
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Economics School of Economics

10-2009

A semi-parametric two-stage projection type
estimator of multivalued treatment effects
Aurobindo GHOSH
Singapore Management University, AUROBINDO@SMU.EDU.SG

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research
Part of the Econometrics Commons

This Working Paper is brought to you for free and open access by the School of Economics at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Research Collection School Of Economics by an authorized administrator of Institutional Knowledge
at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
GHOSH, Aurobindo. A semi-parametric two-stage projection type estimator of multivalued treatment effects. (2009). Research
Collection School Of Economics.
Available at: https://ink.library.smu.edu.sg/soe_research/1176

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13247702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Electronic copy of this paper is available at: http://ssrn.com/abstract=971734

January 15, 2007

A Semi-parametric Two-Stage Projection Type estimator of Continuous
Treatment E¤ects

Abstract

One of the most well documented regularities in evaluation literature like returns to schooling
(or funding for programs) is that several factors come together to confound the measurement of
its e¤ect. First, in observational studies the true return is often individual speci�c, and so it is
almost impossible to use a traditional treatment e¤ect models with randomly assigned treatment
and control groups. This endogeneity in the model further exacerbates our inability to conduct
such trials. Second, the problem is not a classical treatment e¤ect measurement problem where
we have discrete or more often binary treatments. Hence, techniques like measuring the Local
Average Treatment E¤ect (LATE) cannot be implemented as it is not very well de�ned for the
continuous treatment case. Third, a traditional 2SLS approach might be misleading because of
the non-Gaussian nature of response distribution, in particular, if di¤erent quantiles of response
have di¤erent e¤ects. However, their technique is also not de�ned for continuous treatments, and
cannot measure if di¤erent distributions of the treatment might have di¤erent e¤ects on the response
variable. In this paper, we propose the e¤ects of di¤erent multi-valued continuous treatment variable
after conditioning for other covariates.
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1 BACKGROUND AND MOTIVATION

Seminal papers in the statistics literature to identify causal relationship like Neymen (1923)

which tried to look at the treatment e¤ect had very few choices but to randomize the group

of possible recipients of the treatment into the experimental and the control groups and

then compare the di¤erences in the means or the distributions of these two populations

and test for a signi�cant treatment e¤ect. The recent interest in this �eld like the Rubin

Causal Model (RCM) as coined by Holland grew in the context of social experiments and

observational studies where randomization of treatment assignment into treatment and

control groups is not a viable alternative. Moreover the focus has shifted from the strength

of the relationship between the endogenous regressor and the instrument to the validity of

the instrument itself.

Angrist, Imbens and Rubin (1996, henceforth AIR) looked at the problem of identify-

ing the treatment e¤ect for a population where the treatment received was not random by

clearly mentioning the assumptions required for obtaining a valid instrument. They also

showed that the IV estimand can be given a precise and straightforward causal interpre-

tation in a potential outcomes framework despite non-ignorability of treatment received

which means that the treatment received is not independent or in a weaker sense ignorable

(Rubin,1974) of the person treated with some extension to multiple treatment e¤ects as

opposed to the binary treatment e¤ects are discussed in Angrist and Imbens (1995) and

Angrist, Graddy and Imbens (1995). However they only talk about the two-stage least

squares estimation.

Under the usual assumptions like the exclusion restriction which makes sure that the

only e¤ect on the outcome (potential outcome) of the treatment assignment is through

the treatment received, the treatment e¤ect could only be identi�ed for a sub-population

of compliers whose treatment could be changed by the treatment assignment mechanism.

This is what they call the Local Average Treatment E¤ect (LATE) as opposed to an average

treatment e¤ect (ATE) for the whole population as proposed by Robins (see Imbens, 2004).

However, the population treatment e¤ect cannot be identi�ed even if the monotonicity

assumption holds, only some bounds (Manski, 1990; Balke and Pearl, 1997) for the average

treatment e¤ect could be obtained .

The major criticism of this genre of papers is that the LATE e¤ect is for a subgroup

which could not be identi�ed (Heckman, 1996; Mo¢ tt, 1996), although we can �nd the

treatment e¤ect with the so called RCM model. Moreover, even monotonicity alone will not
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be su¢ cient to identify more complicated treatment assignments like the bioequivalence

trials which compares a standard treatment with a new treatment with an option of not

having any treatment at all. One important interpretation of the instrumental variable

(IV) procedure is the relation with the propensity score of Rosenbaum and Rubin (1983)

which could be used as a instrument itself in the usual two-stage least square procedure.

Rosenbaum�s suggestion of a more robust estimator for treatment e¤ects might be one of

the reasons for the demand for the quantile treatment e¤ects estimator (Rosenbaum, 2002;

Hodges and Lehmann, 1963). The two-stage Least Absolute Deviation (LAD) estimator

which is a precursor to the robust treatment e¤ects estimators is also asymptotic normality

in the general case. (Amemiya, 1982; Powell 1983).

Amemiya (1982) proposed the LAD equivalent of a 2SLS estimator that minimizes

TX
t=1

���qyt + (1� q)P 0
t yt � P 0tZ�

��� (1)

where q is predetermined, and Pt = X (X 0X)�1X 0 is the projection matrix. This combines

the idea of a two-stage least squares where pure LAD estimation is obtained for q = 1.

These estimators are more appealing in cases of fatter tailed or leptokurtic distributions,

and displayed strong consistency under di¤erent mixtures of normal.

Mean treatment e¤ect is restricted to a simple �location shift�, so any quantile speci�c

regression is redundant. However, observational studies su¤er from non-randomness or

non-ignorability in treatment assignment, so comparison between potential outcomes of

treatment and control groups are often misleading. If we focus on only a subgroup of the

whole population (viz. the compliers), the subjects whose treatment could be changed

by the instrument, we can identify the treatment e¤ects or LATE e¤ect for the subgroup

(Imbens and Angrist, 1994; Angrist et. al, 1996).

Our objective in this paper is to extend the results of Abadie, Angrist and Imbens

(2002) beyond binary to a more general framework of multiple treatments and treatment

assignments. We want to look at the quantile treatment e¤ects for a group of subjects

who are assigned a treatment through a �randomized� mechanism. As in Angrist and

Imbens (1994), the average treatment e¤ect is not identi�ed for the entire population (we

can at most get upto a bound, say, Robins-Manski bound, see Manski, 1990), however

the treatment e¤ect is identi�ed for a subset of the whole population. In particular, those
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whose treatment could be changed by their assignment i.e. where there is at least partial

compliance to the treatment assignment �the compliers. However, so long as the treatment

received are in �one direction�in response to the assignment the e¤ect could be identi�ed.

The estimator suggested is identi�ed and consistent under certain regularity conditions,

it can also be proved that the estimator would have asymptotic normality under more

stringent conditions.

We also discuss some computational aspects of the linear programming problem of

computational complexity of a well known interior point algorithm used for this purpose

(Koenker and D�Orey, 1987). The real problem with implementing a standard Linear

Programming (LP) algorithm here is that, the problem is not really LP as in case we have

a negative weight function �(to be de�ned later), we have to include a non-linear constraint

of the error terms ui, such that, u+i u
�
i = 0 to ensure not having an unbounded solution

for the program (Abadie et. al., 2002). They use a modi�ed version of the Barrodale

and Roberts (BR) algorithm, also implemented, by Koenker and D�Orey (1987) for solving

the LP formulation of the quantile regression. However, the nature for our suggested

estimator do not ensure that we have a convex function to minimize, so chance of a global

minimum is very slim, if any. The way Abadie et. al. (2002) gets around the problem

is to use a modi�ed version of the BR algorithm and start at di¤erent starting points to

check for consistency, after starting with the quantile regression solutions as the initial

seed. The main advantage of using an interior point algorithm (like the Frisch�Newton

algorithm, based on the logarithmic barrier) over the traditional BR algorithm is the time

of computation, as the former can become notoriously slow once we approach the true value.

The other reason for using an interior point algorithm like the a¢ ne scaling Primal-Dual

algorithm is the fact that our problem might not be convex because of the non-linearity

in the constraint .So the primal-dual algorithm which uses Newton steps to improve the

objective function as well as the barrier method to ensure feasibility simultaneously is

designed more for a non-linear programming type problems so it would be better equiped

to handle non-linearities. This and related issues including the problem setup is given in

Appendix B. Finally, the speed of convergence is a very important issue if we are working

with large datasets particularly a panel data with a few thousand observation over a few

years. The empirical example we talk about is taken from a panel with 838 individuals

with 16 years of data.
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2 MULTI-VALUED TREATMENT EFFECT

2.1 Model for Treatment and Assignment

Consider the following model

Y = 
0 +X1
1 + �S + " (2)

where Y is the dependent variable or response variable, X1 is the set of included exogenous

variables, S is the treatment intensity and 
0; 
1 and � are constants while " is a random

variable with mean 0 and constant variance that is uncorrelated with X1. We also consider

another augmented equation for the treatment received as

S = �0 +X1�1 +X2�2 + �: (3)

The problem is even if the true response is linear, OLS will give biased estimates of

�, our parameter of interest as the random variables " and � might be correlated due to

some unobserved variables common to both, for example, ability a¤ects both schooling and

earnings.

For the general IV formulation the estimate is given by (Z 0W )�1 Z 0y where Z is the ma-

trix of instruments and W is the matrix of regressors including X1 and S. For a consistent

estimator a necessary condition is that Z must be uncorrelated with the regression errors

and plim(Z
0W
n ) is non-singular. An alternative formulation is the 2SLS case. In the �rst

stage we start of by regressing S on X1 and all possible candidate instruments not included

in (2), say, X2. Then using the predicted value of S, or the conditional expectation of S

given the covariates and the instruments in equation (2),

Y = 
0 +X1
1 + �bS + � where � = n"� ��S � bS�o : (4)

Let us now consider the case where we have a rational number of levels of treatment

and we express them as integers j = 0; 1; : : : J; and Yj is the response given treatment level

j, we assume that for each individual there exists Yj for all j, although we can observe

only one of them. We also assume the standard Stable Unit Treatment Value Assumption

(SUTVA) as formulated by Rubin (1974), which states that the potential outcomes of a
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single individual are independent of the potential outcomes and treatment status of all

other individuals.

We are interested in the distribution of Yj � Yj�1, which is the return to the jth unit

of treatment. The estimates can be interpreted as a causal e¤ect when its probability

limit approaches some weighted average of E[Yj �Yj�1] for all j in some sub-population of
interest. However, as S is not randomly assigned we cannot simply subtract the average

response of subjects receiving (j � 1)th level of treatment from the average of subjects

receiving jth level of treatment.

We also consider SZ 2 f0; 1; : : : ; Jg to be the level of treatment given the value of the
instrument Z. Here again we assume that SZ exists for all values of Z although only one

is observed. So for each individual we observe the triplet fZ; S; Y g.
We make the following assumptions for the estimation.

Condition 1 A1(INDEP): The random variables SZ , Z = 0; 1; :::; k and Yj ; j = 0; 1; : : : ; J
are jointly independent of Z.

This assumption implies that among other things the value of the instrument has no

direct impact on the response Y . However, this is not su¢ cient for the identi�cation of the

causal e¤ect. The other assumption we need is monotonicity.

Condition 2 A2(MONOTONICITY):With probability 1, either S1�S0 � 0 (or S1�S0 �
0) for each person when Z is binary.

One implication of assumption (2) that the conditional cumulative distribution function

(CDF) of S given Z = k; and the CDF of S given Z = k� 1 never cross with probability :1.
This implies

FS (jjZ = k � 1) � FS (jjZ = k)

where FS is the CDF of S. Without loss of generality, we consider just the case where

S1 � S0 � 0.
In order to incorporate the above result in a multi-valued instrument we can consider

K mutually orthogonal binary instruments indicated by dk = I fZ = kg, the indicator
function for Z = k. We can now rede�ne the average treatment e¤ect as �k;k�1 in place

of � changing 1 to k and 0 to k � 1. We also order the points of support of Z to conform
with the ranks of the treatment intensity. Then we have the following theorem.
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Theorem 1 (Theorem 3, Angrist and Imbens,1995). Let g[X] be a design matrix con-

structed from the indicator variables for each value of X. If we consider the 2SLS estimator

constructed using g(X) and a full set of interactions between g(X) and Z as instruments

for the regression of Y on rows of g[X] and S. The resulting estimate is

�x =
E fY: (E [SjX;Z]� E [SjX])g
E fS: (E [SjX;Z]� E [SjX])g =

E f� (X)� (X)g
E f�(X)g (5)

where �(X) = E fE [SjX;Z] (E [SjX;Z]� E [SjX]) jXg and

� (X) =
E fY: (E [SjX;Z]� E [SjX]) jXg
E fS: (E [SjX;Z]� E [SjX]) jXg :

As a corollary to the above theorem we propose the following result.

Proposition 2 (LATE in case of multivalued treatment and instrument):Under assump-
tions A1 and A2 besides SUTVA, given that we have the triplet (Z; S; Y ) for each individual

and conditional on the covariates X we have the following IV estimator

�x =
E fY: (E [SjX;Z]� E [SjX])g
E fS: (E [SjX;Z]� E [SjX])g =

Cov fY;E [SjX;Z]g
Cov fS;E [SjX;Z]g : (6)

That is to say that the average treatment e¤ect �x is given by the ratio of the covariance

of Y with the conditional expectation of treatment S given X and Z, and the covariance

of treatment S and the conditional expectation of S given X and Z.

Proof. The �rst equality follows from the Theorem 1 (Theorem 3 in Angrist and Imbens

,1995). Then we can re-write as

�x =
E fY: (E [SjX;Z]� E [SjX])g
E fS: (E [SjX;Z]� E [SjX])g

=
E f(Y � E (Y )) : (E [SjX;Z]� E [SjX])g
E f(S � E (S)) : (E [SjX;Z]� E [SjX])g

=
Cov fY;E [SjX;Z]g
Cov fS;E [SjX;Z]g

as both E(Y ) and E(S) are �nite constants. This is the proof of the proposition.

It might be worth mentioning that the second equality in the Theorem 1 follows from

dividing both the numerator and the denominator by the conditional variance of S given

X and Z. So the average treatment e¤ect is a variance weighted treatment e¤ect .
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However our main interest is not in the average treatment e¤ect of the entire population,

but in a subpopulation, namely, the compliers. These are the subjects whose treatment

status could be changed by the assignment mechanism. Investigators such as policymakers

are often interested in the distribution of the treatment e¤ects beyond a "location shift,"

particularly the non-constant e¤ect of a policy on the tails of a distribution like income.

However, it is su¢ cient to identify the marginal distributions of Yi (1) and Yi (0) for the

compliers in case of binary treatments. Under SUTVA, it is irrelevant for an individual

to know the population distribution of all types of individuals, all that counts are the

individuals with similar characteristics. So the distribution of the treatment e¤ect Yi(1)�
Yi(0) can be obtained if one knows the marginal distributions of Yi(1) and Yi(0) only. It

is however, non-trivial to get the marginal distribution of the compliers mainly because,

compliers are not identi�able from the population units. We can however identify some

non-compliers namely, the always-takers, who volunteers for treatment even if she is not

chosen by the treatment assignment mechanism; and the never-takers, who never receives

the treatment even if the treatment assignment assigns a treatment. In the binary case,

for example, an always taker is identi�ed if given Z = 0 we have S = 1. Similarly , a never

taker is identi�ed if given Z = 1 we have S = 0 for an individual. So anyone, who is neither

an always taker nor a never taker must be a complier given monotonicity.

Now let us assume that �n; �a and �c be the population proportions of never-takers,

always takers and compliers. Under monotonicity if we have �a = P (Sobs;i = 1jZobs;i = 0)
and �n=P (Sobs;i = 0jZobs;i = 1); then

�c = 1� �n � �c (7)

that identi�es the proportion of compliers.

Let the relevant probability density functions (PDF) of Yi(1) and Yi(0) be gc1(y) and

gc0(y), respectively. If fzs(y) denotes the directly estimable PDF when Zobs;i = z and

Sobs;i = s, then gn(y) = f10(y) and ga(y) = f01(y), hence applying Bayes�rule

f00 (y) =
�c

�c + �n
gc0 (y) +

�n
�c + �n

gn (y) ; (8)

f11 (y) =
�c

�c + �a
gc1 (y) +

�a
�c + �a

ga (y) : (9)
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From equations (8) and (9) we can back out the PDFs gc0(:) and gc1(:) as we know gn(y)

and ga(y). Therefore, we can identify the distributions of the treatment e¤ect as we know

the two marginal distributions for the compliers. However one major problem in backing

out the marginal densities of the response variables for the treated and the untreated is

that the resulting densities might turn out to be negative in some cases from the data,

particularly if the proportion of compliers is small in the population. If the non-negativity

constraint is imposed then we might get totally di¤erent inference.

2.2 Assumptions for estimation

Now let us assume SZ = 0; 1 : : : J and Z = 0; 1; : : :K.

Condition 3 The following assumptions should hold almost surely over the support of
treatments

1. (INDEPENDENCE) (YZS ; SZ) jointly indep of Z given X.

2. (EXCLUSION) P (YZS = YS jX;Z = z) = 1 almost everywhere.

3. (NON-TRIVIAL ASSIGNMENT) V ar(ZjX) 6= 0

4. (FIRST STAGE) Cov(S;Z) 6= 0

5. (MONOTONICITY) Sj � Sj�1 � 0

The above assumptions are based on multi-valued but discrete treatment intensities and

instruments. Note that, assumptions 1 and 2 are standard for IV estimation. Assumption

3 guarantees conditional distribution of Z is non-degenerate. For binary treatment, P (Z =

1jX) = E(ZjX) 2 (0; 1) is an equivalent assumption. Similarly, for binary treatment

and assignment assumptions 4 and 5 are equivalent to E(S1jX) 6= E(S0jX) and P (S1 �
S0jX) = 1; respectively (Abadie et al., 2002). We will now extend these assumptions to a
continuous treatment case by writing the monotonicity assumption in terms of derivatives

or expected derivatives.

As we discussed earlier if we use the derivative of Y and D with respect to Z, a plausible

alternative to LATE (Heckman,1997) gives

E
�
@Y
@Z jX

�
E
�
@D
@Z jX

� = E

�
@Y

@D
;E

�
@D

@Z
jX
�
jX
�
> 0: (10)
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In order to match pairs we could also possibly take a propensity score type measure

like Robins, to compare observation with similar covariates up to the propensity score. In

this case if the subject is aware of the individual speci�c e¤ect the instrumental variable

estimator will be inconsistent. If, however, the mean e¤ect of the treatment on the treated

is an unknown constant, instrumental variable will still give us a consistent estimator.

Unfortunately, as counterfactual states are not observed and compliers cannot be identi�ed,

it would not be possible to �nd out the e¤ect of the treatment on an individual who is

a complier. If we have independence of treatment and potential outcomes or at least

ignorable treatment assignment, any di¤erence in status could be assigned to treatment

alone. Here we do have independence of instrument and potential outcomes but treatment

itself is not ignorable. However following Imbens and Angrist (1994), IV estimation can

identify the compliers whose treatment received could change with instruments.

Lemma 1 Given Condition 3 and conditional on X, the conditional expectation of the
treatment status S on Z and X, is ignorable for compliers, symbolically,

YS II SjX; Sk � j > Sk�1 for all values of j; k: (11)

In other words, for the compliers the treatment assignment is as good as randomly

assigned.

Proof. From assumptions 1 and 2 in Condition 3 we have (YS ; SZ) II Z given X, so we

have YS II Z given X and Sk � j > Sk�1 for all j; k. So, we have YS II S as S is a

monotonic function of Z given X. This is because we can write S as a linear combination

of orthogonal components I fZ = kg.
However as mentioned before compliers as individuals are not identi�ed in the popu-

lation, so we need a mechanism to isolate the compliers in order to compute any moment

restricted to the subpopulation of compliers. Although the compliers are not identi�ed we

can identify some non-compliers given monotonicity as given in equation (7).
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The probability of �nding a complier is the expected value of the "indicator function"

for compliers in the population,

E [I fComplierjXg] = P fComplierjXg

= 1� P falways ta ker jXg � P fnever ta ker jXg

= 1� P fS = 1jZ = 0; Xg � P fS = 0jZ = 1; Xg

= 1� P fS = 1; Z = 0jXg
P fZ = 0jXg � P fS = 0; Z = 1jXg

P fZ = 1jXg

= 1� E
�
I fS = 1; Z = 0g
P fZ = 0jXg jX

�
� E

�
I fS = 0; Z = 1g
P fZ = 1jXg jX

�
= E

�
1� I fS = 1; Z = 0g

P fZ = 0jXg � I fS = 0; Z = 1g
P fZ = 1jXg jX

�
(= E [1� I fS = 1jZ = 0g � I fS = 0jZ = 1g jX]) (12)

This shows two things. First, in a conditional expected sense, the expression inside

equation (12)

1� I fS = 0; Z = 1g
P fZ = 1jXg � I fS = 1; Z = 0g

P fZ = 0jXg

= 1� I fS = 0g I fZ = 1g
P fZ = 1jXg � I fS = 1g I fZ = 0g

1� P fZ = 1jXg
� � (Z; S;X) : (13)

is a consistent unbiased estimator of the probability that individual i is a complier.

Second, this gives an estimator of the projection or conditional expectation of S on to

the space of compliers (given individual i is a complier). In the above derivation we have

dropped the subscripts "obs; i" of Z, S and X for ease of exposition. This is the same

� (Z; S;X) which appears in Abadie et. al. (2002) in case of a binary treatment and binary

instrument.

It is very straightforward to check that if individual i is a complier � = 1: However,

if individual i is a non-complier � < 0 as P [Z = 1jX] 2 (0; 1). Given that Z is not a

degenerate random variable, we are actually shrinking the value of the original function

when we restrict it to a subset of the whole population, namely the compliers. So, the

individuals who are non-compliers have a negative weight on the estimand.
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In case we have multivalued treatment S = 0; 1 : : : ; J and a multivalued treatment

assignment Z = 0; 1; :::;K, we want to �nd out a consistent estimator the probability

P (ComplierjX): We can also �nd out the expectation of any real measurable function
 (Y;D;X) in place of IfComplierg

E [I fComplierg jX] = P fComplierjXg = P

24[
k

[
j

fSk � j > Sk�1jXg

35
=

KX
k=1

JX
j=0

P fSk � j > Sk�1jXg

=
KX
k=1

JX
j=0

[P fSk � jjXg � P fSk�1 � jjXg]

=
KX
k=1

JX
j=0

[1� P fS < jjZ = kg � P fS � jjZ = k � 1g jX]

=

KX
k=1

JX
j=0

�
1� P fS < j; Z = kg

P [Z = kjX] � P fS � j; Z = k � 1g
P (Z = k � 1jX) jX

�

= E

24 KX
k=1

JX
j=0

�
1� I fS < j; Z = kg

P [Z = kjX] � I fS � j; Z = k � 1g
P (Z = k � 1jX) jX

�35
= E

24 KX
k=1

JX
j=0

�
1� I fS < jg I fZ = kg

P [Z = kjX] � I fS � jg I fZ = k � 1g
P (Z = k � 1jX) jX

�35
= E

24 KX
k=1

JX
j=0

h
�jkjX

i35 ; (14)

where �jk = 1� IfS<jgIfZ=kg
P [Z=kjX] � IfS�jgIfZ=k�1g

P (Z=k�1jX) , and
P
k

P
j �

jk is an unbiased estimator

of P fComplierjXg : Given the conditional cumulative distribution function FS (:jZ) we

11



can also simplify

P fComplierjXg =
KX
k=1

JX
j=0

(P fS � jjZ = kg � P fS � jjZ = k � 1g jX)

=
KX
k=1

JX
j=0

(P fS < jjZ = k � 1g � P fS < jjZ = kg jX)

=
KX
k=1

JX
j=0

(FS (jjZ = k � 1)� FS (jjZ = k) jX) : (15)

This implies that the di¤erence of two conditional CDFs for the data, i.e., the di¤erence of

the two empirical distribution functions (EDF) is unbiased for the probability of compliers

given the covariates X. Each of the EDF�s is identi�ed by an argument similar to Angrist

et. al (1996). So the value of � could be negative.

Lemma 2 (Extension to Abadie, 1997) Let  (Y; S;X) be any measurable real function of
(Y; S;X), the given Assumption 3 we have

E [ (Y; S;X) jSk � j > Sk�1 for all j = 0; 1; :::; J ; k = 1; 2; :::;K]

=
E
hPK

k=1

PJ
j=0

�
�jk: (Y; S;X)jX

�i
P [Sk � j > Sk�1 for all j = 0; 1; :::; J ; k = 1; 2; :::;K]

(16)

where �jk = 1 � IfS<jgIfZ=kg
P [Z=kjX] � IfS�jgIfZ=k�1g

P (Z=k�1jX) ; where I fAg is the indicator function of
event A; SZ 2 f0; 1; 2; :::; Jg ; Z 2 f1; 2; :::;Kg and YZS can take any real value.

Proof. The proof strongly relies on monotonicity and the exclusion restriction and also
ignorability from Lemma 1. We have to show that

E [ (Y; S;X) jSk � j > Sk�1 for all j; k]

=
E
hPK

k=1

PJ
j=0

�
�jk: (Y; S;X)

�i
P [Sk � j > Sk�1 for all j; k]

:

12



Following the derivation of the probability of the complier in equation (14), we can �nd

the expectation of the function  (Y; S;X)

E [ (Y; S;X) jSk � j > Sk�1 for all j; kjX] =
E
hPK

k=1

PJ
j=0

�
�jk: (Y; S;X)

�
jX
i

P [Sk � j > Sk�1 for all j; kjX]

) E [ (Y; S;X) jSk � j > Sk�1 for all j; kjX] f (X) =
E
hPK

k=1

PJ
j=0

�
�jk: (Y; S;X)

�
jX
i
f(X)

P [Sk � j > Sk�1 for all j; k]
:

Now integrating both sides with respect to X we get lemma.

The main implication of the lemma is that given any characteristics of the subpopu-

lation of compliers we can identify the characteristics or moment conditions for the whole

population using the appropriate weight.

3 QUANTILE TREATMENT EFFECT

Like the usual 2SLS or IV estimation, the IV estimators of the quantile functions collapse to

the conditional quantile regression estimates for perfect compliance. To make the problem

identi�able the treatment e¤ects are assumed to be linear and additive in covariates. Using

ignorability from Lemma 1 and the exclusion restriction we have the �th quantile treatment

e¤ect is

Q� (Y jX;S; Sk � j > Sk�1; for all j; k) = ��S +X
0��: (17)

As only the marginal distributions are identi�ed for compliers �� is the di¤erence in

the quantile treatment e¤ects of the �th quantiles of Y �s of treatments j and j � 1.
Hence, the solution,

(��; ��) � arg min
(�;�)

E
�
��
�
Y � �S �X 0�

�
jSk � j > Sk�1; for all k and j

�
� arg min

(�;�)
E

24X
k

X
j

�jk:��
�
Y � �S �X 0�

�35 : (18)

13



For a random sample of size n, fy; d; x; zg, i = 1; : : : ; n this reduces to

�b��; b��� � arg min
(�;�)

nX
i=1

X
k

X
j

�jki :��
�
yi � �si � x0i�

�
;

that can be implemented using weighted quantile regression formula after evaluating P [Z = kjX] ;
and plugging in to get �jki �s (Powell, 1994).

This might be a good place to ponder on what exactly this estimate is, particularly, in

the context of its precursors like the 2SLAD estimate of Amemiya (1982). In Amemiya

the 2SLAD estimate was given by minimizing equation (1) or

�q = argmin
�

TX
t=1

���qyt + (1� q)P 0
t yt � P 0tZ�

��� : (19)

Taking q = 0; we get pure 2SLAD estimator reduces to

�q = argmin
�

TX
t=1

���P 0
t yt � P 0tZ�

��� = argmin
�

TX
t=1

��P 0t (yt � Z�)�� (20)

where P 0t is the t
th row of projection matrix or X(X 0X)�1X, X being the matrix

of exogenous variables or candidate instruments. In the case of binary treatment and

assignment case discussed in there is only one instrument for the treatment received (Abadie

et. al., 2002). So the problem in binary treatment e¤ect can be recast as in equation (20)

where

P 0t = 1� I fS = 1jZ = 0g � I fS = 0jZ = 1g

such that

E
�
P 0t jX

�
= E

�
1� I fS = 1; Z = 0g

P fZ = 0jXg � I fS = 0; Z = 1g
P fZ = 1jXg jX

�
= E

�
1� Z:(1� S)

P fZ = 1jXg �
(1� Z) :S

1� P fZ = 1jXgjX
�
: (21)

However, this becomes more involved if we go to a continuous treatment or to more

general IV or 2SLAD type estimation.
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4 ASYMPTOTIC DISTRIBUTION THEORY RESULTS

This section follow Abadie et. al (2002) closely with appropriate extensions.

Condition 4 (IDENTIFICATION ASSUMPTION): There exists unique � 2 � and � 2
� such that the �th quantile of YS conditional on X and Sk � j > Sk�1 for all j = 0; 1; :::; J

and k = 1; 2; :::;K is unique and equals �S +X 0�:

Proposition 3 (IDENTIFICATION) Given Assumptions 3 and 4,

arg min
(a�b)2(�;�)

E

" PK
k=1

PJ
j=0

�
1� IfS<jgIfZ=kg

P [Z=kjX] � (1�IfS<jg)IfZ=k�1g
P (Z=k�1jX)

�
� (Y � aS �X 0b) (� � I fY � aS �X 0b < 0g)

#
(22)

is unique and equals (�; �).

Proof. See Appendix A.

Condition 5 (CONSISTENCY ASSUMPTION):

1. Let W = (Y;D;X 0; Z)0 are iid.

2. For estimation of the expected value of the projection of Z on X, let 
j 2 � be a
subset of RL; and P (Z = kjX) = P (X; 
k) which must strictly lie between 0 and 1,

and is continuous in g 2 �:

3. There exists a consistent �rst stage estimator 
̂k of 
k.

4. EjY j and EjjXjj are �nite.

5. � and � are compact (just convex would have been su¢ cient if the function � was

convex, which is not the case).

6. The function IfY � aD �X 0b < 0g is continuous at each (a; b) in ��� w. p.1.

Proposition 4 (CONSISTENCY): Given Assumptions (3)-(5) hold, then the conditional
quantile regression estimators

�
�̂; �̂

�
� arg min

a2�;b2�

1

n

nX
i=1

X
j

X
k

 
1� I fS < jg I fZ = kg

P [xi; 
̂k]
� (1� I fS < jg) I fZ = k � 1g

P
�
xi; 
̂k�1

� !
���

�
yi � asi � x0ib

�
15



is consistent for (�; �) :

Proof. See Appendix B.
Under certain other regularity conditions like the generalized method of moment es-

timator for the �rst stage estimator 
, and the absolute continuity of the distribution

function. Abadie et. al.(2002) shows that estimator is asymptotically normal for binary

treatment e¤ect.

5 EMPIRICAL EXAMPLE

I wish to do an example of the returns to schooling example I gave as an example, however

I haven�t had any signi�cant luck with the data, so far. If I can�t I would talk about an

arti�cial example in the line of Rosenbaum (1997)�s comment to Angrist et. al. (1997) and

compare the di¤erent models.

The example we talk about is more like a motivation for the need of an instrumental

variable estimator for quantile regression type problems. The data is taken from the Panel

Data of Income Dynamics, 1969-1984, although we only use the data on individuals from

1969. The variables are YEAR=1969, ln of Wage (WAGE), EDUC(in years of education),

EXP(Experience in years), TEN(Tenure in months) and an id number for the observation.

This was used by Solomon Polachek and Bong Joon Yoon in "Panel Estimates for two tier

Earnings Forecast" in Journal of Applied Econometrics v11.2, 1996.

6 SUMMARY AND OBJECTIVES

We tried to illustrate the e¤ect of non-ignorable treatment on quantiles of the potential

outcomes distribution when the treatment received and the assignment mechanism are

continuous.The Quantile Treatment E¤ect (QTE) estimator takes into account the endo-

geneity problem inherent in a model and gives consistent estimators.

One major concern of the exercise was convergence to the QTE estimators and if they

exist at all was not guaranteed from the algorithm used. Traditional 2SLS tends to restrict

the e¤ect of covariates to be the same for all groups unlike QTE, this might reduce the

sampling variation in 2SLS estimates which might lead to bias.

As mentioned before some behavioral assumptions are extremely essential for the esti-

mator to be consistent as discussed in Heckman (1997).
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Some of the assumptions, for consistency like the compact parameter space could have

been removed if we consider a convex hull of the � function, this might be a useful exercise

to pursue.

7 APPENDIX (Proof of Lemma and Propositions)

7.1 Appendix A

Proof. Proof of Proposition 3 (IDENTIFICATION): From Assumption 4 we have that,

E [(Y � h (S;X)) (� � I fY � h (; X)g) jSk � j > Sk�1; for all j; k]

has a minimum when h(S;X) is the �th quantile of the conditional distribution of Y

given X and that this is uniquely equal to �S +X 0�:Thus we have

(�; �) � arg min
a2�;b2�

E
��
Y � aS �X 0b

�
�
�
� � I

�
Y � aS �X 0b

	�
jSk � j > Sk�1 for all j; k

�
) (�; �) = arg min

a2�;b2�
E

24X
j

X
k

�jk
�
Y � aS �X 0b

� �
� � I

�
Y � aS �X 0b < 0

	�35(23)
using lemma 1.

Proof. Proof of Proposition 5 (CONSISTENCY):
By proposition 3, we have shown that the equation (22) is uniquely minimized at (�; �)

over a compact space (�;�) : Consider the following function

f (Wi; l; G) =
KX
k=1

JX
j=0

�jki (gk)
�
� � I

�
Yi � aSi �X 0

ib < 0
	� �

Yi � aSi �X 0
ib
�

(24)
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where Wi = (Si; X
0
i) ; l = (a; b) 2 (�;�) and G = (g0; g1; g2;:::;gK) 2 �K : Then

sup
l2(�;�)






 1n
nX
i=1

f
�
wi; l; Ĝ

�
� E [f (W; l;G)]







� sup

l2(�;�)






 1n
nX
i=1

f
�
wi; l; Ĝ

�
� E [f (W; l;G)]






+ sup
l2(�;�)




E hf �wi; l; Ĝ�i� E [f (W; l;G)]



= R1 +R2; say. (25)

We can further show using standard notations of teh check function �� (y) = (� � I fy < 0g) y
and �̂jki = �jki (ĝk)

R1 = sup
l2(�;�)







 1n
nX
i=1

KX
k=1

JX
j=0

�̂jki ��
�
Yi � aSi �X 0

ib
�
�
X
k

X
j

E
h
�jki ��

�
Yi � aSi �X 0

ib
�i







� sup
l2(�;�)

KX
k=1

JX
j=0






 1n
nX
i=1

�
�̂jki ��

�
Yi � aSi �X 0

ib
�
� E

h
�jki ��

�
Yi � aSi �X 0

ib
�i�




 (26)

From Assumptions 3-5, we have that f(:) is a continuous function in (W; l;G). From the

Assumption 5 part 2., each �jki is bounded by some real �K while j� � I fYi � aSi �X 0
ib < 0gj

is bounded by 1. As we are maximizing over compact space ���, we have a �nite value
for all klk � �l for all l � � � �. Hence, jjf(:)jj � �K

�
jY j+ �l (kXk+ 1)

�
, the bound is

�nite from assumptions. Using Lemma 2.4 from McFadden and Newey (1994) we have

that E[f(W; l;G)] is continuous at each (l; G) 2
�
�;�;�K

�
: Then,

R1 � sup
l2(�;�)

KX
k=1

JX
j=0






 1n
nX
i=1

�
�̂jki ��

�
Yi � aSi �X 0

ib
�
� E

h
�jki ��

�
Yi � aSi �X 0

ib
�i�




 p! 0;

(27)

as each of its components goes to zero.

Similarly, as E[f(W; l;G)] is a continuous function of (l; G)

E [f (W; l; 
̂)]
p! E [f (W; l; 
)]
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uniformly in l 2 (���). Hence, from Theorem 2.1 in Newey and Mcfadden�s (1994),

R2 = sup
l2(�;�)




E hf �wi; l; Ĝ�i� E [f (W; l;G)]


 p! 0: (28)

From equations (27) and (28), applying to equation (25) we have a su¢ cient condition for

the convergence of
�
�̂; �̂

�
to (�; �) ; that shows the consistency of the estimators.

7.2 Appendix B

Let us consider the problem of quantile regression in this context as given by Koenker and

Bassett (1978), we can write the problem as the following

min
�2B

nX
i=1

��
�
yi � x0i�

�
where �� (r) = r (1� I fr < 0g) can be explained as a linear programming problem in

standard form min c0x s.t.Ax = y; x � 0, in this case

min
�2B

(X
i

�u+i + (1� �)u
�
i jyi = x0i� + u

+
i � u

�
i for all i = 1; :::; n;

�
u+i ; u

�
i

�
2 R2n+

)

� min
�2B

(X
i

�e0u+ + (1� �) e0u�jy = X0� + u+ � u�;
�
u+; u�

�
2 R2n+

)
:

where e0 = (1; 1; ::; 1; :::; 1) We can write this in the standard LP form where

c0 =
�
0; �e0; (1� �) e0

�
; x =

�
�0; u+0; u�0

�
; A = (X; I;�I) ; b = y:

Further, in this special case, we have �0 =
�
�; �0

�0 and X = (d;X), hence the problem

becomes a linear program with

c0 =
�
0; 0; 0; 0; �e0; (1� �) e0

�
; x =

�
�+; �+0; ��; ��0; u+0; u�0

�
; A = (d;X;�d;�X; I;�I) ; b = y:

This problem could easily be solved using a Barrodale-Roberts (BR) type algorithm
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as was suggested by Koenker and D�Orey (1987). However, here the problem is a little

di¤erent as we have to replace the e0 = (1; 1; : : : 1)0 by � = (�1; �2; :::; �n) where some of the

��s might be negative. To keep the solution of LP bounded, and to keep the de�nitions of

u+ and u� consistent with the intended de�nition, they include a new constraint namely,

u+i :u
�
i = 0 which is trivially true in the LP.

We propose a Primal-Dual Interior point algorithm for the estimator developed by

Karmarkar among others (Arbel, 1993), the basic idea is to use the following primal and

dual problems

min
x
c0x� �

 
nX
i=1

ln (xi)

!
s.t.Ax = b and � > 0: (29)

min
x
b0y + �

 
nX
i=1

ln (zi)

!
s.t. A0y + z = c; � > 0: (30)

where we optimize both together maintaining the feasibility requirement for both the

Primal and Dual problems we stop by a minimum relative duality gap criterion.

However, we need to include an extra constraint to take into account the problem of

unbounded solutions by including the constraint x02x3 = 0 where x0 = (x01; x
0
2; x

0
3). One

way of doing that would be to include that as an extra constraint in the primal problem.
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