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Chapter 21
Semiparametric Analysis in Conditionally
Independent Multivariate Mixture Models

Tracey W. Hammel, Thomas P. Hettmansperger, Denis H.Y. Leung,
and Jing Qin

Abstract The conditional independence assumption is commonly used in mul-
tivariate mixture models in behavioral research. We propose an exponential tilt
model to analyze data from a multivariate mixture distribution with conditionally
independent components. In this model, the log ratio of the density functions of
the components is modeled as a quadratic function in the observations. There
are a number of advantages in this approach. First, except for the exponential
tilt assumption, the marginal distributions of the observations can be completely
arbitrary. Second, unlike some previous methods, which require the multivariate
data to be discrete, modeling can be performed based on the original data.

Keywords Empirical likelihood • Exponential tilting • Repeated measures •
Mixture distribution • Multivariate

21.1 Introduction

There are many applications where the interest is to classify n observations into
m groups based on k measures on each observation. For example, Hettmansperger
and Thomas (2000) and Cruz-Medina et al. (2004) described an experiment in
developmental psychology where repeated measurements are made on children’s
responses to a cognitive task and the interest is to classify children into different
groups based on the repeated measurements. The repeated measures data can

T.W. Hammel • T.P. Hettmansperger (�)
Department of Statistics, Penn State University, University Park, PA, USA
e-mail: traceywrobel@gmail.com; tph@stat.psu.edu

D.H.Y. Leung
School of Economics, Singapore Management University, Singapore, Singapore
e-mail: denisleung@smu.edu.sg

J. Qin
Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda,
MD, USA
e-mail: jingqin@niaid.nih.gov

© Springer International Publishing Switzerland 2015
K. Nordhausen, S. Taskinen (eds.), Modern Nonparametric, Robust
and Multivariate Methods, DOI 10.1007/978-3-319-22404-6_21

371

mailto:traceywrobel@gmail.com
mailto:tph@stat.psu.edu
mailto:denisleung@smu.edu.sg
mailto:jingqin@niaid.nih.gov


372 T.W. Hammel et al.

be considered to come from a mixture of multivariate distributions, with the
components corresponding to the response distributions in the different groups of
observations, the number of components corresponding to the number of groups,
and the mixing proportions corresponding to the proportions in the population that
belong to the different groups. Two problems are of interest. First, to determine the
number of groups. Second, to estimate the underlying component distributions and
the mixing proportions.

Analysis of multivariate mixture distributions is a difficult problem (see, e.g.,
Titterington et al. 1985; Lindsay 1995; McLachlan and Peel 2000). Computation is
commonly carried out using the EM algorithm (Dempster et al. 1977), which typ-
ically requires parametric distributional assumptions. However, a number of works
(Thomas and Lohaus 1993; Hettmansperger and Thomas 2000; Hall and Zhou 2003;
Cruz-Medina et al. 2004; Leung and Qin 2006; Chang and Walther 2007; Benaglia
et al. 2009) showed that a semiparametric or nonparametric approach might be a
flexible and robust alternative to a parametric approach.

In the situation described in the first paragraph, each child who participated
in the study was given a total of six tasks, each randomly selected from a large
pool of similar tasks. As a result, it is unlikely for a child to predict the next task
and hence the responses to different tasks can be considered independent of each
other. This observation led us to make the assumption of conditional independence,
which means that conditional on component membership, the multivariate com-
ponent distribution is the product of its marginals; see also Sect. 21.7. Under the
conditional independence assumption, the m component mixture has probability
density function (PDF) or probability mass function (PMF)

h.x1; : : : ; xk/ D
mX

lD1
�l

kY

jD1
flj.xj/; (21.1)

where �l is the mixing proportion for the lth component and flj is the PDF (or
PMF) for the lth component of the jth repeated measure. Later, we impose further
structural assumptions. Unlike previous works (Hettmansperger and Thomas 2000;
Cruz-Medina et al. 2004; Leung and Qin 2006; Chang and Walther 2007), (21.1)
does not require identical marginal distributions. Conditional independence of
multivariate data can also be seen as a special case of the popular random effects
model with clustered data (Liu and Pierce 1994; Qu and Hadgu 1998).

A histogram of the data in the study (Cruz-Medina et al. 2004, Fig. 1) shows
that the data distribution is unremarkable; there is no immediate resemblance to any
well-known distribution. This observation motivates a semiparametric approach to
analyzing the data. We assume the component densities are related by an exponential
tilt (density-ratio) model (Anderson 1979). For a two-component mixture with PDFs
f and g, our exponential tilt model assumes f and g are related by log .g.x/=f .x// D
˛CˇxC�x2. As a parallel to the Cox proportional hazards model and the Lehmann
alternative model, the exponential tilt model is very versatile, due to its natural
connection to the logistic model. Kay and Little (1986) discuss various versions
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of the exponential tilt model for some common distributions. Because the normal
PDF has a quadratic exponent, any two normal PDFs satisfy the condition for
the exponential tilt model described above. In many situations where common
parametric distributions do not fit the observed data well, the exponential tilt model
still can provide excellent fits (Qin and Zhang 1997; Nagelkerke et al. 2001; Zhang
2001; Qin et al. 2002; White and Thompson 2003). Efron and Tibshirani (1996)
argue that the exponential tilt is a favorable compromise between parametric and
nonparametric density estimation.

The rest of this paper is organized as follows. Details of the method are described
in Sect. 21.2. The exponential tilt model is formulated using an empirical likelihood
(Owen 1988). Under mild conditions, the model is uniquely identifiable up to label
switching, which is important for estimating the underlying mixture structure. In
Sect. 21.3, we present an EM algorithm. Estimation of features of the component
distributions is discussed in Sect. 21.4. In Sect. 21.5, we evaluate the method using
simulations. In Sect. 21.6, we propose a model selection criterion based on the
BIC (Bayesian Information Criterion; Schwarz 1978) to estimate the number of
components in the mixture. In Sect. 21.7, the method is applied to the data of Cruz-
Medina et al. (2004). Section 21.8 concludes with a discussion of possible future
work.

21.2 Exponential Tilt Model

We consider n multivariate vectors X1; : : : ;Xn from an m component, k dimensional
multivariate mixture distribution, where X>

i D .xi1; : : : ; xik/, i D 1; : : : ; n.
Let .x1; : : : ; xk/ be a generic observation, then its joint PDF can be written as

h.x1; : : : ; xk/ D �1

kY

jD1
fj.xj/C

mX

lD2
�l

kY

jD1
glj.xj/; (21.2)

where fj and glj represent univariate PDFs, �1 is the mixing proportion of component
one (the baseline distribution), 0 < �l < 1 is the mixing proportion of component
l and

Pm
lD1 �l D 1. Let H;Fj; and Glj denote the CDFs corresponding to

h; fj; and glj, respectively.
Let fj and glj be related by a quadratic exponential tilt model

log
�
glj.xj/=fj.xj/

� D ˛lj C ˇljxj C �ljx
2
j ; (21.3)

where ˛lj, ˇlj, and �lj are unknown parameters. The PDF (21.2) can be re-written as

h.x1; : : : ; xk/ D
2

4�1 C
mX

lD2
�l exp

8
<

:

kX

jD1
˛lj C ˇljxj C �ljx

2
j

9
=

;

3

5
kY

jD1
fj.xj/: (21.4)
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Theorem 8 of Allman et al. (2009) states that a mixture of the form (1) is uniquely
identifiable up to label switching provided that k � 3 and, for each j D 1; : : : ; k,
the m distributions are linearly independent. This result makes sense since linear
independence precludes expressing any one of the coordinate distributions as a
linear combination of the other m � 1 distributions. Since, in our case,

Pm
lD1 �l D 1

and 0 < �l < 1, and for each j D 1; : : : ; k

�1 C
mX

lD2
�l exp

˚
˛lj C ˇljxj C �ljx

2
j

� ¤ 0 for � 1 < xj < 1;

identifiability follows for model (21.4). For earlier results on identifiability in
nonparametric mixtures, see Hall and Zhou (2003), Hall et al. (2005), and Elmore
et al. (2005).

Let �>
lj D .˛lj; ˇlj; �lj/, Qx>

ij D .1; xij; x2ij/, Qxj the counterpart of Qxij for a generic

observation, �> D .�1; : : : ; �m/, �> D .�21; : : : ;�mk/ and ı> D .�>;�>/, then
the likelihood based on the observed data is

L.ı;F1; : : : ;Fk/ D
nY

iD1

2

4

8
<

:�1 C
mX

lD2
�l exp

0

@
kX

jD1
Qx>

ij � lj

1

A

9
=

;

kY

jD1
dFj.xij/

3

5 :

The maximizing Fj only jumps at each observed xij (Owen 1988). Let the jump sizes
be pij, then the log-likelihood is

`.ı; p11; : : : ; pnk/ D
nX

iD1

2

4log

8
<

:�1 C
mX

lD2
�l exp

0

@
kX

jD1
Qx>

ij � lj

1

A

9
=

;C
kX

jD1
log pij

3

5 :

(21.5)

For fixed ı, ` can be maximized with respect to the pijs subject to the constraints

nX

iD1
pij D 1; pij � 0;

nX

iD1
pij exp

�Qx>
ij � lj

� D 1; j D 1; : : : ; k; l D 2; : : : ;m:

(21.6)

The last k constraints in (21.6) come from model (21.3) and are responsible for
ensuring that the resulting glj are proper PDFs. The constrained maximization can
be accomplished using a Lagrange multiplier argument, which leads to

pij D 1

n

"
1

1C 1
n

Pm
lD2 �ljfexp.Qx>

ij � lj/� 1g

#
; i D 1; : : : ; n; j D 1; : : : ; k;

(21.7)



21 Multivariate Mixtures 375

where �> � .�21; : : : ; �mk/ are Lagrange multipliers determined by

nX

iD1

exp.Qx>
ij � lj/� 1

1C 1
n

Pm
lD2 �ljfexp.Qx>

ij � lj/ � 1g D 0; j D 1; : : : ; k; l D 2; : : : ;m: (21.8)

Note that if the exponential tilt parameters �>
lj D 0, then (21.7) would simply be the

weights found for the empirical distribution, namely 1=n. Substituting the pijs back
into (21.5) gives a log-profile likelihood

`p.ı/ D
nX

iD1
log

8
<

:�1 C
mX

lD2
�l exp

0

@
kX

jD1
Qx>

ij � lj

1

A

9
=

;

�
nX

iD1

kX

jD1
log

"
n C

mX

lD2
�ljfexp.Qx>

ij � lj/� 1g
#
: (21.9)

Denote the maximum semiparametric likelihood estimate obtained from maximiz-
ing `p.ı/ by Oı and O� the corresponding value of the Lagrange multipliers at the
maximum likelihood. The following theorem describes the large sample behavior
of the maximum semiparametric likelihood estimate.

Theorem 21.1 Let U.�;�;�/ D .u1; u2; u3/, where u1.�;�;�/ D @`p=@� lj,
u2.�;�;�/ D @`p=@�lj, u3.�;�;�/ D @`p=@�l. Let ı0 � .�0;�0;�0/ be the true
values of ı � .�;�;�) and let the superscript “0” denote a quantity evaluated at
ı0. Assume the conditions hold:

[C1] E
˚
U0.U0/>

�
is positive definite; and the rank of E

�
@U0=@ı

�
is 2.m � 1/k C

.m � 1/, which is also the dimension of ı.

[C2] @2U.ı/=.@ı@ı>/ is continuous in a neighborhood of ı0 where k@U.ı/=@ık
is bounded, E.jjU.ı/jj/2 < 1.

[C3] Functions are sufficiently smooth to allow differentiation under the integral.
and 0 < �1; : : : ; �m < 1, then for any sufficiently smooth function g,

p
ng. O� � �0; O� � �0; O� � �0/

d! N.0;˙ g/:

Furthermore, asymptotically, the estimates achieve semiparametric efficiency.

Proof For a matrix a, denote its i; jth element by ai;j and let A D E.a/ where the
expectation is taken under ı0. Write w�

il D �l=f�1 C Pm
lD2 �l exp.

Pk
jD1 Qx>

ij � lj/g,

v�
ilj D �lj=Œ1 C 1=n

Pm
lD2 �ljfexp.Qx>

ij � lj/ � 1g�: Let Pw0
il;� l0 j0

D w�0
il @=@� l0j0f�0l
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exp.
Pk

jD1 Qx>
ij �0lj/g, Pv0ilj;� l0 j0

D v�0
lj @=@� l0j0 Œ�

0
ljfexp.Qx>

ij �0lj/ � 1g� and similarly for

Pw0
il;�l0 j0

, Pw0
il;�l0

, Pv0ilj;�l0 j0
, Pv0ilj;�l0

, Pv�0
l;� l0 j0

, and Pv�0
l;�l0 j0

.

@U.�0;�0;�0/
@.�;�;�/>

D a D
0

@
a11 a12 a13
a21 a22 0
a31 0 a33

1

A !
0

@
A11 A12 A13

A21 A22 0
A31 0 A33

1

A D A; (21.10)

where

a11.lj; l0j0/ D @u01
@� l0 j0

D
nX

iD1

h
Pw0

il;� l0 j0
� w0il Pw0

il0;� l0 j0

�
n

Pv0ilj;� l0 j0
� v0ilj.Pv0ilj;� l0 j0

� Pv�0
ilj;� l0j0

/
oi

Qx>
ij ;

a12.lj; l0j0/ D @u01
@�l0 j0

D
nX

iD1
Pv0ilj;�l0 j0

� v0ilj.Pv0ilj;�l0 j0
� Pv�0

ilj;�l0 j0
/;

a13.l; l0/ D @u01
@�l0

D
nX

iD1
Pw0

il;�l0
� w0il Pw0

il0 ;�l0
;

a21.lj; l0j0/ D @u02
@� l0 j0

D
nX

iD1

1

�lj

n
Pv0ilj;� l0 j0

� .v0ilj � v�0
ilj /.Pv0ilj;� l0 j0

� Pv�0
ilj;� l0 j0

/
o
;

a22.lj; l0j0/ D @u02
@�l0 j0

D
nX

iD1

1

�lj

n
Pv0ilj;�l0 j0

� .v0ilj � v�0
ilj /.Pv0ilj;�l0 j0

� Pv�0
ilj;�l0 j0

/
o
;

a31.lj; l0j0/ D @u03
@� l0 j0

D
nX

iD1

1

�l

n
Pw0

il;� l0j0
� .w0il � w�0

il / Pw0
il0 ;� l0 j0

o
;

a33.l; l0/ D @u03
@�l0

D
nX

iD1

1

�l

n
Pw0

il;� l0 j0
� .w0il � w�0

il / Pw0
il0;� l0 j0

o
:

Define row vectors b1;b2;b3 such that b1.lj/ D Pn
iD1.w0il � v0ilj/Qx>

ij , b2.lj/ DPn
iD1 1

�lj
.v0ilj � v�0

ilj /, b3.l/ D Pn
iD1 1

�l
.w0il � w�0

il /. Then
p

nU.�0;�0;�0/ D
n�1.b>

1 ;b
>
2 ;b

>
3 /

> d! N.0;W/; where

W D E

0

@
b>
1 b1 b>

1 b2 b>
1 b3

b>
2 b1 b>

2 b2 b>
2 b3

b>
3 b1 b>

3 b2 b>
3 b3

1

A D
�

W1 W2

W>
2 W3

�
:
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It then follows that

p
n

0

@
O� � �0

O� � �0

O� � �0

1

A D n�1.a>/�1.b>
1 ;b

>
2 ;b

>
3 /

> C op.
p

n/
d! N

˚
0; .AT/�1WA�1� :

We can also study the behavior of particular parameters of interest. In particular,

p
n. O� � �0/

d! N.0;˙ � C>W11C C DW>
12C C C>W12C C DW22D/;

where

0

@
V11 V12 V13

V21 V22 V23

V31 V23 V33

1

A D A�1; D D �
A33 � A>

13V11A13

�
; C D

�
V11A13

V21A13

�
D:

We now prove the semiparametric efficiency of the proposed method. Write
 .x1; : : : ; xk; ı/ D �1 C Pm

lD2 �l exp.
Pk

jD1 Qx>
j � lj/. For a finite dimensional

parameter �, consider a parametric submodel of h.x1; : : : ; xk/

h.x1; : : : ; xk; ı;�/ D  .x1; : : : ; xk; ı/

kY

jD1
fj.xj;�/: (21.11)

The profile likelihood Lp.ı/ is proportional to

h.x1; : : : ; xk; ı;�/

h1.x1; ı;�/ � � � hk.xk; ı;�/
; (21.12)

where hj.xj; ı;�/ D f�1 C Pm
lD2 �l exp.Qx>

j � lj/gfj.xj;�/. Let Sı;S� be the score
functions of ı and � based on (21.11) and (21.12). Write  .ı/ D  .x1; : : : ; xk; ı/,
h.ı;�/ D h.x1; : : : ; xk; ı;�/ hj.ı;�/ D hj.xj; ı;�/, fj.�/ D fj.xj;�/, Phı.ı;�/ D
@h=@ı, P ı.ı/ D @ =@ı and Pf�.�/ D @f=@�. Then

Sı D
Phı.ı;�/

h.ı;�/
�

kX

jD1

Phj;ı.ı;�/

hj.ı;�/
D SA

ı C
kX

jD1
SB

j;ı ;

S� D
Phı.ı;�/

h.ı;�/
D �

kX

jD1

Pfj;�.�/

fj.�/
D

kX

jD1
Sj;�:



378 T.W. Hammel et al.

We will show that Sı and S� are orthogonal by showing E.SA
ı Sj;�/ D 0 and

E.SB
j;ıSj0 ;�/ D 0; j; j0 D 1; : : : ; k and hence, the estimator is efficient. DenoteR � dx � R � � � R � dx1 � � � dxk and

R � dx�1 � R � � � R � dx2 � � � dxk.

E.SA
ı Sj;�/ D

Z Phı.ı;�/

h.ı;�/

Pfj;�.�/

fj.�/
h.ı;�/dx

D
Z

P ı.ı/

kY

jD1
fj.�/

Pfj;�.�/

fj.�/
dx

D @

@ı

Z
@

@�
f�1 C

mX

lD2
�l exp.

kX

jD2
Qx>

j � lj/g
kY

jD2
fj.�/dx�1 D 0:

E.SB
j;ıSj0;�/ D

Z Phj;ı.ı;�/

hj.ı;�/

Pfj0;�.�/

fj0.�/
 .ı/

kY

jD1
fj.�/dx

D
Z Phj;ı.ı;�/

hj.ı;�/

@

@�
f�1 C

mX

lD2
�l exp.

X

j¤j0

Qx>
j � lj/g

kY

j¤j0

fj.�/dx�1 D 0:

ut
The theorem allows us to draw inference about the mixture parameter �, as well
as other quantities, such as component moments, that are smooth functions of the
distribution parameters.

21.3 Estimation

Estimates of the parameters can be found by differentiating (21.9) with respect to
each of the parameters and solving the simultaneous equations:

@`p

@� lj
)

nX

iD1
wil Qx>

ij �
nX

iD1
vilj Qx>

ij D 0; (21.13)

@`p

@�lj
)

nX

iD1

1
n fexp.Qx>

ij � lj/� 1g
1C 1

n

Pm
lD2 �ljfexp.Qx>

ij � lj/� 1g D 0; (21.14)

@`p

@�l
)

nX

iD1

exp.
Pk

jD1 Qx>
ij � lj/� 1

�1 CPm
lD2 �l exp.

Pk
jD1 Qx>

ij � lj/
D 0; (21.15)
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for l D 2; : : : ;m and j D 1; : : : ; k and wil and vilj are defined by

wil D �l exp.
Pk

jD1 Qx>
ij � lj/

�1 CPm
lD2 �l exp.

Pk
jD1 Qx>

ij � lj/
;

vilj D
1
n�lj exp.Qx>

ij � lj/

1C 1
n

Pm
lD2 �ljfexp.Qx>

ij � lj/� 1g : (21.16)

Notice that in (21.14), we have used the fact that �1 D 1 � Pm
lD2 �l. There is

no explicit solution for �l; l D 1; : : : ; k. Therefore, we develop an EM type
algorithm (Dempster et al. 1977). Define the latent variables Z1; : : : ;Zn where
Z>

i D .zi1; : : : ; zim/ for the component membership for the ith observation in
the data set. If the ith observation belonged to the lth component, then Z>

i is a
vector of m � 1 0s and a single 1 in the lth position. Furthermore,

Pm
lD1 zil D 1.

Of course, Zi; i D 1; : : : ; n are not observed. We define the “complete data” as
f.X1;Z1/; : : : ; .Xn;Zn/g; then, a complete data semiparametric likelihood is

Lc.ı;F1; : : : ;Fk/ D
nY

iD1

2

4

8
<

:�1
kY

jD1
Fj.xij/

9
=

;

zi1

mY

lD2

8
<

:�l exp

0

@
kX

jD1
Qx>

ij � lj

1

A
kY

jD1
dFj.xij/

9
=

;

zil
3

5

D
nY

iD1

2

4�zi1
1

mY

lD2
�

zil
l exp

0

@zil

kX

jD1
Qx>

ij � lj

1

A
kY

jD1
dFj.xij/

zil

3
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Using pij as the jump size of Fj at xij, the complete data log-likelihood is

`c.ı; pij; i D 1; : : : ; n; j D 1; : : : ; k/

D
nX

iD1

mX

1D1
zil log�l C

nX
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mX

1D2
zil

kX

jD1
Qx>

ij � lj C
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kX

jD1
log pij; (21.17)

where (21.6) still hold and pijs can be profiled out using (21.7) and (21.8).
Let the parameter estimates at iteration t of the EM algorithm be Œı.t/�> D

.�
.t/
21; : : : ;�

.t/
mk; �

.t/
1 ; : : : ; �

.t/
m / and write
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1 CPm
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jD1 Qx>

ij �
.t/
lj /
: (21.18)
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Since (21.17) is linear in zils, substituting (21.18) for zils and (21.7) for pijs in (21.17)
gives the expected complete data profile log-likelihood (E-step) at iteration t C 1,

Q.ı; ı.t// D E.`cjı.t/; x1; : : : ; xn/ D
nX

iD1

mX

1D1
w.t/il log�l C

nX

iD1

mX

1D2
w.t/il

kX

jD1
Qx>

ij � lj

�
nX

iD1

kX

jD1
logŒn C

mX

lD2
�ljfexp.Qx>

ij � lj/� 1g�:

The M-step maximizes Q.ı; ı.t// with respect to ı and �. Since �l; l D 1; : : : ;m,
satisfy the constraint

Pm
lD1 �l D 1, we immediately obtain

O�.tC1/l D
Pn

iD1 w.t/il

n
: (21.19)

Differentiating Q.ı; ı.t// with respect to the other parameters gives exactly the same
equations as (21.13) to (21.14), but with w.t/il s replacing wils. Using (21.19) and

replacing wils by w.t/il s in (21.13) and (21.14) now gives

n
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Using (21.20) in (21.13) now gives
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(21.21)

which can be used to easily solve for �
.tC1/
lj by a Newton-Raphson procedure.

To show that our EM algorithm increases `p.ı/ at every step, we note that
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Since ı.tC1/ maximizes Q.ı; ı.t//, therefore, Q.ı.tC1/; ı.t// � Q.ı.t/; ı.t// )
`.ı.tC1// � `.ı.t//. We suggest using different starting values for the EM algorithm
to check that the algorithm did not stop at a local maximum. Since the exponential



21 Multivariate Mixtures 381

tilt parameters may be hard to interpret, it may be difficult to find initial values for
them. We recommend generating an n � m matrix of initial values of the z.t/il s and
starting the algorithm with the M-step.

21.4 Estimation of Features in the Component Distributions

In this section, we discuss estimation of features in the component distributions.
We also identify a moment matching property similar to that found by Efron and
Tibshirani (1996) in the univariate non-mixture case. For any quantity a, let Oa denote
its estimate based on the final values of the EM algorithm at convergence. Define

Opij D 1

n

 
1

O�1 CPm
lD2 O�l exp.Qx>

ij
O� lj/

!
and Oqlij D exp.Qx>

ij
O� lj/Opij:

The CDF of the mixture distribution, H, can be estimated by

OH.x1; : : : ; xk/ D O�1
kY

jD1
OFj.xj/C

mX

lD2
O�l

kY

jD1
OGlj.xj/;

where the marginal CDF estimates of Fj and Glj are

OFj.xj/ D
nX

iD1
I.xij � xj/Opij; OGlj.xj/ D

nX

iD1
I.xij � xj/ exp.Qx>

ij
O� lj/Opij: (21.22)

The estimates resemble the empirical CDF with the weights given by the
estimated jumps. In Sect. 21.5, we give examples that show how well these estimates
match the true marginal CDFs. We can also find estimates of the marginal PDFs
using a weighted kernel density estimate with the posterior probabilities, Owil, as the
weights. The estimated PDFs are

Oglj.u/ D 1

�

nX

iD1

OwilPn
iD1 Owil

�
�u � xij

�

�
; l D 2; : : : ;m (21.23)

where � is a bandwidth, � is the standard normal PDF. The R package mixtools
contains a function, wkde, that allows us to do this quite easily (Young et al.
2008). This function also has the ability to choose different bandwidths for the k
coordinates.
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Writing Oq1ij D Opij, the mean and variance of the jth measurement in the lth
component distribution, mlj and s2lj can be estimated by

Omlj D
nX

iD1
xij Oqlij; Os2lj D

nX

iD1
x2ij Oqlij � Om2

lj; (21.24)

for l D 1; : : : ;m and j D 1; : : : ; k. An interesting result from the EM algorithm is a
moment matching property. For example, we can write:
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where the last quantity is due to (21.18) and (21.19) from the EM algorithm. This
expression matches the weighted first moment using the posterior probabilities to
the tilted component first moment; see Efron and Tibshirani (1996) for an example
of the moment matching property in the univariate non-mixture exponential tilt
model. They argue that moment matching reduces the bias.

It should be noted that non-identifiability due to label switching (e.g., McLachlan
and Peel 2000) can affect bootstrap estimation in the exponential tilt model. Suppose
observations come from the following mixture

H.x1; x2; x3/ D 0:3N.0; 1/N.0; 1/N.0; 1/C 0:7N.2; 1:5/N.2:5; 2/N.3; 1/:

Consider the first coordinate, then one possible baseline distribution is N.0; 1/
and the parameters in the exponential tilt would be �>

21 D .�1:53; 1:33; 0:16/.
Another possible baseline may be N.2; 1:5/ in which case the parameters would
be �T�

21 D .1:53;�1:33;�0:16/. The result is that in a bootstrap, for example, the
signs of the coefficients in the quadratic exponent may change. We resolve this
ambiguity by designating the component corresponding to the smallest proportion as
the baseline distribution and make the adjustment after the EM algorithm converges.
We then have identifiable estimates of the coefficients in the quadratic exponents.
The estimates of the marginal means and standard deviations are not affected by this
label switching.



21 Multivariate Mixtures 383

21.5 Simulation Results

In this section, we give simulation results for different models. The data were
generated from two component mixture distributions of the following form:

H.x1; x2; x3/ D �F1.x1/F2.x2/F3.x3/C .1 � �/G1.x1/G2.x2/G3.x3/:

We focus on the following parameters: �, and mlj and slj, the mean and standard
deviation of the jth measurement in the lth component distribution.

21.5.1 Mixtures with Normal Component Distributions

The first model is a trivariate normal mixture model, such that F1;F2;F3
are CDFs of N.0; 1/ and G1;G2;G3 are CDFs of N.�; 	2/ with .�; 	2/ D
.2; 1:5/; .2:5; 2/; .3; 1/, respectively. Three values of � D 0:3; 0:5; 0:8 and two
different sample sizes n D 50 and 500 were used. For each combination of �
and n, 500 simulations were carried out. The results using � D 0:3; 0:5; 0:8

are similar and therefore, only those under � D 0:3 are shown. The results are
given in Table 21.1, where the parameter estimates using an exponential tilt and
a conditional independence normal model are given under the columns “ET” and
“Normal,” respectively. The exponential tilt model performs very well, its estimates
are comparable to those from the normal mixture. For small samples .n D 50/,
the standard errors for the estimates using the normal model are smaller. However,

Table 21.1 Mean (standard error) of parameter estimates based on 500 simulations from a normal
mixture model

n D 50 n D 500

True ET Normal ET Normal

� 0:3 0.30 (0.09) 0.31 (0.07) 0.30 (0.02) 0.30 (0.02)

m11 0 0.11 (0.56) 0.02 (0.36) 0.00 (0.08) 0.00 (0.08)

m12 0 0.15 (0.69) 0.01 (0.37) �0.01 (0.09) �0.01 (0.09)

m13 0 0.22 (0.77) 0.02 (0.45) 0.02 (0.09) 0.00 (0.09)

m21 2 1.97 (0.31) 1.99 (0.27) 2.00 (0.06) 1.99 (0.06)

m22 2:5 2.46 (0.39) 2.49 (0.33) 2.50 (0.08) 2.49 (0.08)

m23 3 2.92 (0.39) 2.98 (0.31) 2.99 (0.05) 3.00 (0.05)

s11 1 0.90 (0.29) 0.92 (0.21) 0.99 (0.06) 0.99 (0.06)

s12 1 0.92 (0.28) 0.93 (0.20) 0.99 (0.06) 0.99 (0.06)

s13 1 1.01 (0.37) 0.95 (0.25) 1.02 (0.09) 0.99 (0.06)

s21 1:22 1.18 (0.17) 1.18 (0.15) 1.21 (0.04) 1.22 (0.04)

s22 1:41 1.37 (0.20) 1.37 (0.18) 1.41 (0.05) 1.41 (0.05)

s23 1 1.01 (0.21) 0.97 (0.13) 0.99 (0.04) 1.00 (0.04)
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the advantage of using a normal model effectively disappears for large samples
.n D 500/.

21.5.2 Mixtures with Gamma Component Distributions

Exponential tilt modeling can be thought of as a density estimation method (Efron
and Tibshirani 1996). Hence we can use exponential tilt even for data that do
not satisfy the exponential tilt assumption. We illustrate using mixtures of gamma
distributions with different shape parameters (for application, see Dey et al. 1995;
Wiper et al. 2001). We let F1;F2;F3 be CDFs from a gamma.k; 
/ distribution with
.k; 
/ D .2; 2/, (� D 4; 	2 D 8/, and G1;G2;G3 are CDFs corresponding to
gamma.k; 
/ distributions with .k; 
/ D .5; 2/; .10; 1/; and .10; 0:5/, respectively
(with .�; 	2/ D .10; 20/; .10; 10/, and .5; 2:5/, respectively). The results are
also similar for different � values, hence, we only present � D 0:4 here. We
use 1000 simulations of sample sizes n D 50 and 300 were carried out. We
computed the estimates of the component means and standard deviations using the
conditional independence normal mixture model and the conditional independence
nonparametric mixture (NP) model proposed by Benaglia et al. (2009) and Levine
et al. (2011) for comparison. The estimates from all three methods are shown in
Table 21.2. When the sample size is small, the performance of the exponential tilt
method is similar to the normal mixture model. For larger sample size (n D 300),
the tilted method does much better than the normal model and follows more closely
to the nonparametric method.

Table 21.2 Mean (standard error) of parameter estimates based on 1000 simulations from a
gamma mixture model

n D 50 n D 300

True ET Normal NP ET Normal NP

� 0:4 0.39 (0.12) 0.37 (0.13) 0.38 (0.10) 0.37 (0.04) 0.32 (0.05) 0.36 (0.04)

m11 4 3.86 (1.02) 3.66 (0.99) 3.86 (0.85) 3.85 (0.35) 3.41 (0.36) 3.78 (0.31)

m12 4 4.78 (2.52) 4.53 (2.68) 4.47 (2.15) 3.78 (0.53) 3.32 (0.45) 3.71 (0.34)

m13 4 4.03 (0.89) 4.11 (0.93) 4.02 (0.79) 3.97 (0.30) 4.06 (0.35) 3.96 (0.29)

m21 10 9.99 (1.12) 10.03 (1.38) 9.93 (1.19) 9.84 (0.38) 9.56 (0.39) 9.76 (0.36)

m22 10 9.04 (1.77) 9.04 (1.66) 9.27 (1.61) 9.86 (0.41) 9.59 (0.32) 9.79 (0.28)

m23 5 4.84 (0.44) 4.80 (0.42) 4.86 (0.42) 4.96 (0.13) 4.84 (0.13) 4.95 (0.12)

s11 2:82 2.47 (1.05) 2.11 (0.86) 2.63 (0.96) 2.65 (0.44) 1.96 (0.28) 2.62 (0.40)

s12 2:82 2.47 (1.00) 2.11 (0.87) 2.61 (0.91) 2.53 (0.50) 1.90 (0.33) 2.54 (0.38)

s13 2:82 2.42 (0.90) 2.40 (0.95) 2.49 (0.79) 2.84 (0.32) 2.91 (0.39) 2.80 (0.32)

s21 4:47 4.23 (0.80) 4.23 (0.87) 4.31 (0.72) 4.48 (0.29) 4.58 (0.28) 4.50 (0.28)

s22 3:16 3.20 (0.62) 3.27 (0.58) 3.15 (0.51) 3.21 (0.22) 3.42 (0.23) 3.27 (0.20)

s23 1:58 1.69 (0.46) 1.75 (0.43) 1.70 (0.35) 1.60 (0.14) 1.71 (0.13) 1.67 (0.12)
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Table 21.3 Mean (standard error) of parameter estimates based on 1000 simulations from a
mixture model of normal and gamma

n D 50 n D 300

True ET Normal NP ET Normal NP

� 0:4 0:33.0:08/ 0:34.0:11/ 0:36.0:09/ 0.30 (0.03) 0.35 (0.04) 0.35 (0.04)

m11 0 0:91.1:61/ 1:57.2:04/ 1:50.1:90/ 0.04 (0.16) 0.27 (0.23) 0.39 (0.22)

m12 4 3:23.1:60/ 2:55.1:79/ 2:70.1:74/ 3.94 (0.31) 3.45 (0.41) 3.64 (0.33)

m13 0 �0:04.1:48/ �0:15.3:69/ �0:07.3:37/ 0.00 (0.11) �0.01 (0.15) 0.00 (0.23)

m21 4 3:69.0:98/ 3:49.1:23/ 3:52.1:22/ 4.00 (0.20) 4.13 (0.23) 4.04 (0.20)

m22 0 0:23.0:86/ 0:48.0:93/ 0:39.1:05/ 0.01 (0.10) 0.02 (0.11) �0.07 (0.10)

m23 0 �0:01.1:04/ �0:01.0:98/ �0:01.1:06/ 0.00 (0.38) 0.01 (0.40) 0.01 (0.42)

s11 1 1:61.1:07/ 1:63.1:02/ 1:97.1:00/ 1.15 (0.41) 1.12 (0.18) 1.75 (0.48)

s12 2:82 2:45.0:91/ 2:43.1:19/ 2:40.0:91/ 2.78 (0.33) 3.03 (0.34) 2.82 (0.31)

s13 1 1:85.1:85/ 2:54.2:53/ 2:88.2:12/ 0.99 (0.11) 1.07 (0.56) 2.06 (0.81)

s21 2:82 2:61.0:62/ 2:62.0:69/ 2:56.0:63/ 2.79 (0.23) 2.87 (0.23) 2.75 (0.22)

s22 1:41 1:46.0:59/ 1:61.0:76/ 1:55.0:69/ 1.42 (0.15) 1.33 (0.12) 1.33 (0.13)

s23 5:65 5:10.1:37/ 4:69.1:63/ 4:76.1:43/ 5.64 (0.44) 5.79 (0.52) 5.60 (0.44)

21.5.3 Mixtures with Different Component Distributions

The third set of simulations studied the situation where the marginals are from
different families of distributions (see, e.g., Khalili et al. 2007). We let F1;F2;F3
be CDFs from N(0,1), gamma.k D 2; 
 D 2/, .� D 4; 	2 D 8/, and N(0,1)
distributions, respectively, and G1;G2;G3 are CDFs corresponding to gamma.k D
2; 
 D 2/, Laplace distributions with location and scale parameters (0,1), .� D
0; 	2 D 2/, and a Laplace with parameters (0,4), .� D 0; 	2 D 32/, respectively.
The results under different values of � are similar and hence only results for � D 0:3

are given. One thousand simulations of sample sizes n D 50 and 300 were carried
out. The results are given in Table 21.3.

It can be observed that the tilted method produces the best results for nearly all
the parameters. We also plotted the estimated marginal CDFs and PDFs for one of
the simulations in Fig. 21.1.

Again, even though the exponential tilt assumption does not hold here, the
exponential tilt estimates of the component means, standard deviations, CDF, and
PDF are very good.

21.6 Model Selection

In this section, we show how to estimate the number of components in the
mixture. We use a modified BIC (Bayesian Information Criterion, Schwarz 1978)
model selection criterion pBIC � �2 ln Lp C s ln.n/; where Lp is the maximized
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Fig. 21.1 Semiparametric estimation for a randomly selected dataset from the simulations with
different distributions with n D 300. The dotted line represents the true CDFs and PDFs. In this
dataset, the estimates are: O� D 0:25, . Om11; Om12; Om13/ D .0:10; 4:49; 0:06/; . Om21; Om22; Om23/ D
.4:20;�0:04; 0:14/; .Os11; Os12; Os13/ D .1:08; 2:86; 1:02/; .Os21; Os22; Os23/ D .3:28; 1:37; 5:05/

semiparametric profile likelihood and s is the number of parameters in the model.
Since mixture models do not satisfy all the regularity conditions in Schwarz (1978)
we turn to simulations to study the criterion. We use three models for simulations:

Model 1: Normal location mixtures with m D 2; 3; 4 components. There are k D
7 repeated measures with .m1j;m2j;m3j;m4j/ D .0; 2; 4; 6/ and slj D 1 for l D
1; : : : ;mI j D 1; : : : ; 7.

Model 2: Normal location mixtures with m D 2; 3; 4 components. There are k D
10 repeated measures with .m1j;m2j;m3j;m4j/ D .0; 2; 4; 6/ and slj D 1 for l D
1; : : : ;mI j D 1; : : : ; 10.

Model 3: Normal scale mixtures with m D 2; 3 components. There are k D 5

repeated measures with .m1j;m2j;m3j/ D .0; 0; 0/ and .s1j; s2j; s3j/ D .0; 10; 50/

for j D 1; : : : ; 5.

Table 21.4 gives the proportion of times pBIC selected the correct number of
components. For each model considered, the mixing proportions of the components
are equal, i.e., for a model with m components,�1 D �2 D : : : D �m. Included in the
table is the number of parameters estimated in each model, Np D 3k.m�1/C.m�1/,
which includes the exponential tilt parameters for each of k dimensions in the m � 1
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Table 21.4 pBIC simulations results for Models 1–3 where n is the number of observations, k is
the number of repeated measures, and m is the true number of components

m D 2 m D 3 m D 4

Model k Np n D 100 n D 200 Np n D 100 n D 200 Np n D 100 n D 200

1 7 15 1:00 1:00 30 1:00 1:00 45 0:96 0:98

2 10 21 1:00 1:00 42 0:95 0:99 63 0:91 0:97

3 5 11 0:94 0:97 22 0:65 0:67 — — —

components and the m � 1 mixing proportions �l. For Model 3 with m D 3 the
success rate for pBIC was roughly 2=3. However, when the sample size increased to
500, the success rate increased to 0.90. As a check, we compared pBIC to a modified
Akakie Information Criterion, which gives similar results. We conclude that pBIC
is effective for estimating the number of components in the semiparametric mixture.

21.7 Example

We applied the proposed method to a real data problem. The data comes from a
cognitive experiment discussed in Cruz-Medina et al. (2004) and is available at
http://www.blackwellpublishing.com/rss. The experiment was used to demonstrate
children fall into different groups in their approach to solve cognitive tasks. The
experiment recruited normally developing 9-year-old children. Each child was given
a set of different task conditions, which is a visual stimulus that involves two images
on a computer monitor. The left image is the target stimulus and the right image is
either identical to the target image or the mirror image of the target stimulus. The
child pressed one key indicating if he/she thought the right image was identical
or another key if they thought it was the mirror image. The outcome of interest
is the reaction time (RT), in milliseconds, for a child to give a response to the
visual stimulus. Each child was given k D 6 different task conditions and the
RT for the child to choose the correct response on each task was recorded. We
focused on the subset of n D 197 children who gave correct responses to all
the task conditions. Since the six task conditions were embedded in a random
sequence of tasks, the children could not have anticipated which task condition
would appear. Therefore, given that a child was in a particular group, it would
not be unreasonable to assume that their reaction times were independent and
the conditional independence assumption seems valid. Longer response times may
indicate reading comprehension problems. See Miller et al. (2001) for additional
background on this experiment.

http://www.blackwellpublishing.com/rss
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Fig. 21.2 Plot of the transformed sample correlations (log.r) against the transformed sample
correlations calculated under conditional independence (log.r.ind). The upper and lower confidence
bands of the transformed sample correlations are shown. The solid line is the 45ı line

To further examine whether the conditional independence assumption is reason-
able, we looked at the sample correlations between the coordinates and those under
conditional independence. The correlations were calculated and Fisher’s trans-
formations were performed. Figure 21.2 plots the transformed correlations under
conditional independence against the transformed correlations with no assumptions.

As a rough check, we included upper and lower points computed using 2=
p

n � 3
as an estimate of the standard errors of the transformed correlations. All estimates
assuming conditional independence fall within these bounds.

We compared m D 1; 2; 3; 4 component models for this dataset using pBIC and
selected m D 3 based on its lowest pBIC value (`P D �6081:6, pBICD 12300:6

and corresponding number of parameters D 26). The data based on m D 3 can be
written as xij; i D 1; 2; : : : ; 197I j D 1; : : : ; 6 with corresponding CDF

H.x1; : : : ; x6/ D �1

6Y

jD1
Fj.xj/C

3X

lD2
�l

6Y

jD1
Glj.xj/:

The estimated marginal CDFs, means and standard deviations of Fj;G2j;G3j; j D
1; : : : ; 6 using (21.22) and (21.24) are given in Table 21.5.

It appears that the distribution of RTs for the first task condition may well be
different from the distributions of RTs for the other task conditions. From the
results, the smallest group of children composed of about 20 % appear to have the
shortest RTs and also the smallest variation. This might suggest that these children
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Table 21.5 Estimated
component means for the RT
data with m D 3 components

Component

1 2 3

�1 0.49 �2 0.20 �3 0.31

m11 2024 m21 1577 m31 3024

m12 1712 m22 1456 m32 2776

m13 1864 m23 1265 m33 2761

m14 1799 m24 1312 m34 2771

m15 1870 m25 1171 m35 2729

m16 1957 m26 1216 m36 2661

s11 691 s21 420 s31 1074

s12 469 s22 337 s32 907

s13 609 s23 200 s33 1101

s14 516 s24 332 s34 1097

s15 777 s25 402 s35 1162

s16 636 s26 261 s36 1180

understand the concept and are quick to choose correctly. The next group composed
of about 30 % of the children have the longest RTs as well as the largest variation.
For the children in this group, a possible explanation is that they look longer to
react to certain tasks and quicker for other tasks. It would be interesting to break up
the trials based on which was the correct answer, the identical image or the mirror
image. The last and largest group, about 50 %, are the children in the middle.

Figure 21.3 shows the semiparametric estimates of the component CDFs. Similar
analyses were carried out using the log transformed data with similar results. Note
the variation in the coordinate means and standard deviations again suggests that
the component marginal distributions differ. The data were originally analyzed by
Cruz-Medina et al. (2004) by discretizing the data and assuming that the repeated
measures were identically distributed. The estimated proportions were 0.55, 0.16,
and 0.29 in the order given in Table 7. The common coordinate medians were 1689,
1273, and 2523 for the three components and are a bit lower than the reported sets
of five means for each component.

21.8 Discussion and Modifications

Walther (2002) introduces a univariate mixture of log-concave densities. He gives a
representation theorem, and based on this theorem, develops a test for the presence
of a mixture model. Chang and Walther (2007) extend this model to the multivariate
case in (21.1). However, lack of identifiability is a difficulty for their model (Walther
2002, pp. 509); a mixture of log-concave densities may itself be log-concave and
identifiability fails.
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Fig. 21.3 Semiparametric estimates of Fj;Glj; j D 1; : : : ; 6; l D 2; 3 under the exponential tilt
model for the RT data

The method we proposed assumes all repeated measures are related by (21.3).
Our model could be modified to handle situations where some of the dimensions
are modeled by (21.3) while the others are modeled parametrically. For example, let
the first j1 dimensions be modeled by (21.3), then

h.x1; : : : ; xk; ı;˝/

D
8
<

:�1
kY

jDj1C1
fj.xj; !

f
j /C

mX

lD2
�l exp.

j1X

jD1
Qx>

j � lj/

kY

jDj1C1
gj.xj; !

g
j /

9
=

;

j1Y

jD1
fj.xj/

D  .x1; : : : ; xk; ı;˝/

j1Y

jD1
fj.xj/;

where fj; gj; j D j1 C 1; : : : ; k are parametrized by ˝ D .!
f
j ; !

g
j /, which leads to

`p.ı;˝/ D log .x1; : : : ; xk; ı;˝/�
nX

iD1

j1X

jD1
log

"
n C

mX

lD2
�ljfexp.Qx>

ij � lj/� 1g
#
:
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Our formulation of a multivariate mixture can also be interpreted as a copula.
Replacing �lj=n by �l, a simple rearrangement yields the profile likelihood as

n�kn
nY

iD1

"
�1 CPm

lD2 �l exp.
Pk

jD1 Qx>
ij � lj/

Qk
jD1f�1 CPm

lD2 �l exp.Qx>
ij � lj/g

#
:

If we multiply the numerator and denominator by
Qk

jD1 fj.xj/, then the profile

likelihood is proportional to c .H1.x1/; : : : ;Hk.xk// � h.x1; : : : ; xk/=
Qk

jD1 hj.xj/,
the joint mixture density divided by a product of the marginal densities. This
can be viewed as a semiparametric copula density evaluated at the marginal
CDFs. We can also interpret our exponential tilt mixture as h.x1; : : : ; xk/ D
c .H1.x1/; : : : ;Hk.xk//

Qk
jD1 hj.xj/. Hence we begin with a product of (independent)

marginals and model the correlation and mixture structure via the copula based
on the mixture of exponential tilts. Further motivation can be found in Chen et al.
(2006). This approach also avoids the curse of dimensionality problem associated
with estimation in high dimensional distributions.
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