
10 in the access process and can switch to the doze mode in
the other slots.

As seen from the example, a collision in hashing
introduces some penalty to tuning time. In general, the
performance of MHash indexing improves with decreasing
collision rate of the hash function.3 It is also intuitive that
the tuning time increases with the number of cheating slots.
Since an item that is broadcast c times in the cycle has M � c
cheating slots, more frequently broadcast items would have
lower tuning times. Therefore, if popular items are broad-
cast more frequently than unpopular items (to reduce
average access latency), MHash naturally leads to less
tuning time for popular items. This salient feature helps
reduce the average tuning time.

The following parameters are needed by the client in
data accesses: the hash function H, the cycle length N , and
the replication bound M. These parameters can be recorded
in the header of each bucket, which is the smallest
accessible unit of broadcast [10], [22]. The number of slots
in a bucket depends on the size of a data item. If a bucket
contains multiple slots, the accesses to the slots therein
involve the same bucket access physically.

3.2 Hole-Free Hash Function

An empty slot may be left unoccupied in the broadcast
schedule. Fig. 2b shows the broadcast cycles derived from
an example hash table shown in Fig. 2a. Slots 1 and 6 are left
unoccupied in the first cycle because no item is hashed to or
pushed to these slots due to collisions in the preceding slots.
Meanwhile, items E and G, which are hashed to slots 9
and 10, have to be pushed forward to the second cycle. The
existence of such unoccupied slots (referred to as holes) not
only wastes bandwidth but also complicates the computa-
tion of distance pointers in subsequent cycles (e.g., slot 2 has
different pointer values in the two cycles in Fig. 2b).
Therefore, it is desirable to look for hole-free hash functions
that can produce broadcast schedules without unoccupied
slots. In this section, we show that a hole-free hash function
can be constructed by injecting an offset into an arbitrary

1114 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

2. Note that the access process may extend to the next broadcast cycle if
the initial probe is not at the beginning of a cycle.

3. The selection of a good hash function is application specific and is
beyond the scope of this paper.

1. For convenience, we shall use the same letter to denote an item and
its key.

hash function. For example, denote the hash function of

Fig. 2a by Hðk; lÞ. The holes in Fig. 2b would be eliminated

if we use a new hash function

H 0ðk; lÞ ¼ ðHðk; lÞ � 7Þmod 11;

where 11 is the cycle length. The new hash table is shown

in Fig. 2c and the derived broadcast cycles are shown in

Fig. 2d.

In general, consider n data items d1, d2, . . . , dn to be

broadcast c1, c2, . . . , cn times respectively in a cycle of length

N ¼
Pn

i¼1 ci. In MHash indexing, each item di has ci hashed

slots Hðdi; 1Þ, Hðdi; 2Þ, . . . , Hðdi; ciÞ between 0 and N � 1,

and there are a total of N hashed slots for all items. Given a

hash function H, let fiðHÞ be the number of items hashed to

slot i, then
PN�1

j¼0 fjðHÞ ¼ N: Let hiðHÞ be the cumulative

number of holes in slots 0 to i. Obviously, h0ðHÞ depends on

whether any item is hashed to slot 0, i.e.,

h0ðHÞ ¼
0 if f0ðHÞ > 0;
1 if f0ðHÞ ¼ 0:

�
ð1Þ

For each 1 � i � N � 1, since, among the i slots from 0 to

ði� 1Þ, i� hi�1ðHÞ slots are occupied by data items, we

have

Xi�1

j¼0

fjðHÞ � i� hi�1ðHÞ:

If the equality holds, i.e.,
Pi�1

j¼0 fjðHÞ ¼ i� hi�1ðHÞ, no item

hashed to slots 0 to ði� 1Þ is pushed forward to slot i for

collision resolution. Otherwise, if
Pi�1

j¼0 fjðHÞ > i� hi�1ðHÞ,
at least one item is pushed forward to slot i for collision

resolution. Note that slot i (i > 0) is a hole if and only if 1) no

item is hashed to it (i.e., fiðHÞ ¼ 0), and 2) no item is pushed

forward to slot i for collision resolution. Therefore, for each

1 � i � N � 1,

hiðHÞ ¼

hi�1ðHÞ if fiðHÞ > 0

or
Pi�1

j¼0 fjðHÞ > i� hi�1ðHÞ;

hi�1ðHÞ þ 1 if fiðHÞ ¼ 0

and
Pi�1

j¼0 fjðHÞ ¼ i�hi�1ðHÞ:

8>>>>>>>><
>>>>>>>>:

ð2Þ

Theorem 1 shows that a hole-free hash function can be

constructed by injecting an offset into an arbitrary hash

function.

Theorem 1. Given any hash function Hðk; lÞ, let b be the smallest

index such that slots b to N � 1 are hole-free under H, then the

new hash function H 0ðk; lÞ ¼ ðHðk; lÞ � bÞmodN is hole-

free, i.e., for each 0 � i � N � 1, hiðH 0Þ ¼ 0.

Proof. See Appendix A for details. tu

3.3 Spacing between Broadcast Instances

If an item is broadcast multiple times in a cycle, its access

latency, to a large extent, depends on how the slots

broadcasting the item (called broadcast instances) are located

in the cycle. Intuitively, if multiple broadcast instances are

clustered in a short segment of the cycle, they would not

reduce access latency much compared to a single broadcast

instance. In general, the access latency of an item can be

reduced by equalizing the spaces between successive

broadcast instances of the item [19].

YAO ET AL.: AN ENERGY-EFFICIENT AND ACCESS LATENCY OPTIMIZED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 1115

Fig. 2. Generation of hole-free hash function. (a) Original hash table. (b) Holes in broadcast cycle. (c) New hash table. (d) Hole-free broadcast cycle.

In this section, we construct hash functions that
approximately equalize the spaces between broadcast
instances in MHash indexing. Recall that each item is
broadcast in the slots whose numbers are a prefix of the list
Hðk; 1Þ, Hðk; 2Þ, . . . , Hðk;MÞ, where k is the item key. Our
idea is to let any prefix of length 2m (1 � m �M) be a
uniform partition of the broadcast cycle. When m ¼ 1, the
prefix consists of Hðk; 1Þ and Hðk; 2Þ. To produce a uniform
partition, the Hðk; 2Þ-to-Hðk; 1Þ space must be set at 1

2N ,
where N is the cycle length. When m ¼ 2, the prefix consists
of Hðk; 1Þ, Hðk; 2Þ, Hðk; 3Þ, and Hðk; 4Þ. To produce a
uniform partition, the Hðk; lÞ-to-Hðk; 1Þ spaces (2 � l � 4)
must constitute a set f 1

4N;
1
2N;

3
4N g. Since the Hðk; 2Þ-

to-Hðk; 1Þ space is set at 1
2N , the Hðk; lÞ-to-Hðk; 1Þ spaces

(3 � l � 4) must constitute a set f 1
4N;

3
4N g. We propose

to set the Hðk; 3Þ-to-Hðk; 1Þ space at 1
4N , and the Hðk; 4Þ-

to-Hðk; 1Þ space at 3
4N . In general, for any m, the

Hðk; lÞ-to-Hðk; 1Þ spaces (2 � l � 2m) must constitute a
set f i2m j 1 � i � 2m � 1g. It follows that the Hðk; lÞ-to-
Hðk; 1Þ spaces (2m�1 þ 1 � l � 2m) must constitute a set
f2i�1

2m j 1 � i � 2m�1g. For each 1 � i � 2m�1, we propose to
set the Hðk; 2m�1 þ iÞ-to-Hðk; 1Þ space at 2i�1

2m . Therefore,
given Hðk; 1Þ, we have

Hðk; lÞ ¼ Hðk; 1Þ þ 2l� 2dlog2 le � 1

2dlog2 le
N

� �
modN: ð3Þ

It can be inferred that a hash function satisfying (3) has

the following property: for any prefix of the list Hðk; 1Þ,
Hðk; 2Þ, . . . , Hðk;MÞ, the spaces between neighboring slots

in the cycle differ by at most a factor of 2. For example, a

prefix of five slots have the spaces 0, 1
2N , 1

4N , 3
4N , and 1

8N

with respect to Hðk; 1Þ. Thus, as shown in Fig. 3, the spaces

between neighboring slots in the cycle are 1
8N , 1

8N , 1
4N , 1

4N ,

and 1
4N . Our experimental results, not reported in this

paper due to space limitations, show that hash functions

satisfying (3) lead to much lower access latency compared

to randomly chosen two-argument hash functions.
Note that the techniques proposed in this section and

Section 3.2 are orthogonal. To construct a hole-free hash
function that satisfies (3), we can first pick an arbitrary one-
argument hash function Hðk; 1Þ, then extend it to a two-
argument function according to (3), and finally inject an
offset to make it hole-free based on Theorem 1.

3.4 Bandwidth Allocation

So far, we have assumed the number of times each item
should be broadcast in a cycle is given. In this section, we
discuss the bandwidth allocation problem in MHash
indexing. Since the objective of nonflat data broadcast is
to reduce access latency, we consider average access latency
as the performance metric in bandwidth allocation. Given

n items d1, d2, . . . , dn, let pi be the access probability4 of di,

where
Pn

i¼1 pi ¼ 1. Without loss of generality, assume that

p1 � p2 � � � � � pn. Let ri be the fraction of bandwidth

allocated to di, where
Pn

i¼1 ri ¼ 1. If the broadcast instances

of each item are equally spaced, the space between

neighboring broadcast instances of di is proportional to 1
ri

and, thus, the average access latency of di is proportional to
1

2ri
. Therefore, the overall access latency is proportional to

Xn
i¼1

pi �
1

2ri

� �
¼ 1

2

Xn
i¼1

pi
ri
:

It has been proven that the latency is minimized when

ri /
ffiffiffiffi
pi
p

, i.e.,

ri ¼
ffiffiffiffi
pi
pPn
j¼1

ffiffiffiffiffi
pj
p

for each item di [19]. However, this solution is not directly

applicable to the MHash bandwidth allocation problem due

to the following constraint. Note that, with MHash

indexing, each item is broadcast at least once and at most

M times per cycle, where M is the replication bound. Thus,

the bandwidth fractions allocated to the items can differ by,

at most, a factor of M. The bandwidth allocation problem in

MHash indexing is formally defined as follows:

Definition 1. (MHash Bandwidth Allocation Problem).

Given the access probabilities p1 � p2 � � � � � pn of data

items d1, d2, . . . , dn, respectively, and the replication bound

M, the objective of the MHash bandwidth allocation problem

is to find an allocation R ¼ ðr1; r2; . . . ; rnÞ, where

0 < ri < 1,
Pn

i¼1 ri ¼ 1 and 8i; j, ri
rj
�M, such that T ¼

1
2

Pn
i¼1

pi
ri

is minimized. Here, 8i; j, ri
rj
�M is called the

differentiation constraint.

If pn
p1
�M2, the settings of

ri ¼
ffiffiffiffi
pi
pPn
j¼1

ffiffiffiffiffi
pj
p ði ¼ 1; 2; . . . ; nÞ

satisfy the differentiation constraint because ri
rj
�M for

any i and j. Since these settings are the optimal

bandwidth allocation in the absence of the differentiation

constraint [19], they are also the optimal solution to the

MHash bandwidth allocation problem. If pn
p1
> M2, the

optimal bandwidth allocation in MHash indexing is less

obvious. We start by showing that more frequently

accessed items must be allocated higher bandwidth in

the optimal allocation.

Theorem 2. The optimal solution R ¼ ðr1; r2; . . . ; rnÞ to the

MHash bandwidth allocation problem satisfies

r1 � r2 � r3 � � � � � rn:

Proof. See Appendix B for details. tu

Theorem 3 shows that if pn
p1
> M2, rn

r1
must be M in the

optimal bandwidth allocation.

1116 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

4. The server can estimate the access probabilities by a number of
methods [15], which are beyond the scope of this paper.

Fig. 3. Spacing between broadcast instances.

Theorem 3. If pnp1
> M2, the optimal solution R ¼ ðr1; r2; . . . ; rnÞ

to the MHash bandwidth allocation problem satisfies rn
r1
¼M.

Proof. See Appendix C for details. tu

Theorems 2 and 3 imply that if pnp1
> M2, the optimal band-

width allocation must take one of the following two forms:

ðAÞ r1 ¼ r2 ¼ � � � ¼ ri�1 < ri ¼ riþ1 ¼ � � � ¼ rn
for some 1 < i � n (we shall call i the single separator), where
rn
r1
¼M, or

ðBÞ r1 ¼ � � � ¼ ri�1 < ri � riþ1 � � � � � rj�1 � rj < rjþ1 ¼ � � �
¼ rn

for some 1 < i � j < n (we shall call i and j the lower and
upper separators, respectively), where rn

r1
¼M.

Given the single separator i, the allocation in form A is
given by

r1 ¼ r2 ¼ � � � ¼ ri�1 ¼
1

i� 1þMðn� iþ 1Þ ;

and

ri ¼ riþ1 ¼ � � � ¼ rn ¼
M

i� 1þMðn� i� 1Þ:

If we denote the associated T value by TAðiÞ, the best
allocation in form A is then given by min1<i�nTAðiÞ.

For the allocations in form B, Theorem 4 presents some
properties of the lower and upper separators.

Theorem 4. If pn
p1
> M2 and the optimal solution R ¼

ðr1; r2; . . . ; rnÞ to the MHash bandwidth allocation problem
has form B, the lower and upper separators i and j satisfy
1)

pj
pi
< M2; and 2)

pjþ1

pi�1
�M2.

Proof. See Appendix D for details. tu

Given the lower and upper separators i and j, let
ri þ riþ1 þ � � � þ rj ¼ X. Based on the Lagrange multiplier
theorem, the access latency is minimized when

rk ¼
ffiffiffiffiffi
pk
pPj
m¼i

ffiffiffiffiffiffi
pm
p �X

for each i � k � j. Note that these settings satisfy the
differentiation constraint because Theorem 4 shows that
pj
pi
< M2. The remaining fractions in the allocation are

given by

r1 ¼ r2 ¼ � � � ¼ ri�1 ¼
1�X

i� 1þMðn� jÞ ;

and

rjþ1 ¼ rjþ2 ¼ � � � ¼ rn ¼
Mð1�XÞ

i� 1þMðn� jÞ :

Therefore,

T ¼ 1

2

� ðPj
m¼i

ffiffiffiffiffiffi
pm
p Þ2

X

þ
ðM �

Pi�1
m¼1 pm þ

Pn
m¼jþ1 pmÞ � ði� 1þMðn� jÞÞ
Mð1�XÞ

�
:

Since ri�1 < ri and rj < rjþ1, we have

1�X
i� 1þMðn� jÞ <

ffiffiffiffi
pi
pPj

m¼i
ffiffiffiffiffiffi
pm
p �X

and ffiffiffiffiffi
pj
pPj
m¼i

ffiffiffiffiffiffi
pm
p �X <

Mð1�XÞ
i� 1þMðn� jÞ :

It follows that

1
ðði�1ÞþMðn�jÞÞ ffiffiffipipPj

m¼i
ffiffiffiffiffi
pm
p þ 1

< X <
M

ðði�1ÞþMðn�jÞÞ ffiffiffipjpPj

m¼i
ffiffiffiffiffi
pm
p þM

: ð4Þ

Computing the minimum value of T in the range of X

specified by (4) is straightforward. If we denote the

minimum value by TBði; jÞ, the best allocation in form B is

then given by

min
pj
pi
<M2;

pjþ1
pi�1
�M2

TBði; jÞ:

Therefore, if pn
p1
> M2, the optimal MHash bandwidth

allocation produces the minimum T value of

min min
1<i�n

TAðiÞ; min
pj
pi
<M2;

pjþ1
pi�1
�M2

TBði; jÞ

0
@

1
A:

Assume that the least frequently accessed item is

broadcast once per cycle. Having obtained the optimal

allocation ðr1; r2; . . . ; rnÞ, the number of times each item di

should be broadcast in a cycle is given by

ci ¼
1 i ¼ 1;�
ri
r1
� 1

2

�
2 � i � n:

�

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

We have conducted simulation experiments to compare

MHash indexing with a wide range of existing schemes.

Table 1 summarizes the system parameters and their

settings in the experiments. We simulate a set of n data

items whose access probabilities are assumed to follow a

Zipf-like distribution. Specifically, the access probability pi

of he ith most popular item follows:

YAO ET AL.: AN ENERGY-EFFICIENT AND ACCESS LATENCY OPTIMIZED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 1117

TABLE 1
System Parameters

pi /
ð1=iÞ�Pn
i¼1ð1=iÞ

�
;

where � > 0 is the Zipf parameter [29]. It is obvious that the
higher the value of �, the more skewed the access
distribution. A � value of 0 degenerates the Zipf-like
distribution to a uniform distribution. The default Zipf
parameter was set at 1.0. The default replication bound M
was set at 8. The default bucket size and item size were set
at 1 KB and 128 bytes, respectively.

We refer to the number of slots that can be accommo-
dated in a bucket as the bucket capacity P . It is given by
P ¼ bSb�SbhSdþSshc, where Sb and Sd are the bucket size and
item size, respectively, and Sbh and Ssh are the per-bucket
and per-slot indexing overhead, respectively. For MHash
indexing, as mentioned in Section 3.1, the following
information is recorded in the header of each bucket: the
hash function H, the cycle length N , and the replication
bound M. We assume the hash function is characterized by
two constants (e.g., see H1ðk; 1Þ below) and an offset
(Theorem 1). The above information together with the
bucket number and the bucket capacity5 results in an Sbh of
28 bytes. In addition to the broadcast item, the distance
pointer is also broadcast in each slot. Therefore, Ssh was set
at 4 bytes.

The keys of data items are assumed to be integers and
were randomly generated in our experiments. The key
values are uniformly distributed in the range of [0, 232 � 1].
We used the following hash functions:

H1ðk; 1Þ ¼ ðA � ððAþBÞ � kÞ þBÞmod 231;

where k is the key value, A ¼ 1103515245, B ¼ 12345, and �
is a bitwise exclusive-or operation [18], and a universal hash
function

H2ðk; 1Þ ¼ ðx1m1 � x2m2 � � � � � x32m32Þ;

where x1x2 . . .x32 is the binary representation of key value,
and mis are 0-1 bit vectors of length 32 [6]. These hash
functions were extended based on the techniques described
in Sections 3.2 and 3.3 for MHash indexing. In addition, we
also tested MHash with a synthetic collision-free hash table
in which no pair of items are hashed to the same slot. On
constructing the broadcast schedule, the expected access
latency and tuning time of each data item were first
calculated by taking an average over all possible locations
of the initial probe. The overall access latency and tuning
time were then computed by taking a weighted average
over all data items based on their access probabilities. Both
metrics are measured in the unit of bucket, which is the
smallest accessible unit of broadcast. We have tested a wide
range of parameter settings. For each setting, we randomly
generated 100 sets of key values. Each set of keys were
randomly ordered into a list, where the ith key on the list
was assumed to be the ith most popular item. The average
performance of these 100 simulation runs is plotted for
performance comparison.

In addition to MHash, the following existing schemes
described in Section 2 were included in the experiments
for comparison purposes: latency-optimal broadcast (ab-
breviated as LatOpt) [19], one-argument hash index

(FlatHash) [9], distributed tree index (DistTree) [10],
exponential index (Exponential) [22], [23], unbalanced tree
index (UnbalanceTree) [7], [16], and hybrid index (Hybrid)
[8]. Interested readers are referred to Section 2 and the
references for details of these schemes. The latency-
optimal broadcast differentiates the broadcast frequencies
of data items based on the square-root rule of bandwidth
allocation (i.e., ri /

ffiffiffiffi
pi
p

) [19]. The broadcast instances of
each item are assumed to be equally spaced in the
broadcast schedule. Thus, LatOpt is used as a yardstick
(lower bound) on access latency. However, LatOpt does
not include any index in the broadcast. This leads to a
tuning time equal to the access latency. The remaining five
schemes all build index on broadcast data. All these
schemes, except the Hybrid index, construct a flat
schedule where each item is broadcast exactly once in a
cycle regardless of the access distribution. The replicated
levels of index nodes in DistTree and the index base and
chunk size in Exponential are tuned to optimize access
latency. The Hybrid scheme uses three disks with relative
broadcast frequencies of 3, 2, and 1 in broadcast disk
scheduling. In all tree-based indexes, each key value and
offset in the index tables is assumed to take up 4 bytes.

4.2 Comparison with LatOpt and FlatHash

In this section, we investigate the performance of MHash

under different replication bounds and hash functions. We

tested MHash with three different hash functions: H1, H2,

and a synthetic collision-free hash table. Their results are

labeled MHash(H1), MHash(H2), and MHash(Ideal), re-

spectively. We also compare MHash against LatOpt and

FlatHash.

Fig. 4 shows the access latency as a function of

replication bound M. Note that FlatHash and LatOpt do

not rely on M, so their performance is independent of M.

When M ¼ 1, MHash broadcasts all items exactly once in

each cycle. So, its access latency is similar to that of

FlatHash which also employs flat broadcast. When M

increases, MHash becomes more flexible in bandwidth

allocation. Therefore, the access latency of MHash decreases

rapidly with increasing M. As shown in Fig. 4, an M value

of 2 improves the access latency by 30 percent compared to

that of M ¼ 1. Comparing with FlatHash, MHash’s access

latency is 50 percent lower when M ¼ 8.
We conducted two sets of experiments for LatOpt. In the

first set, the entire bucket was fully used to accommodate

1118 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

5. The bucket number and bucket capacity are included for the purpose
of deriving slot numbers.

Fig. 4. Average access latency versus replication bound.

data items, i.e., bucket capacity P ¼ bSbSdc. This represents the
lower bound access latency without any indexing overhead.
The second set of experiments assumed a bucket capacity
equal to that of MHash. This represents the lower bound
access latency in the presence of MHash’s indexing
overhead. The results of these two sets of experiments
are labeled LatOpt(NoOverhead) and LatOpt(MHash-
Overhead), respectively. As shown in Fig. 4, MHash
approaches LatOpt(MHashOverhead) in access latency
when M grows beyond 8. This implies our spacing and
bandwidth allocation techniques presented in Sections 3.3
and 3.4 succeed in optimizing the access latency by means
of nonflat broadcast. We also note that the difference
between LatOpt(MHashOverhead) and LatOpt(NoOver-
head) is small in access latency. This shows MHash has
little indexing overhead.

Fig. 5 shows the tuning time as a function of M.
Comparing MHash with FlatHash, we note that when
M ¼ 1, MHash has a lower tuning time than FlatHash. This
is because they use different methods to resolve collisions.
By using chaining, MHash guarantees that for each slot,
one of the items hashed to it is broadcast in the slot. On the
other hand, FlatHash uses linear probing. If a collision
pushes an item forward to a slot, the slot would not be
used to accommodate any item hashed to it. This has the
effect of increasing the tuning time to all the items hashed
to the slot by 1.

In general, the tuning time of MHash increases with
M. This is because a larger replication bound increases
the number of cheating slots. Due to pruning in data
accesses, MHash’s tuning time increases almost logarith-
mically6 with M (i.e., very slowly). As shown in Fig. 5,
the tuning time of MHash is lower than that of FlatHash
up to an M value of 8 and is only 1.5 buckets higher than
that of FlatHash when M rises to 128. On the other hand,
since LatOpt(MHashOverhead) and LatOpt(NoOverhead)
do not use air indexing, their tuning times are identical to
the access latencies which are not shown in Fig. 5 due to
high values.

The total energy cost of data accesses is the sum of that
consumed in the active and doze modes. While tuning time
measures the energy consumed in the active mode, access
latency largely reflects the energy consumed in the doze
mode. In the absence of concurrent accesses to multiple

items by a client, the total energy cost of a data access can be
approximated by

E ¼ ðaccess latency� tuning timeÞ � rdoze
þ tuning time � ractive;

where rdoze and ractive are the energy consumption rates of
the doze and active modes, respectively. Fig. 6 plots the
energy cost normalized by that of MHash(H1) at M ¼ 8
when rdoze and ractive are, respectively, set at 60 mW and
950 mW, representing a typical wireless PC card ORiNOCO
[20]. The energy costs of LatOpt(MHashOverhead) and
LatOpt(NoOverhead) are too high to be shown in the figure.
It is clearly seen that MHash significantly improves energy
efficiency. When M ¼ 8, MHash outperforms FlatHash by
more than 45 percent and LatOpt(MHashOverhead) by
more than 90 percent (not shown in Fig. 6) in energy cost.

Comparing different hash functions, we note that the
performance of MHash improves with decreasing collision
rate. As shown in Fig. 5, MHash(Ideal) outperforms
MHash(H1) and MHash(H2) in tuning time. However, the
improvement is not significant. This implies the hash
functions H1 and H2 have low collision rates. On the other
hand, it is seen from Fig. 4 that the three hash functions result
in similar access latencies. Thus, we shall report only the
results of MHash(H1) in the rest of this paper. Moreover, the
access latency and energy cost of MHash indexing remains
similar whenM grows beyond 8. Therefore, the default value
of M was set at 8 in the remaining experiments.

4.3 Comparison with DistTree, Exponential,
UnbalanceTree, and Hybrid

In this section, we study the performance of MHash under
different access distributions and compare it against
DistTree, Exponential, UnbalanceTree and Hybrid indexes.
Figs. 7 and 8 show the performance results for various
Zipf parameters.

DistTree and Exponential both construct flat schedules
regardless of the access distribution. Each item is broadcast
exactly once in a cycle and in the order of key value. So,
their access latencies remain similar over a wide range of
access distribution (see Fig. 7). With multiple index trees
that share links, Exponential allows searching to start at
anywhere in the broadcast. Thus, its access latency is lower
than that of DistTree. In contrast, MHash uses nonflat
broadcast. Its access latency is similar to that of Exponential
under uniform access distribution and reduces substantially
when � increases. When � ¼ 1:5, MHash’s access latency is

YAO ET AL.: AN ENERGY-EFFICIENT AND ACCESS LATENCY OPTIMIZED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 1119

6. Note that the axis of M is in log scale.

Fig. 5. Average tuning time versus replication bound. Fig. 6. Normalized energy cost versus replication bound.

more than 80 percent and 75 percent lower than those of
DistTree and Exponential, respectively. Similar perfor-
mance trends are observed for tuning time. Fig. 8 shows
that the tuning time of MHash decreases with increasing
access skewness. This demonstrates MHash’s nature that
popular items have less tuning time than unpopular items
(see Section 3.1). When the skewness in access distribution
increases, popular items take up a larger portion of all
requests, thereby decreasing the average tuning time.
MHash’s tuning time is much lower than those of DistTree
and Exponential at � values higher than 1.

In UnbalanceTree, more frequently accessed items are

placed closer to the root of the index tree. Therefore, its

tuning time decreases with increasing access skewness.

However, like other tree-based indexes, the searching must

start from the root index node in UnbalanceTree. Normally,

the client needs to tune to the broadcast channel at least twice

(an initial probe and the root index node) before it accesses

the data item. As a result, UnbalanceTree’s tuning time

cannot be reduced beyond 3. In contrast, hash-based indexes

allow searching to start from anywhere. As shown in Fig. 8,

MHash reduces the tuning time by more than 18 percent and

30 percent compared to UnbalanceTree at � values of 1.0 and

1.5, respectively. When constructing the broadcast schedule,

UnbalanceTree places popular items closer than unpopular

items to the root index node to reduce access latency. Thus,

UnbalanceTree’s access latency decreases with increasing

access skewness. However, since UnbalanceTree uses flat

broadcast, Fig. 7 shows that its access latency is substantially

higher than that of MHash. Moreover, unlike DistTree,

UnbalanceTree does not use replication to reduce the latency

to access the root index node. Therefore, UnbalanceTree’s

access latency is even higher than that of DistTree under

uniform access distribution.

The Hybrid scheme incorporates broadcast disk schedul-

ing [4], tree-based index [10], and signature-based index

[12]. Broadcast disk scheduling differentiates the broadcast

frequencies of data items based on their popularity.

However, the differentiation is not as fine grained as that

in MHash. Therefore, as seen from Fig. 7, the access latency

of Hybrid reduces with increasing access skewness but is

still much higher than MHash under skewed access

distribution. Due to nonflat broadcast, Hybrid constructs

an index only for short segments of broadcast, where each

segment holds a sequence of items with increasing key

values. So, the effectiveness of indexing diminishes. More-

over, since a signature does not provide the arrival times of

data items, when a match is found, the buckets indexed by

the signature have to be searched sequentially. As a result,

Hybrid has considerably higher tuning time than the other

schemes (see Fig. 8).

Fig. 9 summarizes the total energy cost for different

schemes. It shows that the energy cost of MHash decreases

with increasing access skewness and is much lower than

that of other schemes under skewed access distribution.

MHash saves more than 40 percent and 60 percent of the

energy compared to the other schemes at � values of 1.0 and

1.5, respectively.

5 CONCLUSIONS

We have presented an MHash indexing scheme that

optimizes access latency and tuning time in an integrated

fashion for wireless data broadcast. MHash reduces tuning

time by mapping data items to the slots in the broadcast

schedule via a hash function. We have shown that a hole-

free hash function for the purpose of broadcast scheduling

can be constructed by injecting an offset into an arbitrary

hash function. Meanwhile, the two-argument nature of the

hash function allows each data item to be broadcast for an

adjustable number of times in a cycle. Popular items are

broadcast more frequently than unpopular ones, thereby

enabling nonflat data broadcast to reduce access latency.

1120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

Fig. 8. Average tuning time versus Zipf parameter.

Fig. 9. Normalized energy cost versus Zipf parameter.
Fig. 7. Average access latency versus Zipf parameter.

We have derived an optimal bandwidth allocation for

MHash indexing. Experimental results show that under

skewed access distribution, MHash outperforms state-of-

the-art air indexing schemes and achieves access latency

close to optimal broadcast scheduling.

APPENDIX A

Proof of Theorem 1. We first show that hN�1ðHÞ ¼ hN�2ðHÞ.
This is because if fN�1ðHÞ > 0, it follows from (2) in

Section 3.2 that hN�1ðHÞ ¼ hN�2ðHÞ. Otherwise, if

fN�1ðHÞ ¼ 0, since
PN�1

j¼0 fjðHÞ ¼ N , we have

XN�2

j¼0

fjðHÞ ¼
XN�1

j¼0

fjðHÞ ¼ N > N � 1 � N � 1� hN�2ðHÞ:

Therefore, based on (2), hN�1ðHÞ ¼ hN�2ðHÞ. This im-

plies the last slot in the cycle cannot be a hole, i.e., b exists

and 0 � b � N � 1.

If all slots from 0 to N � 1 are hole-free under Hðk; lÞ,
then b ¼ 0 and the conclusion is trivial. Otherwise, if

1 � b � N � 1, two properties follow from the definition

of b: 1) slot ðb� 1Þ is a hole, i.e., hb�1ðHÞ ¼ hb�2ðHÞ þ 1

and, 2) for each b � i � N � 1, hiðHÞ ¼ hi�1ðHÞ.
Next, we show that the hash function

H 0ðk; lÞ ¼ ðHðk; lÞ � bÞmodN

is hole-free, i.e., for each 0 � i � N � 1, hiðH 0Þ ¼ 0. Note

that the definition of H 0ðk; lÞ indicates

fiðH 0Þ ¼ fðbþiÞmodNðHÞ:

Since hb�1ðHÞ ¼ hb�2ðHÞ þ 1, based on (2), we have

fb�1ðHÞ ¼ 0 and
Pb�2

j¼0 fjðHÞ ¼ b� 1� hb�2ðHÞ. Thus,

Xb�1

j¼0

fjðHÞ ¼
Xb�2

j¼0

fjðHÞ ¼ b� 1� hb�2ðHÞ¼ b� hb�1ðHÞ: ð5Þ

According to Property 2, hbðHÞ ¼ hb�1ðHÞ. Combining

(2) and (5), we must have fbðHÞ > 0. Therefore,

f0ðH 0Þ ¼ fbðHÞ > 0. It follows from (2) that h0ðH 0Þ ¼ 0.

To prove that, for each 1 � i � N � 1, hiðH 0Þ ¼ 0, we

consider three cases separately.
Case 1. 1 � i � N � b� 1.

Prove by induction. Suppose hi�1ðH 0Þ ¼ hi�2ðH 0Þ ¼
. . . ¼ h0ðH 0Þ ¼ 0 for some 1 � i � N � b� 1, we show

that hiðH 0Þ ¼ 0.

Since 1 � i � N � b� 1, we have fiðH 0Þ ¼ fbþiðHÞ.
According to Property 2, hbþiðHÞ ¼ hbþi�1ðHÞ. It follows

from (2) that either fbþiðHÞ > 0 or

Xbþi�1

j¼0

fjðHÞ > bþ i� hbþi�1ðHÞ:

If fbþiðHÞ > 0, we have fiðH 0Þ ¼ fbþiðHÞ > 0 and, hence,

based on (2), hiðH 0Þ ¼ hi�1ðH 0Þ. Otherwise, if

Xbþi�1

j¼0

fjðHÞ > bþ i� hbþi�1ðHÞ;

based on (5),

Xi�1

j¼0

fjðH 0Þ ¼
Xi�1

j¼0

fbþjðHÞ

¼
Xbþi�1

j¼b
fjðHÞ

¼
Xbþi�1

j¼0

fjðHÞ �
Xb�1

j¼0

fjðHÞ

¼
Xbþi�1

j¼0

fjðHÞ � ðb� hb�1ðHÞÞ

> bþ i� hbþi�1ðHÞ � ðb� hb�1ðHÞÞ
¼ i� hbþi�1ðHÞ þ hb�1ðHÞ:

Note that Property 2 implies

hbþi�1ðHÞ ¼ hbþi�2ðHÞ ¼ . . . ¼ hb�1ðHÞ:

Therefore,

Xi�1

j¼0

fjðH 0Þ > i ¼ i� hi�1ðH 0Þ:

It follows from (2) that hiðH 0Þ ¼ hi�1ðH 0Þ ¼ 0.

Case 2. i ¼ N � b.
Based on (5) and

PN�1
j¼0 fjðHÞ ¼ N ,

XN�b�1

j¼0

fjðH 0Þ ¼
XN�b�1

j¼0

fbþjðHÞ

¼
XN�1

j¼b
fjðHÞ

¼
XN�1

j¼0

fjðHÞ �
Xb�1

j¼0

fjðHÞ

¼ N � ðb� hb�1ðHÞÞ:

According to Property 1,

hb�1ðHÞ ¼ hb�2ðHÞ þ 1 > 0:

Also, it has been proven in Case 1 that hN�b�1ðH 0Þ ¼ 0.

Therefore,

XN�b�1

j¼0

fjðH 0Þ ¼ N � bþ hb�1ðHÞ

> N � b
¼ N � b� hN�b�1ðH 0Þ:

It follows from (2) that

hN�bðH 0Þ ¼ hN�b�1ðH 0Þ ¼ 0:

Case 3. N � bþ 1 � i � N � 1.
Again, prove by induction. Note that it has been

proven in Case 2 that hN�bðH 0Þ ¼ 0. Suppose

hi�1ðH 0Þ ¼ hi�2ðH 0Þ ¼ . . . ¼ hN�bðH 0Þ ¼ 0

for someN � bþ 1 � i � N � 1, we show that hiðH 0Þ ¼ 0.

YAO ET AL.: AN ENERGY-EFFICIENT AND ACCESS LATENCY OPTIMIZED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 1121

For each N � bþ 1 � j � N � 1, fjðH 0Þ ¼ fjþb�NðHÞ.
Based on (5) and

PN�1
j¼0 fjðHÞ ¼ N , we have

Xi�1

j¼0

fjðH 0Þ ¼
XN�b�1

j¼0

fjðH 0Þ þ
Xi�1

j¼N�b
fjðH 0Þ

¼
XN�1

j¼b
fjðHÞ þ

Xiþb�N�1

j¼0

fjðHÞ

¼
XN�1

j¼0

fjðHÞ �
Xb�1

j¼0

fjðHÞ þ
Xiþb�N�1

j¼0

fjðHÞ

¼ N � ðb� hb�1ðHÞÞ þ
Xiþb�N�1

j¼0

fjðHÞ:

Recall from Section 3.2 that for each 1 � m � N � 1,

Xm�1

j¼0

fjðHÞ � m� hm�1ðHÞ:

Thus,

Xiþb�N�1

j¼0

fjðHÞ � ðiþ b�NÞ � hiþb�N�1ðHÞ:

On the other hand, it follows from Property 1 that

hb�1ðHÞ > hmðHÞ for any 0 � m � b� 2. Since

0 � iþ b�N � 1 � b� 2;

we have

hb�1ðHÞ > hiþb�N�1ðHÞ:

Therefore,

Xi�1

j¼0

fjðH 0Þ � N � bþ hb�1ðHÞ þ ðiþ b�NÞ � hiþb�N�1ðHÞ

¼ iþ hb�1ðHÞ � hiþb�N�1ðHÞ
> i

¼ i� hi�1ðH 0Þ:

Based on (2), hiðH 0Þ ¼ hi�1ðH 0Þ ¼ 0.

Therefore, for each 0 � i � N � 1, hiðH 0Þ ¼ 0. Hence,

the theorem is proven. tu

APPENDIX B

Proof of Theorem 2. Assume on the contrary that there exist

1 � i < j � n such that ri > rj in R ¼ ðr1; r2; . . . ; rnÞ: We

consider two cases, pi < pj and pi ¼ pj, separately.

If pi < pj, we construct a new allocation R0 by

swapping the bandwidth fractions allocated to di and

dj in R, i.e.,

R0 ¼ ðr1; . . . ; ri�1; rj; riþ1; . . . ; rj�1; ri; rjþ1; . . . ; rnÞ:

The access latency of R0 is given by

T 0 ¼ 1

2

pi
rj
þ pj
ri
þ

Xn
k¼1;k 6¼i;k6¼j

pk
rk

 !
:

Note that the access latency of R ¼ ðr1; . . . ; rnÞ is

T ¼ 1

2

Xn
k¼1

pk
rk
:

Since

T � T 0 ¼ 1

2

pi
ri
þ pj
rj

� �
� pi

rj
þ pj
ri

� �� �

¼ ðrj � riÞðpi � pjÞ
2rirj

> 0;

it follows that T > T 0, which contradicts with the

optimality of R.

If pi ¼ pj, we construct a new allocation R00 by

equalizing the bandwidth fractions allocated to di and

dj in R, i.e.,

R00 ¼ ðr1; . . . ; ri�1;
1

2
ðri þ rjÞ; riþ1; . . . ; rj�1;

1

2
ðri þ rjÞ; rjþ1; . . . ; rnÞ:

The access latency of R00 is given by

T 00 ¼ 1

2

pi

1
2 ðri þ rjÞ

þ pj
1
2 ðri þ rjÞ

þ
Xn

k¼1;k6¼i;k6¼j

pk
rk

!
:

Since

T � T 00 ¼ 1

2

pi
ri
þ pj
rj

� �
� pi

1
2 ðri þ rjÞ

þ pj
1
2 ðri þ rjÞ

 ! !

¼ ðrj � riÞðpirj � pjriÞ
2rirjðri þ rjÞ

¼ piðrj � riÞ2

2rirjðri þ rjÞ
> 0;

it follows that T > T 00, which also contradicts with the

optimality of R.

Hence, the theorem is proven. tu

APPENDIX C

Proof of Theorem 3. Assume on the contrary that rn
r1
< M.

We construct a new allocation R0 by reallocating the

bandwidth between d1 and dn such that their bandwidth

fractions differ by a factor of M, i.e.,

R0 ¼ ðr01; r2; r3; . . . ; rn�1; r
0
nÞ;

where r01 ¼ r1þrn
Mþ1 , and r0n ¼

Mðr1þrnÞ
Mþ1 . The access latency of

R0 is given by

T 0 ¼ 1

2

p1

r01
þ pn
r0n
þ
Xn�1

k¼2

pk
rk

 !
:

1122 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

The access latency of R ¼ ðr1; r2; . . . ; rnÞ is

T ¼ 1

2

Xn
k¼1

pk
rk
:

Thus,

T � T 0 ¼ 1

2

p1

r1
þ pn
rn

� �
� p1

r01
þ pn
r0n

� �� �

¼ 1

2

p1

r1
þ pn
rn

� �
� p1

r1þrn
Mþ1

þ pn
Mðr1þrnÞ
Mþ1

 ! !

¼ ðrn �Mr1ÞðMp1rn � pnr1Þ
2Mr1rnðr1 þ rnÞ

:

Since pn
p1
> M2 and rn

r1
< M, we have rn �Mr1 < 0 and

Mp1rn � pnr1 < 0. Therefore, T � T 0 > 0, which contra-
dicts with the optimality of R.

Hence, the theorem is proven. tu

APPENDIX D

Proof of Theorem 4. We first prove Claim 1 by contra-

diction. Assume, on the contrary, that
pj
pi
�M2. We

construct a new allocationR0 by moving some bandwidth

fraction from di to dj under the constraint that the relative

order of bandwidth fractions does not change, i.e.,

R0 ¼ ðr1; . . . ; ri�1; r
0
i; riþ1; . . . ; rj�1; r

0
j; rjþ1; . . . ; rnÞ;

whereas r0i ¼ ri �4, r0j ¼ rj þ4, and

4 ¼ minðrjþ1 � rj; ri � ri�1Þ > 0:

It is easy to see that R0 satisfies the differentiation
constraint of the MHash bandwidth allocation problem.
The access latency of R0 is given by

T 0 ¼ 1

2

pi
ri �4

þ pj
rj þ4

þ
Xn

k¼1;k6¼i;k6¼j

pk
rk

 !
:

Note that the access latency of R ¼ ðr1; r2; . . . ; rnÞ is

T ¼ 1

2

Xn
k¼1

pk
rk
:

Thus,

T � T 0 ¼ 1

2

pi
ri
þ pj
rj

� �
� pi

ri �4
þ pj
rj þ4

� �� �

¼ 1

2

pj4
ðrj þ4Þrj

� pi4
ðri �4Þri

� �

¼ 4ðpjriðri �4Þ � pirjðrj þ4ÞÞ
2rirjðri �4Þðrj þ4Þ

:

Since ri �4 � ri�1 and rj þ4 � rjþ1, we have

rj þ4
ri �4

� rjþ1

ri�1
¼M:

Note that
rj
ri
< M and

pj
pi
�M2. Therefore,

rj
ri
� rj þ4
ri �4

< M2 � pj
pi
;

and

pjriðri �4Þ > pirjðrj þ4Þ:

Thus, it follows that T > T 0 which contradicts with the

optimality of R.
Next, we prove Claim 2 by contradiction. Assume, on

the contrary, that
pjþ1

pi�1
< M2. We construct a new alloca-

tion R00 by reallocating the bandwidth between di�1 and
djþ1 proportionally to the square-root of their access
probabilities, i.e.,

R00 ¼ ðr1; . . . ; ri�2; r
00
i�1; ri; . . . ; rj; r

00
jþ1; rjþ2; . . . ; rnÞ;

where

r00jþ1 ¼ ðri�1 þ rjþ1Þ �
ffiffiffiffiffiffiffiffiffi
pjþ1
pffiffiffiffiffiffiffiffiffi

pjþ1
p þ ffiffiffiffiffiffiffiffiffi

pi�1
p

and

r00i�1 ¼ ðri�1 þ rjþ1Þ �
ffiffiffiffiffiffiffiffiffi
pi�1
pffiffiffiffiffiffiffiffiffi

pjþ1
p þ ffiffiffiffiffiffiffiffiffi

pi�1
p :

It is easy to see that R00 satisfies the differentiation
constraint of the MHash bandwidth allocation problem.
The access latency of R00 is given by

T 00 ¼ 1

2

pi�1

r00i�1

þ pjþ1

r00jþ1

þ
Xn

k¼1;k 6¼i�1;k 6¼jþ1

pk
rk

 !
:

Since rjþ1 ¼Mri�1,

T � T 00 ¼ 1

2
�

pi�1

ri�1
þ pjþ1

rjþ1

!
� pi�1

r00i�1

þ pjþ1

r00jþ1

 ! !

¼ 1

2

pi�1

ri�1
þ pjþ1

rjþ1
�
pi�1ð

ffiffiffiffiffiffiffiffiffi
pjþ1
p þ ffiffiffiffiffiffiffiffiffi

pi�1
p Þ

ðri�1 þ rjþ1Þ
ffiffiffiffiffiffiffiffiffi
pi�1
p

�
pjþ1ð

ffiffiffiffiffiffiffiffiffi
pjþ1
p þ ffiffiffiffiffiffiffiffiffi

pi�1
p Þ

ðri�1 þ rjþ1Þ
ffiffiffiffiffiffiffiffiffi
pjþ1
p

!

¼
ðM ffiffiffiffiffiffiffiffiffi

pi�1
p � ffiffiffiffiffiffiffiffiffi

pjþ1
p Þ2

2ri�1ðM þ 1ÞM
> 0:

Therefore, T > T 00 which contradicts with the
optimality of R.

Hence, the theorem is proven. tu

REFERENCES

[1] Hughes Network Systems, http://www.direcway.com, 2006.
[2] MSN Direct Service, http://www.msndirect.com, 2006.
[3] StarBand, http://www.starband.com, 2006.
[4] S. Acharya, R. Alonso, M.J. Franklin, and S. Zdonik, “Broadcast

Disks: Data Management for Asymmetric Communication Envir-
onments,” Proc. ACM SIGMOD ’95, pp. 199-210, May 1995.

[5] D. Barbara, “Mobile Computing and Databases—A Survey,” IEEE
Trans. Knowledge and Data Eng., vol. 11, no. 1, pp. 108-117, Jan./
Feb. 1999.

[6] J.L. Carter and M.N. Wegman, “Universal Classes of Hash
Functions,” J. Computer and System Sciences, vol. 18, no. 2,
pp. 143-154, Apr. 1979.

[7] M.-S. Chen, K.-L. Wu, and P.S. Yu, “Optimizing Index Allocation
for Sequential Data Broadcasting in Wireless Mobile Computing,”
IEEE Trans. Knowledge and Data Eng., vol 15, no. 1, pp. 161-173,
Jan./Feb. 2003.

YAO ET AL.: AN ENERGY-EFFICIENT AND ACCESS LATENCY OPTIMIZED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 1123

[8] Q. Hu, W.-C. Lee, and D.L. Lee, “A Hybrid Index Technique for
Power Efficient Data Broadcast,” Distributed and Parallel Databases
vol. 9, no. 2, pp. 151-177, Mar. 2001.

[9] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Power
Efficient Filtering of Data on Air,” Proc. Fourth Int’l Conf. Extending
Database Technology, pp. 245-258, Mar. 1994.

[10] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data on Air:
Organization and Access,” IEEE Trans. Knowledge and Data Eng.,
vol. 9, no. 3, pp. 353-372, May/June 1997.

[11] K.C.K. Lee, H.V. Leong, and A. Si, “Semantic Data Broadcast for a
Mobile Environment Based on Dynamic and Adaptive Chunk-
ing,” IEEE Trans. Computers, vol. 51, no. 10, pp. 1253-1268, Oct.
2002.

[12] W.-C. Lee and D.L. Lee, “Using Signature Techniques for
Information Filtering in Wireless and Mobile Environments,”
Distributed and Parallel Databases, vol. 4, no. 3, pp. 205-227, July
1996.

[13] W.-C. Peng, J.-L. Huang, and M.-S. Chen, “Dynamic Leveling:
Adaptive Data Broadcasting in a Mobile Computing Environ-
ment,” ACM/Kluwer Mobile Networks and Applications, vol. 8, no. 4,
pp. 355-364, Aug. 2003.

[14] W.-C. Peng and M.-S. Chen, “Efficient Channel Allocation Tree
Generation for Data Broadcasting in a Mobile Computing
Environment,” ACM/Kluwer Wireless Networks, vol. 9, no. 2,
pp. 117-129, Mar. 2003.

[15] T. Sakata and J.X. Yu, “Statistical Estimation of Access Frequen-
cies: Problems, Solutions and Consistencies,” ACM/Kluwer Wire-
less Networks, vol. 9, no. 6, pp. 647-657, Nov. 2003.

[16] N. Shivakumar and S. Venkatasubramanian, “Efficient Indexing
for Broadcast Based Wireless Systems,” ACM/Baltzer Mobile
Networks and Applications, vol. 1, no. 4, pp. 433-446, Dec. 1996.

[17] C.J. Su, L. Tassiulas, and V.J. Tsotras, “Broadcast Scheduling for
Information Distribution,” ACM/Baltzer Wireless Networks, vol. 5,
no. 2, pp. 137-147, Mar. 1999.

[18] D.G. Thaler and C.V. Ravishankar, “Using Name-Based Mappings
to Increase Hit Rates,” IEEE/ACM Trans. Networking, vol. 6, no. 1,
pp. 1-14, Feb. 1998.

[19] N.H. Vaidya and S. Hameed, “Scheduling Data Broadcast in
Asymmetric Communication Environments,” ACM/Baltzer Wire-
less Networks, vol. 5, no. 3, pp. 171-182, May 1999.

[20] M.A. Viredaz, L.S. Brakmo, and W.R. Hamburgen, “Energy
Management on Handheld Devices,” ACM Queue, vol. 1, no. 7,
pp. 44-52, Oct. 2003.

[21] J. Xu, Q. Hu, W.-C. Lee, and D.L. Lee, “Performance Evaluation of
an Optimal Cache Replacement Policy for Wireless Data Dis-
semination,” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 1,
pp. 125-139, Jan. 2004.

[22] J. Xu, W.-C. Lee, and X. Tang, “Exponential Index: A Parameter-
ized Distributed Indexing Scheme for Data on Air,” Proc. ACM/
USENIX MobiSys, pp. 153-164, June 2004.

[23] J. Xu, W.-C. Lee, X. Tang, Q. Gao, and S. Li, “An Error-Resilient
and Tunable Distributed Indexing Scheme for Wireless Data
Broadcast,” IEEE Trans. Knowledge and Data Eng., vol. 18, no. 3,
pp. 92-404, Mar. 2006.

[24] J. Xu, X. Tang, and D.L. Lee, “Performance Analysis of Location-
Dependent Cache Invalidation Schemes for Mobile Environ-
ments,” IEEE Trans. Knowledge and Data Eng., vol. 15, no. 2,
pp. 474-488, Mar./Apr. 2003.

[25] J. Xu, X. Tang, and W.-C. Lee, “Time-Critical On-Demand Data
Broadcast: Algorithms, Analysis, and Performance Evaluation,”
IEEE Trans. Parallel and Distributed Systems, vol. 17, no. 1, pp. 3-14,
Jan. 2006.

[26] J. Xu, B. Zheng, W.-C. Lee, and D.L. Lee, “The D-Tree: An Index
Structure for Planar Point Queries in Location-Based Wireless
Services,” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 12,
pp. 1526-1542, Dec. 2004.

[27] J.X. Yu and K.L. Tan, “An Analysis of Selective Tuning Schemes
for Nonuniform Broadcast,” Data and Knowledge Eng., vol. 22, no. 3,
pp. 319-344, May 1997.

[28] B. Zheng, J. Xu, W.-C. Lee, and D.L. Lee, “Energy-Conserving Air
Indexes for Nearest Neighbor Search,” Proc. Ninth Int’l Conf.
Extending Database Technology, pp. 48-66, Mar. 2004.

[29] G.K. Zipf, Human Behavior and the Principles of Least Effort,
Addison-Wesley, 1949.

Yuxia Yao received the BSc degree in computer
science in 2003 from Huazhong University of
Science and Technology, Wuhan, China. Cur-
rently, she is a PhD candidate in the School of
Computer Engineering at Nanyang Technologi-
cal University, Singapore. Her research interests
include mobile computing, wireless sensor net-
works, and spatial databases.

Xueyan Tang received the BEng degree in
computer science and engineering from Shang-
hai Jiao Tong University, Shanghai, China, in
1998 and the PhD degree in computer science
from the Hong Kong University of Science and
Technology in 2003. He is currently an assistant
professor in the School of Computer Engineer-
ing at Nanyang Technological University, Singa-
pore. He has served as a program committee
member for IEEE Infocom ’04 and WWW ’05. He
is also an editor of the book Web Content

Delivery (Springer). His research interests include mobile and pervasive
computing, wireless sensor networks, Web and Internet, and distributed
systems, particularly the data management aspects of these areas. He
has published more than 30 papers in prestigious journals and
conferences. He is a member of the IEEE.

Ee-Peng Lim received the PhD degree from
the University of Minnesota, Minneapolis in
1994 and the BSc degree in computer
science from National University of Singapore.
He is an associate professor with the School
of Computer Engineering, Nanyang Technolo-
gical University, Singapore. He is the head of
the division of information systems at the
School of Computer Engineering of the
Nanyang Technological University. His re-

search interests include information integration, data/text/web mining,
digital libraries, and wireless intelligence. His papers have appeared
in the ACM Transactions on Information Systems, the IEEE
Transactions on Knowledge and Data Engineering, Data and
Knowledge Engineering, and other major journals. He is currently
an associate editor of the ACM Transactions on Information
Systems, the International Journal of Digital Libraries, and the
International Journal of Data Warehousing and Mining. He was a
program cochair of the 2004 ACM/IEEE Joint Conference on Digital
Libraries and a conference and program cochair of the 2004
International Conference on Asian Digital Libraries. He was a
cochair of the third, fourth and fifth ACM Workshops on Web
Information and Data Management. He is a senior member of the
IEEE and a member of the ACM.

Aixin Sun received the PhD and BASc degrees
with first-class honors from the Nanyang Tech-
nological University, Singapore, in 2004 and
2001, respectively, both in computer engineer-
ing. He is an assistant professor with the School
of Computer Engineering, Nanyang Technologi-
cal University, Singapore. His research interests
include text/Web mining, information retrieval,
and machine learning. His papers have ap-
peared in the IEEE Transactions on Knowledge

and Data Engineering, the Journal of the American Society for
Information Science and Technology, Knowledge and Information
Systems, and major data mining conferences including CIKM and
ICDM. He is a member of the IEEE, the IEEE Computer Society, and
the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1124 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	8-2006

	An energy-efficient and access latency optimized indexing scheme for wireless data broadcast
	Yuxia YAO
	Xueyan TANG
	Ee Peng LIM
	Aixin SUN
	Citation

	untitled

