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Abstract

A new family of kernels is suggested for use in long run variance (LRV) estimation and robust regression testing. The kernels
are constructed by taking powers of the Bartlett kernel and are intended to be used with no truncation (or bandwidth) parameter.
As the power parameter (�) increases, the kernels become very sharp at the origin and increasingly downweight values away
from the origin, thereby achieving effects similar to a bandwidth parameter. Sharp origin kernels can be used in regression testing
in much the same way as conventional kernels with no truncation, as suggested in the work of Kiefer and Vogelsang [2002a,
Heteroskedasticity-autocorrelation robust testing using bandwidth equal to sample size. Econometric Theory 18, 1350–1366, 2002b,
Heteroskedasticity-autocorrelation robust standard errors using the Bartlett kernel without truncation, Econometrica 70, 2093–2095]
Analysis and simulations indicate that sharp origin kernels lead to tests with improved size properties relative to conventional tests
and better power properties than other tests using Bartlett and other conventional kernels without truncation.

If � is passed to infinity with the sample size (T), the new kernels provide consistent LRV estimates. Within this new framework,
untruncated kernel estimation can be regarded as a form of conventional kernel estimation in which the usual bandwidth parameter
is replaced by a power parameter that serves to control the degree of downweighting. A data-driven method for selecting the power
parameter is recommended for hypothesis testing. Simulations show that this method gives arise to a test with more accurate size
than the conventional HAC t-test at the cost of a very small power loss.
© 2006 Elsevier B.V. All rights reserved.

MSC: 62M10; 62M15

Keywords: Heteroscedasticity and autocorrelation consistent standard error; Data-determined kernel estimation; Long run variance; Power
parameter; Sharp origin kernel

1. Introduction and overview

One of the many areas where Madan Puri has made major contributions to statistical theory is nonparametrics (see
Hall et al., 2003). Nonparametric methods are now very popular in econometrics both in time series and cross section
data applications. Indeed, much of modern econometrics is concerned with attempts to achieve generality wherever
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possible by using nonparametric techniques, while retaining specificity wherever the model connects most closely with
underlying economic ideas to be tested. In practical empirical econometric work, nonparametric methods have been
used most extensively to obtain covariance matrix estimates and statistical tests that are robust to heteroskedasticity
and autocorrelation in the data. This topic is the subject of the present contribution. We first overview a recent direction
in econometric method on this topic and motivate our own work.

While much practical econometric testing makes use of heteroskedasticity and autocorrelation consistent (HAC)
covariance matrix estimates, it is not necessary that such estimates be employed in order to produce asymptotically
similar tests in regression. In this spirit, Kiefer et al. (2000; hereafter, KVB) and Kiefer and Vogelsang (2002a,b;
hereafter, KV) have recently proposed the use in robust regression testing of kernel based covariance matrix estimates
in which the bandwidth parameter (M) is set to the sample size (T). While these estimates are inconsistent for the
asymptotic covariance matrix, they nevertheless lead to asymptotically valid regression tests. Simulations reveal that
the null asymptotic approximation of these tests is often more accurate in finite samples than that of tests based on
consistent HAC estimates, although prewhitening is known to improve size accuracy in the latter (den Haan and Levin,
1997) particularly when model selection is used in the selection of the prewhitening filter (Lee and Phillips, 1994).1

Using higher order asymptotics, Jansson (2004) explained this improved accuracy of the null approximation, showing
that the error rejection probability (ERP) in a Gaussian location model of these tests is O(log T/T ), where T is the
sample size, in contrast to the rate of O(T −1/2) that is attained by tests using conventional HAC estimates.2

While these alternative robust tests based on inconsistent HAC estimates have greater accuracy in size, they also
experience a loss of power, including local asymptotic power, in relation to conventional tests. A local power analysis
in Kiefer and Vogelsang (2002b) reveals that it is the Bartlett kernel among the common choices of kernel that produces
the highest power function when bandwidth is set to the sample size. The latter outcome may appear unexpected in view
of the usual preferred choice of quadratic (at the origin) kernels in terms of their better asymptotic mean squared error
characteristics in consistent spectral density and HAC estimation (Hannan, 1970; Andrews, 1991). Unlike quadratic
kernels, the Bartlett kernel has a tent shape, is not differentiable at the origin, and the reason for its better power
performance characteristics is unexplained.

The present paper takes a new look at HAC estimation and robust regression testing using kernel estimation without
truncation (or when the bandwidth equals the sample size). Our main contribution is to provide a new approach to
HAC estimation that embeds the Bartlett kernel in a new class of sharp origin (SO) kernels. The new kernels are equal
to the Bartlett kernel raised to some positive power (�). For � > 1, the kernels have a sharper peak at the origin and
they downweight non-zero values more rapidly than the Bartlett kernel. The asymptotic theory for HAC estimation and
regression testing with SO kernels turns out to differ in some important ways and yet to be similar in others to that of
the conventional Bartlett kernel.

We consider two cases, one where the power parameter � is fixed and the other where � passes to infinity with T .
When � > 1 is fixed as T → ∞, HAC estimation based on this SO kernel is inconsistent just as it is when � = 1.
However, compared with the Bartlett kernel (� = 1), SO kernels put less weight on autocovariances with larger lags
and correspondingly deliver HAC estimates with smaller asymptotic variance. The reduction in asymptotic variance
has important implications in regression testing. Compared with conventional tests that use consistent estimates of the
asymptotic variance matrix, tests based on kernel estimates without truncation inevitably introduce additional variability
by virtue of the fact that the HAC estimates are inconsistent, much as an F-ratio has more variability because of its
random denominator than the asymptotic chi-squared limit. This additional variability assists in better approximating
finite sample behavior under the null while compromising power. Intuition suggests that test power may be improved if
the variability can be reduced while at the same time maintaining more accurate size characteristics in finite samples. SO
kernels can achieve variance reductions in this way, while continuing to deliver tests with better size than conventional
Bartlett-kernel-based tests.

Our findings indicate that SO kernels without truncation deliver asymptotically valid tests with greater accuracy in
size and power close to or better than that of conventional tests. The simulation results show that tests based on SO
kernels (� > 1) without truncation is uniformly more powerful than those based on the Bartlett kernel (� = 1) without

1 If the autocorrelation is parametric and model selection based prefiltering (within the correct parametric class) is employed in conjunction with
conventional kernel HAC estimation using a data determined bandwidth, Lee and Phillips (1994) show that the bandwidth is effectively proportional
to the sample size T (up to a slowly varying factor) and a convergence rate of

√
T (up to a slowly varying factor) for the HAC estimator is attainable.

2 The O(T −1/2) rate is obtained by letting d = 1 and M = T 1/2 in Eq. (11) of Velasco and Robinson (2001).
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truncation. As � increases, there is a tendency for greater size distortion, although even for samples as small as T = 50
the size distortion is smaller than that of the conventional tests using data-driven bandwidth choices.

When � → ∞ with T , SO kernels provide a new mechanism for consistent HAC (and, more generally, spectral
density) estimation. While test validity is retained whatever the choice of �, there is an opportunity for optimal choice
of �. To this end, we develop an asymptotic distribution theory for consistent LRV estimation using SO kernels with
no truncation. Optimal choice of the power parameter � is then obtained by minimizing the asymptotic mean squared
error of the HAC estimate, leading to an explicit rate �=O(T 2/3) which gives a convergence rate for the HAC estimate
of T 1/3. This is precisely the same rate that applies when a truncated Bartlett kernel HAC estimate is implemented with
an optimal bandwidth choice (c.f., Hannan, 1970; Andrews, 1991). These new asymptotics for sharp kernels, like those
for truncated kernels, offer the opportunity of data-driven methods for selecting � in practical work. Two data-driven
methods are proposed and their finite sample performances are investigated using simulations.

The present contribution is related to recent work by Kiefer and Vogelsang (2005) and Hashimzade and Vogelsang
(2006). These authors consider LRV and spectral density estimation using traditional kernels when the bandwidth (M)
is set proportional to the sample size (T), i.e. M = bT for some b ∈ (0, 1). Their approach is equivalent to contracting
traditional kernels k(·) to get kb(x) = k(x/b) and using the contracted kernels kb(·) in the LRV and spectral density
estimation without truncation. Our approach is to exponentiate the traditional kernels k(·) to get k�(x) = k�(x) and
use it in estimation and testing without truncation. Both contracted kernel and exponentiated kernels are designed to
improve the power of existing robust regression tests with no truncation. The associated estimators and tests share many
properties. For example, the size distortion and power of the new robust regression tests increase as � increases or b
decreases. Nevertheless, it is difficult to characterize the exact relationship between these two types of strategies. In
the special cases when exponential type kernels such as k(x)= exp(−|x|) is used, these two strategies lead to identical
estimators and statistical tests when � and b are appropriately chosen (i.e. � = 1/b). Exponential kernels of this type
have not been used before in LRV estimation and appear in spectral density estimation only in the Abel estimate
(c.f. Hannan, 1970, p. 279).

The rest of the paper is organized as follows. Section 2 briefly overviews testing problems in the presence of
nonparametric autocorrelation. Section 3 introduces SO kernels and establishes the asymptotic properties of HAC
estimators using these kernels without truncation when the power parameter � is fixed. Section 4 develops the asymptotic
theory for the case when � → ∞ with T and extracts optimal values of � based on an MSE criterion. Section 5 provides
a limit theory for regression tests using SO kernels under both null and local alternatives. Section 6 reports simulation
results on the finite sample performances of the proposed tests and makes some suggestions for implementation in
practical econometric work. Section 7 concludes. Notation is given in a table at the end of the paper and proofs and
additional technical results are in Appendix.

2. Robust testing of regression hypotheses

As in earlier work by KVB, we use the following linear regression model for exposition

yt = x′
t� + ut , t = 1, 2, . . . , T , (1)

where ut is autocorrelated, possibly conditionally heteroskedastic and xt is such that assumption A1 below holds. Least
squares estimation leads to �̂ = (

∑T
t=1 xtx

′
t )

−1∑T
t=1 xtyt and the scaled estimation error is written in the form

√
T (̂� − �) =

(
1

T

T∑
t=1

xtx
′
t

)−1 (
1√
T

ST

)
, (2)

where

St =
t∑

�=1

v� and v� = x�u�. (3)

Let v̂� = x�û� be estimates of v� constructed from the regression residuals û� = y� − x′
��̂, and define the corresponding

partial sum process Ŝt =∑t
�=1 v̂�.
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The following high level condition for which sufficient conditions are well known (e.g. Phillips and Solo, 1992)
facilitates the asymptotic development and is in common use (e.g., KVB, 2000; Jansson, 2004).

Assumption A1.

(a) S[T r] satisfies the functional law

T −1/2S[T r] ⇒ �Wm(r), r ∈ [0, 1] (4)

where ��′ = � > 0 is the long run variance (LRV) of vt and Wm(r) is m-dimensional standard Brownian motion.
(b) plimT →∞ T −1∑[T r]

t=1 xtx
′
t = rQ uniformly in r ∈ [0, 1] with positive definite Q.

Under A1 we have

T −1/2Ŝ[T r] ⇒ �Vm(r), r ∈ [0, 1], (5)

where Vm is a standard m-dimensional Brownian bridge process, as well as the usual regression limit theory
√

T (̂� − �) ⇒ Q−1�Wm(1) = N(0, Q−1�Q−1), (6)

which provides a basis for robust regression testing on �. The conventional approach relies on consistent estimation of
the sandwich variance matrix Q−1�Q−1 in (6), which in turn involves the estimation of � since Q−1 is consistently
estimated by Q̂−1 where Q̂ = T −1∑T

t=1 xtx
′
t . Many consistent estimators of � have been proposed in the literature

(see, for example, White, 1980; Newey and West, 1987; Andrews, 1991; Hansen, 1992; de Jong and Davidson, 2000).
Among them, kernel-based nonparametric estimators that involve smoothing and truncation are in common use. When
vt is stationary with spectral density matrix fvv(�), the LRV of vt is

� = �0 +
∞∑

j=1

(�(j) + �(j)′) = 2�fvv(0), (7)

where �(j) = E(vtv
′
t−j ). Consistent kernel based estimation of � typically involves use of formulae motivated by (7)

of the general form

�̂(M) =
T −1∑

j=−T +1

k

(
j

M

)
�̂(j), (8)

�̂(j) =

⎧⎪⎪⎨⎪⎪⎩
1

T

T −j∑
t=1

v̂t+j v̂
′
t for j �0,

1

T

T∑
t=−j+1

v̂t+j v̂
′
t for j < 0

(9)

involving the sample covariances �̂(j) that are based on estimates v̂t = xt ût = xt (yt − x′
t �̂) of vt constructed from

regression residuals. In (8), k(·) is a kernel function and M is a bandwidth parameter. Consistency of �̂(M) requires
M → ∞ and M/T → 0 as T → ∞.

Various kernel functions k(·) are available for use in (8) and their properties have been extensively explored in
the time series literature (e.g., Parzen, 1957; Hannan, 1970; Priestley, 1981) from which the econometric literature
on HAC estimation draws. Some of these properties, such as asymptotic bias and mean squared error, hinge on the
behavior of the kernel function around the origin which is often characterized in terms of the Parzen exponent q, the
first positive integer for which kq = limx→0 {(1 − k(x))/|x|q} �= 0. Most standard kernels (except the Bartlett) have
q = 2 and hence quadratic behavior around the origin. These kernels have been found to produce estimates �̂(M) with
preferable asymptotic MSE properties and better rates of convergence for optimal choices of the bandwidth than other
kernels. When q =2, this rate of convergence is T 2/5. The Bartlett kernel, which is also commonly used in econometric
work (Newey and West, 1987, 1994), has q = 1. When an optimal bandwidth rate is used with this kernel, the rate of
convergence of �̂(M) is T 1/3. While none of these considerations matter asymptotically when all that is needed is a
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consistent estimate of �, they do play an important role in finite sample behavior. Indeed, higher order expansions,
as in Linton (1995) and Xiao and Phillips (1998, 2002) show that improved regression estimation and testing can be
accomplished using appropriate bandwidth selection that takes into account higher order behavior. While we will not
pursue that line of analysis in the present paper, we do note here the important differences between standard kernels
for which q = 2 and the Bartlett kernel where q = 1.

To test a null such as H0 : R� = r, where R is a known p × m matrix of rank p and r is a specified p-vector, the
standard approach relies on the F -ratio statistic of the form

F�̂(M)
= T (R�̂ − r)′(RQ̂−1�̂(M)Q̂−1R′)−1(R�̂ − r)/p, (10)

which is asymptotically 	2
p/p. Use of F�̂(M)

is very convenient in empirical work and robustifies the test to a wide range
of possible behavior in the regression error ut in (1). However, it is well known that the size of tests based on (10) can be
poorly approximated by the asymptotic distribution, which neglects the finite sample randomness induced by the HAC
estimate �̂(M), although prewhitening in the estimation of � does help to ameliorate finite sample performance—see
den Haan and Levin (1997) and Jansson (2004) for further details and discussion.

KV proposed a class of kernel based estimators of � in which standard kernels are used but where the bandwidth
parameter is set equal to the sample size. These estimates are inconsistent and tend to random matrices instead of �.
Nonetheless, valid asymptotically similar tests can be constructed with these covariance estimators in the same manner
as (10) but with a different limit distribution for the test that depends on the form of the kernel. KV showed that the
Bartlett kernel delivers tests with the highest power among the standard kernels, including those for which q = 2,
although this finding is unexplained.

Following KV, the next section proposes a new class of power kernels where the bandwidth is set to the sample size
and which dominate the Bartlett kernel in a sense that will be made clear later on.

3. SO kernels and HAC estimation

We define a class of SO kernels by taking an arbitrary power ��1 of the usual Bartlett kernel, giving

k�(x) =
{

(1 − |x|)�, |x|�1
0, |x| > 1

for � ∈ Z+. (11)

When � = 1, k�(x) is the usual Bartlett kernel. As � increases, k�(x) becomes successively more concentrated at the
origin and its peak more pronounced and sharp. Fig. 1 graphs k�(x) for several values of � illustrating these effects.

SO kernels have the following properties, which may be readily verified.

(i) k�(x) : (−∞, ∞) → [0, 1] satisfies k�(x) = k�(−x), k�(0) = 1, and k�(1) = 0.
(ii) The Parzen exponent (Parzen, 1957) of k�(x) equals 1, i.e. q = 1 is the largest integer such that limx→0 [1 − (1 −

|x|)�]|x|−q is finite and


1 = lim
x→0

1 − (1 − |x|)�
|x| = � < ∞. (12)

(iii) k�(x) is positive semi-definite for any � ∈ Z+.

Using the kernel function k� in expression (8) and letting M = T gives a class of untruncated HAC estimators of the
form

�̂� =
T −1∑

j=−T +1

k�

(
j

T

)
�̂(j). (13)

In what follows in this section we will assume that the � value in (13) is fixed as T → ∞.



990 P.C.B. Phillips et al. / Journal of Statistical Planning and Inference 137 (2007) 985–1023

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SO(1)
SO(2)
SO(4)
SO(8)
SO(16)

Fig. 1. Sharp origin (SO) kernels k�(x) for � ∈ [1, 16].

The following theorem establishes the asymptotic properties of the HAC estimator �̂� when a SO kernel is used.

Theorem 1. Let A1 hold, then the following results hold:

(a) �̂� ⇒ ����′, where ��=∫ 1
0

∫ 1
0 k�(r−s) dVm(r) dV ′

m(s) and Vm(r) is an m-vector of standard Brownian bridges.

(b) E(����′) = ���, where �� = 1 − ∫ 1
0

∫ 1
0 k�(r − s) dr ds.

(c) var(vec(����′)) = 
�(Im2 + Kmm)� ⊗ � where


� =
∫

k�(r − s)k�(p − q) − 2
∫

k�(r − s)k�(r − q) +
∫

k�(r − s)2

and the integrals are taken with respect to all the underlying argument variables, for example∫
k�(r − s)k�(p − q) =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
k�(r − s)k�(p − q) dr ds dp dq.

Remarks.

(a) Part (a) of Theorem 1 holds for more general kernels. For example, if k(·) is twice continuously differentiable, then
it follows from the proof that

T −1∑
j=−T +1

k(j/T )�̂(j) ⇒ ���′, (14)

where � = ∫ 1
0

∫ 1
0 k(r − s) dVm(r) dV ′

m(s). This result then implies parts (b) and (c) with k�(·) replaced by k(·).
(b) As shown in the proof of the theorem, an alternative representation of �� is

�� =
∫ 1

0

∫ 1

0
k∗
�(r, s) dWm(r) dW ′

m(s),
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where

k∗
�(r, s) = k�(r − s) −

∫ 1

0
k�(r − t) dt −

∫ 1

0
k�(� − s) d� +

∫ 1

0
k�(t − �) dt d�,

and then

�� =
∫ 1

0

∫ 1

0
k∗
�(r, r) dr, 
� =

∫ 1

0

∫ 1

0
[k∗

�(r, s)]2 dr ds.

(c) Theorem 1 tells us that �̂�/��→d�� := ����′/�� and

E�� = �,

var(vec(��)) = 
��−2
� (Im2 + Kmm)� ⊗ �. (15)

Hence, �̂�/�� is asymptotically unbiased with asymptotic variance matrix 
��−2
� (Im2 + Kmm)� ⊗ �. In seeking

a preferred kernel, it might first appear reasonable to choose a � that minimizes the scale factor f (�) = 
��−2
� . It

is easy to show that

f (�) =
{(

2

� + 2

)2

+ 1

� + 1
− 4

(� + 1)2

(
4�2 + 7� + 2

(2� + 3)(� + 2)
+ �2(� + 2)

�(2� + 4)

)}(
�

� + 2

)−2

.

As shown in Fig. 2, f (�) is a decreasing function of � and it is easily seen that lim�→∞ f (�)=0. So, the asymptotic
variance of the HAC estimate can be made arbitrarily small by taking an arbitrarily large � in the kernel k�. However,
the vanishing of the asymptotic variance is obtained under the sequential limit in which T → ∞ for a fixed � and
then passing � → ∞. Such a limit theory may not capture the behavior of �̂�/�� in finite samples very well. In the

next section, we allow T → ∞ and � → ∞ at the same time. We show that the absolute bias of �̂�/�� increases as
� increases and that there is an opportunity to choose � to balance the asymptotic bias and the asymptotic variance.

(d) Since the contracted kernel k̄�(x) = (1 − �|x|)1{�|x|�1} and the exponentiated kernel k�(x) have the same first
order expansion near the origin, it is of interest to find the scale factor analogous to f (�) for the estimator

�̄� =
T −1∑

j=−T +1

(
1 − �

∣∣∣∣ jT
∣∣∣∣) 1

{
�

∣∣∣∣ jT
∣∣∣∣ �1

}
�̂(j). (16)
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Following a similar proof, we can prove that Theorem 1 holds for k̄�(x) with k�(x) replaced by k̄�(x). Direct
calculations show that the scale factor f̄ (�) for k̄�(x) when ��2 is

f̄ (�) =
(

1

90

10 + 42� − 105�2 + 60�3

�4

)(
1

3

1 − 3� + 3�2

�2

)−2

.

Fig. 2 shows that f (�) is larger than f̄ (�) when ��3, implying that for a given �, �̂�/�� has a larger variability

than �̄�/�̄�.

4. HAC estimation with SO kernels

4.1. Some new asymptotics with � → ∞

This section develops an asymptotic theory for the HAC estimator �̂� when � → ∞ as T → ∞. Under certain
rate conditions on �, we show that �̂� is consistent for � and has a limiting normal distribution. Thus, consistent HAC
estimation is possible even when the bandwidth is set equal to the sample size. Of course, as is apparent from the graphs
in Fig. 1, the action of � passing to infinity plays a role similar to that of a bandwidth parameter in that very high order
autocorrelations are progressively downweighted as T → ∞.

It is convenient to start the analysis with the HAC estimator that uses the true regression errors ut rather than the
regression residuals ût . Accordingly, let �̃� be this pseudo-estimator, which is identical to �̂� except that it is based
on the unobserved sequence vt = vt (�) = xtut rather than vt = vt (̂�) = xt ût , i.e.

�̃� =
T −1∑

j=−T +1

k�

(
j

T

)
�̃(j),

where

�̃(j) =

⎧⎪⎪⎨⎪⎪⎩
1

T

T −j∑
t=1

vt+j (�)v′
t (�) for j �0,

1

T

T∑
t=−j+1

vt+j (�)v′
t (�) for j < 0.

The spectral matrix of vt is fvv(�), and � = 2�fvv(0). Define

f (1) = 1

2�

∞∑
h=−∞

|h|�(h), �(1) = 2�f (1)

and

MSE(�, �̃�, W) = �E{vec(�̃� − �)′W vec(�̃� − �)},
for some m2 × m2 weight matrix W .

The following conditions help in the development of the asymptotic theory. The linear process and summability
conditions given in A2 ensure that the matrix f (1) is well defined and enable the use of standard formulae for the
covariance properties of periodogram ordinates. A3 controls the allowable expansion rate of � as T → ∞ so that
� = o(T / log T ). It will often be convenient to set � = aT b for some a > 0 and 0 < b < 1. The optimal expansion rate
for � is found later to be of this form with b = 2

3 .

Assumption A2. vt = xtut is a mean zero, fourth order stationary linear process

vt =
∞∑

j=0

Cj �t−j ,

∞∑
j=0

j1+�‖Cj‖ < ∞ for some � > 0, (17)

where �t−j is iid(0, ��) with E‖�t‖4 < ∞.
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Assumption A3. (1/�) + (� log T )/T → 0, as T → ∞.

Define the spectral window

K�(�) =
T −1∑

h=−T +1

k�

(
h

T

)
ei�h (18)

corresponding to the SO kernel k�.Analogous to �̃�, we define the spectral estimate f̃vv(0)=(1/2�)
∑T −1

h=−T +1 k�(h/T )

�̃(h) and let {�s =2�s/T ; s =0, 1, . . . , T −1} be the Fourier frequencies and Ivv(�s) be the periodogram of vt . Using
the inversion formula

�̃(h) = (2�/T )
∑T −1

s=0
Ivv(�s)e

i�sh,

we deduce the smoothed periodogram form of this estimate, viz.,

f̃vv(0) = 1

T

T −1∑
s=0

K�(�s)Ivv(�s), (19)

with a corresponding formula for �̃� = 2�f̃vv(0). It is apparent that the limit behavior of these two quantities depends
on the spectral window K�(�s), whose asymptotic form as T → ∞ is given in the next result.

Lemma 2. Let � = aT b → ∞ for some a > 0 and 0 < b < 1. Then, for all �s = 2�s/T , s = 0, 1, . . . , [T/2], we have
as T → ∞

K�(�s) = 2�T

2T 2(1 − cos �s) + �2 [1 + o(1)] (20)

=

⎧⎪⎨⎪⎩
2�T

(2�s)2 + �2
[1 + o(1)], s = o(T ),

�

T (1 − cos(
�))
[1 + o(1)], s =

[
T 


2

]
, 
 ∈ (0, 1],

(21)

where the o(1) terms hold uniformly over s.

Since K�(�s) = K�(−�s) = K�(−�s + 2�), it follows from (20) and (21) that

K�(�s) =

⎧⎪⎨⎪⎩
O

(
T

�

)
s�� and s�T − �,

O

(
�T

s2

)
� < s < T − �.

(22)

So, for frequencies �s in the vicinity of the origin such that �s = 2�s/T = O(�/T ) with � satisfying A3, the spectral
window K�(�s) = O(T /�) diverges, while for all frequencies �s → � ∈ (0, 2�), K�(�s) = O(�/T ) = o(1). Thus,
Lemma 2 shows that when � → ∞ the SO spectral estimate (19) effectively smooths periodogram ordinates in the
neighborhood of the origin by downweighting frequencies that are removed from the origin (and 2�).

In comparison to (20), the spectral window of the Bartlett kernel (� = 1) is well known (e.g Priestley, 1981, p. 400)
to be given by the exact formula

K1(�) =
T −1∑

h=−T +1

(
1 − |h|

T

)
cos(h�) = 1

T

sin2 (T �/2)

sin2(�/2)
= 2�FT (�), (23)

where FT (�) is Fejer’s kernel. Fig. 3 compares the spectral windows (23) and (18) when T = 10 for various �.
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Fig. 3. Spectral window K�(�) for Bartlett (� = 1) and sharp origin kernels k� with � = 2, 4, 8, 16 and T = 10.

Note that the side lobes of the Fejer kernel are smoothed out in the SO spectral window even for � = 2, as we
expect from the asymptotic approximation (21). The peaks in the spectral windows at the origin reduce and the window
becomes flatter as � increases (for fixed T ) because K�(0) = O(T /�), as is clear from (22).

The following theorem describes the limit behavior of �̃� and gives the asymptotic form of the mean squared error
MSE(�, �̃�, W).

Theorem 3. Suppose A1–A3 hold and � = aT b → ∞ for some a > 0 and 0 < b < 1. Then:

(a) limT →∞ �Var(vec(�̃�)) = (Im2 + Kmm)(� ⊗ �).
(b) If b < 2

3 then

√
�(vec(�̃�) − vec(�))→dN(0, (Im2 + Kmm)(� ⊗ �)).

(c) limT →∞(T /�)(E�̃� − �) = −�(1).
(d) If �3/T 2 → ϑ ∈ (0, ∞), then

lim
T →∞ MSE(�, �̃�, W) = ϑ vec(�(1))′W vec(�(1)) + tr{W(Im2 + Kmm)(� ⊗ �)}.

Remarks.

(a) It is not surprising that the results in Theorem 3 are similar to those for conventional HAC estimates as given, for
example, in Andrews (1991). Fig. 4 shows the spectral window K�(�) corresponding to the SO kernel k� with
�(T ) = O(T 2/3) for various values of T over the domain (−�, �). Apparently, K�(�) becomes successively more
concentrated at the origin as � and T increase, so that the overall effect in this approach is analogous to that of
conventional HAC estimation where increases in the bandwidth parameter M ensure that the band of frequencies
narrows as T → ∞.

(b) Part (b) of Theorem 3 gives a CLT for the new HAC estimator �̃�. �̃� is computed using a full set of frequencies as
is apparent from (19), but since � → ∞ as T → ∞, the spectral window becomes more concentrated at the origin
and 2�, as we have seen. The proof of part (b) effectively shows that intermediate frequencies may be neglected as
T → ∞ and that a CLT follows in a manner analogous to what happens when only a narrow band of frequencies
is included (c.f., Robinson, 1995).
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Fig. 4. Spectral window K�(�) of the sharp origin kernel with � = O(T 2/3).

Next, we give a corresponding result for the feasible HAC estimator �̂�, showing that essential asymptotic properties
are unaffected by the presence of the parametric estimation error arising from the use of the regression residuals in
v̂t = vt (̂�). In this development, it is convenient to work with a truncated MSE as in Andrews (1991), viz.

MSEh(�, �̂�, WT ) = E min{� vec(�̂� − �)′WT vec(�̂� − �), h},
where WT is a (possibly random) m2 ×m2 weight matrix that is positive semi-definite (almost surely). The asymptotic
form of MSEh when T → ∞ and h → ∞ is given in the following theorem. Use of MSEh helps to avoid the effects
of heavy tails in coefficient estimation on the criterion. Some additional regularity conditions are needed in this case
and are based on those used in Andrews (1991). These are detailed in Assumption B prior to the proof of the following
theorem in Appendix.

Theorem 4. Let A1–A3 and B hold. Suppose �3/T 2 → ϑ ∈ (0, ∞) as T → ∞. Then

(a)
√

�(�̂� − �) = Op(1),
√

�(�̂� − �̃�)→p0; and
(b)

lim
h→∞ lim

T →∞ MSEh(�, �̂�, W)

= lim
h→∞ lim

T →∞ MSEh(�, �̃�, W)

= lim
T →∞ MSE(�, �̃�, W)

= ϑ vec(�(1))′W vec(�(1)) + tr{W(Im2 + Kmm)� ⊗ �}. (24)

4.2. Optimal power parameters

As in optimal bandwidth selection in spectral density and HAC estimation, the criterion MSEh can be used to
determine a value of the power parameter � that is optimal in the sense that it minimizes the asymptotic truncated MSE
for some given sequence of weight matrices WT that converge in probability to a positive semi-definite limit matrix
W . Let

� = �(�, �(1)) := tr[W(Im2 + Kmm)� ⊗ �]
2 vec(�(1))′W vec(�(1))

. (25)
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Then, using (24), the optimal � is

�∗
T = arg min

�

{
�2

T 2 vec(�(1))′W vec(�(1)) + 1

�
tr[W(Im2 + Kmm)� ⊗ �]

}
= �1/3T 2/3. (26)

The selection �∗
T will lead to HAC estimates �̂� that are preferred in this class, at least in terms of asymptotic

MSE performance. Of course, since �∗
T is an infeasible choice because it depends on unknown parameters, practical

considerations suggest the use of a plug-in procedure that utilizes the form of (26) in conjunction with preliminary
estimates of � and �(1) in �. The plug-in method used here is parametric and is based on the use of simple parametric
models for �, as suggested in Andrews (1991), Andrews and Monahan (1992) and Lee and Phillips (1994). Model
selection methods such as BIC and PIC can be used to assist in finding an appropriate parametric model whose estimates
are then used to compute �̂ and �̂(1), which are then plugged into (25) and (26) to produce the data-determined value
�̂∗

T = �̂1/3T 2/3, where �̂ = �(�̂, �̂(1)). Of course, prefiltering is also an option in practical work.
In applications, the AR(1) is a commonly used simple parametric model for the plug-in method in bandwidth choice

for conventional HAC estimation. In this case, if the assumed models are m univariate AR(1) processes and WT gives
weight (wi) only to the diagonal elements of �̂�, we have

�̂ =
m∑

i=1

wi

�̂4
i

(1 − �̂i )
4

/
m∑

i=1

wi

4�2
i �̂

4
i

(1 − �̂i )
6(1 + �̂i )

2 , (27)

where

�̂i =
∑T

t=2 v̂t,i v̂t−1,i∑T
t=2 v̂2

t−1,i

and �̂2
i =

∑T
t=2 (̂vt,i − �̂i v̂t−1,i )

2

T − 1
, (28)

v̂t = xt (yt − x′
t �̂), v̂t,i is ith element of v̂t , and �̂ is defined in (2). In the special case when m = 1, the data-determined

power parameter is

�̂∗
T = �̂1/3T 2/3 with �̂ = (1 − �̂2)2

4�̂2 . (29)

When � = �∗
T , the truncated MSE of �̂�,

E min{vec(�̂� − �)′WT vec(�̂� − �), h},
converges to zero at the rate O(T −2/3). This rate is the same as that of the MSE of the conventional truncated Bartlett
kernel estimate of � where the bandwidth (rather than the power parameter) is chosen to minimize MSE (c.f., Hannan,
1970; Andrews, 1991). Thus, �̂� may be expected to have asymptotic performance characteristics similar to those of
conventional consistent HAC estimates with optimal bandwidth choices.

When � = �∗
T , the asymptotic MSE (AMSE) as given in (24) is

AMSE = 3

2
tr[W(Im2 + Kmm)(� ⊗ �)].

Using Proposition 1 in Andrews (1991), we can show that for the conventional Bartlett-kernel-based estimator with
MSE-optimal bandwidth, the AMSE is

AMSE = tr[W(Im2 + Kmm)(� ⊗ �)].
Therefore, the sharp Bartlett kernel estimator is asymptotically 50% less efficient than the conventional Bartlett kernel
estimator.

However, as is well known, a long run variance estimator with optimal asymptotic MSE properties does not necessarily
deliver the best estimate in finite samples or, more specifically, a test with good size properties in finite samples. In
fact, as argued later in the paper and in keeping with the results in Jansson (2004), some variability in the LRV variance
estimator assists in better approximating the finite sample behavior of the t∗ or F ∗ statistics under the null hypothesis.
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This is one of the main reasons why inconsistent HAC estimates have been advocated in regression testing. They are
particularly useful when size distortion in conventional procedures is a major concern.

5. Hypothesis testing using HAC estimator with SO kernels

As in KV, we use a simple illustrative framework and consider regression tests of the null hypothesis H0 : R� = r

against the alternative H1 : R� �= r . Using the estimate �̂�, we can construct the F-ratio in the usual way

F ∗(�̂�) = T (R�̂ − r)′(RQ̂−1�̂�Q̂−1R′)−1(R�̂ − r)/p, (30)

or, when p = 1, the t-ratio

t∗(�̂�) = T 1/2(R�̂ − r)(RQ̂−1�̂�Q̂−1R′)−1/2. (31)

The limit distributions of F ∗ and t∗ under the null hypothesis and local alternatives when � is fixed are given in the
following theorem:

Theorem 5. Let A1 and A2 hold. If � is fixed, then

(a) Under H0

F ∗(�̂�) ⇒ W ′
p(1)

(∫ 1

0

∫ 1

0
k�(r − s) dVp(r) dV ′

p(s)

)−1

Wp(1)/p, (32)

t∗(�̂�) ⇒ W1(1)

(∫ 1

0

∫ 1

0
k�(r − s) dV1(r) dV ′

1(s)

)−1/2

. (33)

(b) Under the local alternative H1 : R� = r + cT −1/2

F ∗(�̂�) ⇒ (�∗−1c + Wp(1))′
(∫ 1

0

∫ 1

0
k�(r − s) dVp(r) dV ′

p(s)

)−1

(�∗−1c + Wp(1))/p, (34)

t∗(�̂�) ⇒ (� + W1(1))

(∫ 1

0

∫ 1

0
k�(r − s) dV1(r) dV1(s)

)−1/2

, (35)

where �∗�∗′ = RQ−1�Q−1R′ and � = c(RQ−1�Q−1R′)−1/2.

When � is sample size dependent and satisfies A3, we know from Theorem 3 that �̂� is consistent. In this case,
F ∗ and t∗ have conventional chi-square and normal limits.

Theorem 6. Let A1–A3 hold. Then

(a) under the null hypothesis

pF ∗(�̂�) ⇒ W ′
p(1)Wp(1)=d	

2
p, t∗(�̂�) ⇒ W1(1)=dN(0, 1); (36)

(b) under the local alternative hypothesis H1 : R� = r + cT −1/2

pF ∗(�̂�) ⇒ (�∗−1c + Wp(1))′(�∗−1c + Wp(1)), t∗(�̂�) ⇒ (� + W1(1)). (37)
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Table 1
Asymptotic critical values and fitted hyperbola for one-sided t-test

90.0% 95.0% 97.5% 99.0%

� = 1 2.735 3.767 4.796 6.195
� = 2 2.132 2.881 3.630 4.600
� = 4 1.761 2.339 2.902 3.624
� = 8 1.539 2.018 2.469 3.040
� = 16 1.418 1.840 2.232 2.694
� = ∞ 1.282 1.645 1.960 2.326

a −0.410 −0.457 −0.469 −0.513
b 2.103 3.127 4.329 5.637
c 1.282 1.645 1.960 2.326
s.e. 0.004 0.006 0.008 0.024
R2 1.000 1.000 1.000 0.999

From the forms of (32)–(35), the F ∗ and t∗ statistics clearly have nonstandard limit distributions arising from the
random limit of the HAC estimate when � is fixed as T → ∞, just like the KV test. However, it is also apparent that
as � increases, the effect of this randomness diminishes. In particular, since

k�(r − s) = (1 − |r − s|)� →
{

1 r = s,

0 r �= s,
as � → ∞,

we have∫ 1

0

∫ 1

0
k�(r − s) dVp(r) dV ′

p(s)→p

∫ 1

0
drIp = Ip as � → ∞, (38)

in view of the fact that

dVp(r) dV ′
p(r) = d[Vp]r = drIp,

where [Vp]r is the quadratic variation (matrix) process of Vp. It follows from (38) that as � → ∞ the limit distributions
under the null and the alternative approach those of regression tests in which conventional consistent HAC estimates
are employed. In consequence, we can expect the tests based on �̂� with large � to have power similar to that of
conventional tests. When � → ∞, these tests will have power functions equivalent to the power envelope.

Given the above asymptotic distributions, the critical values can be obtained by simulations. The first part of
Table 1 contains the critical values of the t-test for selected � values (including the asymptotic case which is represented
as � = ∞). The Brownian motion and Brownian bridge processes are approximated using normalized partial sums
of T = 1000 iid N(0, 1) random variables and the simulation involves 50,000 replications. For other values of �, the
critical values can be represented approximately by a hyperbola of the form

cv = b

� − a
+ c, (39)

where c is the critical value from the standard normal. The second part of Table 1 gives nonlinear least squares estimates
of a and b. The standard errors are seen to be very small. The R2, defined as the ratio of the sum of squared errors to
that of the critical values, is almost indistinguishable from one. Both the standard errors and the R2s indicate that the
hyperbola explains the critical values very well. In view of the (a, b) values, it is easy to see that as � increases, the
fitted hyperbola approaches its asymptote very quickly. For example, when the significance level is 95%, the critical
values are very close to those from the standard normal when � > 32.

Fig. 5 presents the asymptotic power curves computed by simulation. The experiment design is the same as before.
Asymptotic power is computed for the t∗-test at the 95% significance level using SO kernels with � = 1, 2, 16 and
for � ∈ [0, 5]. As is apparent from Fig. 5, the power curve moves up uniformly as � increases, consonant with the
asymptotic theory implied by (35) and (38). When � = 16, the power curve is very close to the power envelope (the
asymptotic power curve when the true � or a consistent estimate is used). This is to be expected. When � is large, it
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Fig. 5. Asymptotic local power function of the t∗-test.

may be regarded as being roughly compatible with the rate condition in A3 (e.g., � = 16 and T = 1000 corresponds to
16 � 10000.4). In that case, the test statistic is effectively constructed using a consistent estimate of � and Theorem 6
applies.

Comparing the asymptotic powers for different � in Fig. 5, it is apparent that tests based on SO kernels with � > 1
outperform those with the Bartlett kernel (� = 1). KV (2002b) show that the Bartlett kernel delivers the most powerful
test within a group of popular kernels (including the Parzen, Tukey–Hanning, and quadratic spectral kernels) when the
bandwidth is set to the sample size. Correspondingly, SO kernels will also dominate these commonly used kernels as
far as the power of the test is concerned.

The reason for the domination by the Bartlett kernel found by KV is related to the argument given above for the
SO kernel domination. As is apparent from the form of the power functions given in (34) and (35), the effect of the
choice of kernel k on the power function is manifest in the quadratic functional

∫ 1
0

∫ 1
0 k(r − s) dVp(r) dV ′

p(s). Since k
is generally decreasing away from the origin (for many kernels it is monotonically decreasing), the major contribution
to the value of this functional comes from the neighborhood of the origin. Quadratic kernels (i.e. those kernels with
Parzen exponent q = 2) have a quadratic shape at the origin with zero first derivative and decay more slowly than the
Bartlett kernel (or SO kernels), thereby generally increasing the value of the functional and reducing power (for any
given realization of the process Vp).

6. Finite sample properties of the t∗-test

This section compares the finite sample performance of the t∗-test with a SO kernel for various values of the power
parameter. The same data generating process (DGP) as that in KV (2002b) is used here, viz.

yt = � + xt� + ut ,

where � = 0, ut = a1ut−1 + a2ut−2 + et , xt = bxt−1 + �t , b = 0.5, et and �t are iid N(0, 1) with cov(et , �t ) = 0, and
x0 = u0 = u−1 = 0. The simulation results are based on 50,000 replications. We consider the one-sided null hypothesis
H0 : ��0 against the alternative H1 : � > 0. The regression parameter � is estimated by OLS and the t∗-statistic is
constructed as in (31). As a benchmark, we also construct the conventional (i.e., bandwidth truncated) t-statistic using
the Bartlett kernel which we label tHAC or tHAC-SO(1) if we want to emphasize that the Bartlett kernel is used. In
computing tHAC, the bandwidth is chosen by the data-driven procedure proposed in Andrews (1991). We also report t
and t∗ using AR(1) prewhitening, as suggested by Andrews and Monahan (1992).

We first consider the case that � is fixed (� = 1, 2, 4, 8, 16) and T = 50, 100 and 200. Tables 2a and b present the
finite sample null rejection probabilities with no prewhitening and with prewhitening, respectively. Rejections were
determined using asymptotic 95% critical values from Table 1. We draw attention to three aspects of Tables 2a and b.
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Table 2
Finite sample null hypothesis rejection probabilities at 5% nominal level

T a1 a2 tHAC t∗-SO(1) t∗-SO(2) t∗-SO(4) t∗-SO(8) t∗-SO(16)

(a) With no prewhitening
50

−0.500 0.000 0.057 0.050 0.050 0.049 0.048 0.044
0.000 0.000 0.073 0.061 0.061 0.062 0.062 0.063
0.300 0.000 0.088 0.068 0.068 0.070 0.071 0.074
0.500 0.000 0.099 0.072 0.073 0.075 0.078 0.083
0.700 0.000 0.113 0.078 0.079 0.082 0.086 0.093
0.900 0.000 0.125 0.082 0.084 0.088 0.094 0.105
0.950 0.000 0.129 0.082 0.084 0.089 0.096 0.107
0.990 0.000 0.131 0.081 0.084 0.090 0.099 0.112
1.500 −0.750 0.113 0.073 0.074 0.078 0.084 0.094
1.900 −0.950 0.135 0.080 0.083 0.090 0.101 0.115
0.800 0.100 0.124 0.081 0.084 0.088 0.094 0.105

100
−0.500 0.000 0.051 0.050 0.050 0.050 0.049 0.047

0.000 0.000 0.061 0.055 0.055 0.056 0.056 0.056
0.300 0.000 0.074 0.058 0.060 0.061 0.063 0.064
0.500 0.000 0.082 0.063 0.065 0.065 0.067 0.070
0.700 0.000 0.092 0.067 0.068 0.070 0.071 0.076
0.900 0.000 0.100 0.070 0.072 0.073 0.077 0.084
0.950 0.000 0.103 0.073 0.074 0.075 0.079 0.086
0.990 0.000 0.104 0.069 0.070 0.073 0.079 0.086
1.500 −0.750 0.088 0.065 0.066 0.067 0.070 0.075
1.900 −0.950 0.106 0.065 0.066 0.067 0.074 0.084
0.800 0.100 0.100 0.071 0.072 0.073 0.077 0.083

200
−0.500 0.000 0.048 0.049 0.049 0.049 0.048 0.047

0.000 0.000 0.056 0.054 0.054 0.054 0.053 0.054
0.300 0.000 0.066 0.055 0.056 0.056 0.056 0.057
0.500 0.000 0.071 0.056 0.057 0.057 0.058 0.060
0.700 0.000 0.076 0.058 0.058 0.059 0.060 0.063
0.900 0.000 0.082 0.061 0.061 0.062 0.063 0.067
0.950 0.000 0.083 0.061 0.061 0.062 0.063 0.067
0.990 0.000 0.084 0.062 0.062 0.063 0.065 0.069
1.500 −0.750 0.073 0.055 0.056 0.057 0.057 0.060
1.900 −0.950 0.086 0.056 0.056 0.056 0.059 0.066
0.800 0.100 0.083 0.062 0.061 0.062 0.064 0.067

(b) With prewhitening
50

−0.500 0.000 0.065 0.054 0.056 0.058 0.059 0.060
0.000 0.000 0.076 0.060 0.063 0.064 0.066 0.068
0.300 0.000 0.084 0.065 0.067 0.069 0.071 0.073
0.500 0.000 0.089 0.067 0.070 0.071 0.074 0.076
0.700 0.000 0.094 0.070 0.073 0.075 0.077 0.079
0.900 0.000 0.102 0.071 0.075 0.078 0.080 0.084
0.950 0.000 0.103 0.070 0.075 0.078 0.082 0.085
0.990 0.000 0.105 0.067 0.074 0.079 0.085 0.088
1.500 −0.750 0.082 0.063 0.065 0.067 0.069 0.071
1.900 −0.950 0.107 0.069 0.071 0.075 0.080 0.084
0.800 0.100 0.103 0.072 0.075 0.079 0.081 0.085

100
−0.500 0.000 0.058 0.052 0.054 0.055 0.055 0.056

0.000 0.000 0.063 0.054 0.055 0.056 0.058 0.058
0.300 0.000 0.067 0.056 0.059 0.060 0.061 0.061
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Table 2 continued.

T a1 a2 tHAC t∗-SO(1) t∗-SO(2) t∗-SO(4) t∗-SO(8) t∗-SO(16)

0.500 0.000 0.071 0.060 0.062 0.062 0.064 0.064
0.700 0.000 0.074 0.062 0.063 0.064 0.065 0.065
0.900 0.000 0.077 0.064 0.065 0.065 0.066 0.068
0.950 0.000 0.079 0.065 0.065 0.066 0.068 0.069
0.990 0.000 0.080 0.059 0.063 0.065 0.068 0.070
1.500 −0.750 0.059 0.059 0.059 0.059 0.060 0.060
1.900 −0.950 0.081 0.057 0.058 0.059 0.062 0.064
0.800 0.100 0.078 0.064 0.065 0.065 0.067 0.068

200
−0.500 0.000 0.054 0.050 0.050 0.051 0.051 0.051

0.000 0.000 0.057 0.053 0.054 0.054 0.054 0.054
0.300 0.000 0.059 0.054 0.055 0.055 0.054 0.056
0.500 0.000 0.059 0.054 0.055 0.055 0.055 0.056
0.700 0.000 0.061 0.056 0.056 0.056 0.056 0.057
0.900 0.000 0.064 0.057 0.057 0.057 0.057 0.058
0.950 0.000 0.064 0.057 0.057 0.057 0.057 0.056
0.990 0.000 0.065 0.056 0.057 0.058 0.058 0.058
1.500 −0.750 0.047 0.052 0.053 0.052 0.052 0.051
1.900 −0.950 0.066 0.052 0.052 0.051 0.052 0.054
0.800 0.100 0.065 0.058 0.057 0.057 0.058 0.058

∗ 50,000 replications, DGP: yt = x′
t� + ut ; � = 0; xt = 0.5xt−1 + �t , x0 = 0; ut = a1ut−1 + a2ut−2 + et , u0 = u−1 = 0; �t , et ∼ iid N(0, 1),

cov(�t , et ) = 0.

First, in all cases the size distortions of the t∗ tests are less than those of the t-test. Prewhitening reduces the difference in
the size distortion between the two tests but it does not remove it. Second, the size distortion increases with �. However,
as T increases, the null rejection probabilities approach the nominal size for all cases. For T = 200, the increasing
pattern of the size distortion as a function of � is hardly noticeable. Third, when the errors follow an AR(1) process, the
size distortion of both t and t∗-tests increases as a1 approaches unity. Prewhitening greatly reduces the size distortion
for both tests. In short, the asymptotic null approximation of the t∗-test is more accurate than that of the conventional
robust t-test, and prewhitening generally improves the quality of the null approximation in both cases.

Figs. 6 and 7 show the finite sample (size adjusted) power of these tests in two cases where comparisons with the
results of KV (2002b) are possible. The typical pattern that is evident in the figures is that the power of the t∗-test
increases as � increases, just as asymptotic theory predicts. When � = 16, the power of the t∗-test is equivalent to or
better than that of the conventional robust t-test using the Bartlett kernel.

Figs. 6a and b depict the power for the DGP with a1 = 0.85, a2 = 0.0. As in KV, we found that the power of the
t-test is not sensitive to the kernel used. So we present the power of the t-test only for the Bartlett kernel. Evidently,
the power of the t-test is uniformly greater than that of the t∗-SO(1) test, again as found in KV. However, when the
SO kernel with � = 16 is used, the power of the t∗-test (shown as the curve t∗-SO(16) in the figures) slightly exceeds
that of the t-test, particularly in the case where prewhitening is employed (Fig. 6b). This dominance is accentuated as
� continues to increase (but in that event size distortion also increases). Compared with Fig. 5, it seems that the finite
sample power comparisons mimic the asymptotic results well, with larger � leading to increases in power. Figs. 7a and
b show the power curves for the DGP with a1 = 1.9, a2 = −0.95. The observations made above continue to apply in
this case, although the powers are closer, especially when prewhitening is used (Fig. 7b).

Next, we consider the performance of the t∗-test when � is data-determined. Simulations (not reported here) show
that the size distortion of the t∗-test is very close to that of the conventional t-test (using data-determined consistent HAC
estimates) for various parameter configurations as shown in Tables 2a and b. This is not surprising as the t∗-test with a
data-driven power parameter utilizes asymptotic normality under the large � asymptotics. The normality approximation
works well only when �̂∗

T is large. But in finite samples, both large and small choices of �̂∗
T can arise due to sampling

variability and when �̂∗
T is small the normal asymptotic critical value is too small due to the greater variability in the

denominator of the t∗-statistic (c.f., Table 1). Simulations show that the power of the t∗-test with �̂∗
T is also close to
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Fig. 6. Finite sample power (size-adjusted, 5% level), T = 50, yt =�+ x′
t�0 +ut ; ut = 0.85ut−1 + et ; xt = 0.5xt−1 +�t H0 : �0 �0, H1 : �0 > 0,

(a) no prewhitening; (b) with prewhitening.

that of the conventional t-test. Therefore, the finite sample performances of the data-driven t∗-test are close to those of
the t∗-test with a large fixed power parameter.

To sum up, our findings indicate that � is a parameter that tunes the size and power of the t∗-test. As � increases,
the t∗-test becomes more powerful but also more size distorted. If we are very concerned with the size and are willing
to give up some power to reduce size distortion, then we should choose a smaller � value. On the other hand, if we
care more about power and are less worried about size distortion, we may choose a larger � value. There is always a
size-power trade-off.

The magnitude of the size-power trade-off depends on the serial correlation structure of the data. In practice, we may
use a hybrid procedure: (i) obtain a data-driven power parameter �̂T and construct the t∗-SO(̂�T ) statistic; (ii) find the
critical values using the hyperbola

cv(̂�T ) = b

�̂T − a
+ c (40)
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Fig. 7. Finite sample power (size-adjusted, 5% level), T = 50, yt = � + x′
t�0 + ut ; ut = 1.9ut−1 − 0.95ut−2 + et ; xt = 0.5xt−1 + �t H0 : �0 �0,

H1 : �0 > 0, (a) no prewhitening; (b) with prewhitening.

and carry out the test. We refer to the resulting test as the t∗h -SO(̂�T ) test. We consider two different data-dependent
power parameters. The first one is the AR(1) plug-in power parameter given in Section 4.2

�̂1 := �̂T 1 = �̂∗
T = [((1 − �̂2

c)
2/(4̂�2

c))
1/3T 2/3]. (41)

The second one is a new data-dependent power parameter defined as

�̂2 := �̂T 2 = [(1 − �̂c)T
2/3]. (42)

Here �̂c = min{|̂�|, 0.99} and �̂ is given in (28). Both �̂1 and �̂2 increase as �̂c decreases. The difference is that �̂1 is
larger than �̂2 for small values of �̂c. For example, when �̂c = 0.3 and T = 50, �̂1 = 18 and �̂2 = 10. Nevertheless, both
selection rules deliver asymptotically valid test as the power parameters are compatible with the rate conditions under
the large � asymptotics and the critical values approach standard normal ones as �̂1and �̂2 go to infinity.
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Table 3
Finite sample null rejection probabilities at 5% nominal level

T a1 a2 tHAC t∗h -SO(̂�1) Aver(̂�1) t∗h -SO(̂�2) Aver(̂�2) t∗
b̂

Aver(b̂)

With no prewhitening
50 0.00 0.00 0.073 0.064 66.44 0.063 12.43 0.063 0.042

0.50 0.00 0.099 0.090 48.83 0.081 11.67 0.088 0.052
0.85 0.00 0.123 0.108 29.09 0.098 10.15 0.105 0.073
1.90 −0.95 0.135 0.116 20.14 0.104 8.80 0.114 0.094

100 0.00 0.00 0.061 0.057 125.27 0.057 20.11 0.057 0.021
0.50 0.00 0.082 0.077 60.80 0.070 17.72 0.076 0.034
0.85 0.00 0.098 0.089 30.06 0.082 14.51 0.087 0.052
1.90 −0.95 0.106 0.093 22.64 0.083 12.57 0.092 0.063

200 0.00 0.00 0.056 0.054 242.59 0.054 32.44 0.054 0.011
0.50 0.00 0.071 0.067 68.24 0.063 27.10 0.066 0.023
0.85 0.00 0.082 0.075 38.69 0.070 21.51 0.073 0.034
1.90 −0.95 0.086 0.078 31.55 0.070 18.67 0.077 0.041

400 0.00 0.00 0.054 0.053 466.41 0.053 52.20 0.053 0.005
0.50 0.00 0.066 0.064 91.27 0.059 41.98 0.063 0.015
0.85 0.00 0.071 0.067 57.01 0.062 32.82 0.066 0.022
1.90 −0.95 0.076 0.070 47.55 0.065 28.56 0.070 0.026

With prewhitening
50 0.00 0.00 0.076 0.073 256.85 0.067 13.87 0.071 0.021

0.50 0.00 0.089 0.086 217.41 0.077 13.78 0.084 0.022
0.85 0.00 0.099 0.095 156.25 0.085 13.56 0.093 0.026
1.90 −0.95 0.107 0.101 105.74 0.089 13.18 0.100 0.031

100 0.00 0.00 0.063 0.062 569.12 0.059 21.91 0.061 0.010
0.50 0.00 0.071 0.069 384.59 0.065 21.72 0.068 0.011
0.85 0.00 0.076 0.074 247.04 0.069 21.34 0.074 0.014
1.90 −0.95 0.081 0.078 185.25 0.070 20.95 0.078 0.016

200 0.00 0.00 0.057 0.056 1211.19 0.055 34.71 0.056 0.005
0.50 0.00 0.059 0.059 656.73 0.057 34.23 0.058 0.006
0.85 0.00 0.064 0.063 419.52 0.059 33.74 0.063 0.007
1.90 −0.95 0.066 0.065 342.20 0.060 33.37 0.065 0.008

400 0.00 0.00 0.054 0.054 2432.07 0.053 54.87 0.053 0.003
0.50 0.00 0.055 0.055 1169.71 0.054 54.26 0.055 0.003
0.85 0.00 0.057 0.057 777.25 0.055 53.66 0.056 0.004
1.90 −0.95 0.059 0.058 648.05 0.055 53.26 0.058 0.004

∗ 50,000 replications, DGP: yt = x′
t� + ut ; � = 0; xt = 0.5xt−1 + �t , x0 = 0; ut = a1ut−1 + a2ut−2 + et , u0 = u−1 = 0; �t , et ∼ iid N(0, 1),

cov(�t , et ) = 0.

The hybrid procedure has the dual advantage of a choice of power parameter that is data-determined and at the same
time the good finite sample size properties of the t∗-SO(�) test for a fixed �. When the underlying time series are
highly persistent, the conventional HAC t-test rejects too often. In this case, �̂1 and �̂2 are expected to be small and the
adjustments to the critical values will be large, leading to a test with better size. In contrast, when there is not much
autocorrelation in the data, the conventional HAC t-test does not incur much size distortion. In this case, �̂1 and �̂2
are expected to be large and the adjustments to the critical values will be small. The hybrid test is thus close to the
conventional test and has good size properties.

Table 3 reports the finite sample null rejection probabilities of t∗h -tests and the average values of �̂1 and �̂2 over
50 000 replications. Only the economically relevant cases of positive serial correlation are given. The table shows that
both the t∗h -SO(̂�1) test and the t∗h -SO(̂�2) test are less size distorted than the conventional HAC t-test, although the
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Fig. 8. Finite sample power at 5% nominal level with T = 50, yt =�+ x′
t�0 +ut ; ut = 0.85ut−1 + et ; xt = 0.5xt−1 + �t H0 : �0 �0, H1 : �0 > 0,

with no prewhitening.

size improvement becomes less obvious when prewhitening is used or the sample size is large. Since prewhitening
removes most of the autocorrelation, the truncated estimates �̂c based on the prewhitened time series become closer to
zero, leading to larger exponents. This is true for both the t∗h -SO(̂�1) and t∗h -SO(̂�2) tests. Comparing the prewhitened
case with the non-prewhitened case, we find that the increases in �̂T 1 are more dramatic than that in �̂T 2. This is not
surprising as �̂T 1 is more sensitive to the value of �̂c when �̂c is small. Due to the use of very large exponents, the
prewhitened t∗h -SO(̂�1) test does not have much size advantage over the conventional HAC t-test. Therefore, if we are
more concerned about the size of the test, then the t∗h -SO(̂�2) test is preferred.

To reduce the size distortion of the conventional HAC t-test, we may use the nonstandard critical value suggested
in Kiefer and Vogelsang (2005). More specifically, we plug the ratio of the data-driven bandwidth to the sample size
into a polynomial to obtain the approximate nonstandard critical value and compare it with the conventional t-statistic.
The resulting test is a variant of the t∗

b̂
-test in the earlier version of Kiefer and Vogelsang (2005) where the exact

nonstandard critical value is used. The last two columns of Table 3 report the rejection probability and average value
of b̂ for the t∗

b̂
-test implemented using the polynomial approximation. It is clear that the empirical size of the t∗

b̂
-test is

almost identical to that of the t∗h -SO(̂�1) test. Additional simulations (not reported) show that the empirical sizes of the
conventional HAC t-test and the new t∗-test are very close to each other if normal critical values are used for both tests.
We may conclude that the size properties of the robust test are very similar for the Bartlett kernel and sharp kernel as
long as the same type of critical value is used.

Fig. 8 depicts the finite sample power of various tests with no prewhitening when a1 = 0.85, a2 = 0.0 and T = 50.
The results for other cases are similar. The figure shows that the t∗h -SO(̂�2) test has very competitive finite sam-
ple power but much reduced size distortion. Simulation results not reported show that, as a1 moves away from
unity, the power of the t∗h -SO(̂�2) test becomes closer to that of the tHAC test. Fig. 8 also shows the size distor-
tions of different tests, which are in the descending order: tHAC, t∗h -SO(̂�1), t

∗-SO(16), t∗h -SO(̂�2), t
∗-SO(4), t∗-SO(1).

This pattern is found to be typical in cases where the AR coefficient is large but less than unity. Overall, the t∗h -
SO(̂�2) test produces favorable results for both size and power in regression testing and is recommended for practical
use.

7. Conclusion

The new class of sharp origin (SO) kernels introduced in this paper permits consistent HAC and LRV estimation
without truncation and use an approach (based on a power parameter) that is different from conventional bandwidth
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controls to downweight autocorrelations at long lags. Within this class, the Bartlett kernel without truncation is the
special case in which the power parameter is fixed at unity. When asymptotically similar regression tests are con-
structed with such kernels, the size distortion that commonly arises with conventional HAC estimation is reduced.
Our findings indicate that as the power parameter increases, test power is enhanced and is arbitrarily close to and
sometimes exceeds that of conventional tests, while retaining improvements in size. Data-determined choices of
the power parameter are given which are easily implemented in practical work and which lead to HAC estimates
with a convergence rate of T 1/3, analogous to that of a conventional truncated Bartlett kernel estimate with an
optimal choice of bandwidth. Simulations show that in practice a simple data-driven exponent selection produces
favorable results for both size and power in regression testing with sample sizes that are typical in econometric
applications.

The results of this paper are obtained for regression models. Following Kiefer and Vogelsang (2005) and Vogelsang
(2003), we can easily extend the results to the GMM framework. Kiefer and Vogelsang (2005) set the bandwidth
M = bT for some fixed constant b in the context of regression testing. Their fixed-b asymptotics are similar to our
fixed-� asymptotics. In future work, it would be helpful to compare the large sample and finite sample performances
of the two different sets of tests.

The general approach given here of using SO kernels is obviously applicable when the mother kernel is a function
other than the Bartlett kernel. It turns out, however, that some modifications of the approach (and the proofs of the
limit theory) are required in a more general setting. As one might expect from conventional limit theory for spectral
estimation, the optimal rates of divergence for the power parameter and rate of convergence of the corresponding
data-driven HAC estimates depend on the choice of the mother kernel. Of course, extensions of the results are also
possible to estimation of a spectral density at frequencies other than zero. Finally, by means of higher order expansions
of the distributions of the HAC estimates used in regression tests, it is possible to investigate trade-offs between size
distortion and power increases through the construction of these tests and, in particular, the selection of the power
exponent �. Details are provided in some ongoing investigations by Phillips et al. (2006a,b).

Notation

oa.s.(1) tends to zero almost surely
Oa.s(1) bounded almost surely
→d , 
⇒ weak convergence
→p→a.s. convergence in probability, almost surely∫ 1

0 f
∫ 1

0 f (r) dr

Wp(r) p—dimensional standard Brownian motion
Vp(r) p—dimensional standard Brownian bridge
KVB Kiefer et al. (2000)
KV Kiefer and Vogelsang (2002a,b)
Kmm m2 × m2 commutation matrix
⊗ Kronecker product
vec(A) vectorization by columns
[·] integer part
tr{A} trace of A∑ ∑T

t=1
R (−∞, ∞)

OLS Ordinary least squares
LRV Long run variance
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Appendix A.

Proof of Theorem 1. The proof follows KV (2002a) and Sun (2004) closely. Using summation by parts twice, we
have

�̂� = 1

T

T∑
t=1

T∑
�=1

v̂t k�

(
t − �

T

)
v̂′
�

= 1

T 2

T −1∑
t=1

T −1∑
�=1

Ŝt T
2DT

(
t − �

T

)
Ŝ′

� + ŜT

T −1∑
�=1

(
k�
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T − �

T

)
− k�

(
T − � − 1

T

))
Ŝ′

�

+
T −1∑
t=1

Ŝt

(
k�

(
t − T

T

)
− k�

(
t − T + 1

T

))
Ŝ′

T + ŜT Ŝ′
T

= 1

T 2

T −1∑
t=1

T −1∑
�=1

Ŝt T
2DT

(
t − �

T

)
Ŝ′

�, (A.1)

where

DT

(
t − �

T

)
= 2k�

(
t − �

T

)
− k�

(
t − � − 1

T

)
− k�

(
t − � + 1

T

)
and we have used the identity ŜT = 0. Rewrite the double summation in an integral form, we have

�̂� =
∫ 1

0

∫ 1

0
Ŝ[T r]T 2DT

( [rT ] − [sT ]
T

)
Ŝ′[T s] dr ds

=
∫ 1

0

∫ 1

0
1{r �= s}Ŝ[T r]T 2DT

( [rT ] − [sT ]
T

)
Ŝ′[T s] dr ds (A.2)

+
∫ 1

0
Ŝ′[T r]T DT (0)Ŝ′[T r] dr . (A.3)

For the term in (A.2), we note that when r �= s,

lim
T →∞ T 2DT

( [rT ] − [sT ]
T

)
= −k′′

�(r − s) = −�(� − 1)(1 − |r − s|)�−2. (A.4)

Since k(·) is twice continuously differentiable on [−1, 0) ∪ (0, 1], the above convergence is uniform in (r, s) ∈
{(r, s)|0�r �1, 0�s�1, r �= s}. In other words, for any given � > 0, there exists a positive � which is independent
of r and s such that∣∣∣∣T 2DT

( [rT ] − [sT ]
T

)
+ k′′

�(r − s)

∣∣∣∣< �

for all (r, s) in {(r, s)|0�r �1, 0�s�1, r �= s}. For a proof of the uniformity, see Weinstock (1957). It now follows
from T −1/2Ŝ[T r] ⇒ �Vm(r) and the continuous mapping theorem that∫ 1

0

∫ 1

0
1{r �= s}Ŝ[T r]T 2DT

( [rT ] − [sT ]
T

)
Ŝ′[T s] dr ds

⇒ �
∫ ∫

r �=s

− �(� − 1)(1 − |r − s|)�−2Vm(r)V ′
m(s) dr ds�′. (A.5)
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For the term in (A.3), we note that

lim
T →∞ T DT (0) = lim

T →∞ 2T

(
1 −

(
1 − 1

T

)�)
= 2�

which, combined with the continuous mapping theorem, gives

∫ 1

0
Ŝ′[T r]T DT (0)Ŝ′[T r] dr ⇒ 2��

∫ 1

0
Vm(r)V ′

m(r) dr�′. (A.6)

Combining (A.2), (A.3), (A.5) and (A.6) yields

�̂� ⇒ �
∫ ∫

r �=s

− �(� − 1)(1 − |r − s|)�−2Vm(r)V ′
m(s) dr ds�′ + 2��

∫ 1

0
Vm(r)V ′

m(r) dr�′ (A.7)

= �
∫ 1

0

∫ 1

0
k�(r − s) dVm(r) dVm(s)�′ (A.8)

which the last equality follows from integration by parts.
Next, it is easy to see that

�� =
∫ 1

0

∫ 1

0
k�(r − s)(dWm(r) − drWm(1))(dWm(s) − dsWm(1))′

=
∫ 1

0

∫ 1

0
k∗
�(r, s) dWm(r) dW ′

m(s),

where

k∗
�(r, s) = k�(r − s) −

∫ 1

0
k�(r − t) dt −

∫ 1

0
k�(� − s) d� +

∫ 1

0
k�(t − �) dt d�. (A.9)

It follows that

E�� =
∫ 1

0

∫ 1

0
k∗
�(r, r) drIm

=
(

1 −
∫ 1

0

∫ 1

0
k�(r − s) dr ds

)
Im = ��Im.

Therefore, E����′ = ���, giving part (b).
For part (c), we write E(vec(��) vec(��)′) as

E

(∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
k∗
�(r, s)k∗

�(p, q) vec(dWm(r) dW ′
m(s)) vec(dWm(p) dW ′

m(q))′
)

.

Some calculations show that E(vec(dWm(r) dW ′
m(s)) vec(dWm(p) dW ′

m(q))) is

⎧⎪⎨⎪⎩
vec(Im) vec(Im)′ dr dp if r = s �= p = q,

Im2 dr ds if r = p �= s = q,

Kmm dr ds if r = q �= s = p,

0 otherwise.

(A.10)



P.C.B. Phillips et al. / Journal of Statistical Planning and Inference 137 (2007) 985–1023 1009

Using the above result, we have

E(vec(��) vec(��)′) =
∫ 1

0

∫ 1

0
k∗
�(r, r)k∗

�(p, p) dr dp vec(Im) vec(Im)′

+
∫ 1

0

∫ 1

0
k∗
�(r, s)k∗

�(r, s) dr dsIm2 +
∫ 1

0

∫ 1

0
k∗
�(r, s)k∗

�(r, s) dr dsKmm

=
(∫ 1

0
k∗
�(r, r) dr

)2

vec(Im) vec(Im)′ +
∫ 1

0

∫ 1

0
[k∗

�(r, s)]2 dr ds(Im2 + Kmm). (A.11)

Therefore

E(vec(��) vec(��)′) = �2
� vec(Im) vec(Im)′ + 
�(Im2 + Kmm).

Some simple manipulations show that


� =
∫

k�(r − s)k�(p − q) − 2
∫

k�(r − s)k�(r − q) +
∫

k�(r − s)2.

Hence

var(vec(����′)) = E vec(����′) vec(���′)′ − vec(�E���′) vec(�E���′)′

= E(� ⊗ �) vec(��) vec(��)′(�′ ⊗ �′) − �2
� vec(��′) vec(��′)

= �2
�(� ⊗ �) vec(Im) vec(Im)′(�′ ⊗ �′)
+ 
�(� ⊗ �)(Im2 + Kmm)(�′ ⊗ �′) − �2

� vec(��′) vec(��′)
= 
�(� ⊗ �)(Im2 + Kmm)(�′ ⊗ �′)
= 
�(��′) ⊗ (��′) + 
�Kmm(��′) ⊗ (��′)
= 
�(Im2 + Kmm)(� ⊗ �),

giving the stated result.

Lemma K. For �s = 2�s/T , s = 0, 1, . . . , [T/2], and � = aT b with a > 0 and 0 < b < 1, we have

T −1∑
h=0

(
1 − h

T

)�

ei�sh = 1

1 − ei�s−�/T
[1 + o(1)],

uniformly over s as T → ∞.

Proof of Lemma K. We introduce L such that (L/T 1−(b/2))+ (T 1−b/L) → 0. For example, set L=T 1−(3/4)b. Then,
we split the sum into two parts as follows:

T −1∑
h=0

(
1 − h

T

)�

ei�sh =
L∑

h=0

(
1 − h

T

)�

ei�sh +
T −1∑

h=L+1

(
1 − h

T

)�

ei�sh

= A1 + A2, say. (A.12)

Consider each of these in turn, starting with

A1 =
L∑

h=0

e� log[1−(h/T )]ei�sh =
L∑

h=0

e−h�/T +O(T b(h2/T 2))ei�sh (A.13)

=
L∑

h=0

e−h�/T ei�sh[1 + o(1)], (A.14)
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as h2/T 2−b = O(L2/T 2−b) = o(1) uniformly for h�L. Obviously, the above o(1) term does not depend on s. Next
consider

|A2| =
∣∣∣∣∣

T −1∑
h=L+1

(
1 − h

T

)�

ei�sh

∣∣∣∣∣
�

T −1∑
h=L+1

(
1 − h

T

)�

= O

(∫ T −1

L+1
(1 − h)� dh

)
= O

(
T

∫ 1−1/T

L/T

(1 − y)� dy

)

= O

⎛⎝T

[
− (1 − y)�+1

� + 1

]1−(1/T )

L/T

⎞⎠= O

(
T

[
(1 − (L/T ))�+1

� + 1
− 1

T �+1(� + 1)

])

= O

(
e−(L/T 1−b)

T b−1

)
= O

(
e−T (1/4)b

T b−1

)
, (A.15)

where the O(·) term holds uniformly over s.
Now go back to consider A1. First define

A12 =
T −1∑

h=L+1

e−h�/T ei�sh, (A.16)

noting that

|A12|�
T −1∑

h=L+1

e−h�/T = O

(∫ T −1

L

e−x�/T dx

)
= O

⎛⎝[−e−xaT b−1

aT b−1

]T −1

L

⎞⎠
= O

(
1

T b−1 (e−aT (1/4)b − e−aT b

)

)
= O

(
e−aT (1/4)b

T b−1

)
(A.17)

uniformly over s. Then, using (A.13)–(A.17) and for any d ∈ (0, a), we can write

A1 =
L∑

h=0

e−h�/T ei�sh[1 + o(1)]

=
T −1∑
h=0

e−h�/T ei�sh[1 + o(1)] + O

(
e−aT (1/4)b

T b−1

)

=
T −1∑
h=0

eh(i�s−�/T )[1 + o(1)] + O(e−dT (1/4)b

)

= eT (i�s−�/T ) − 1

ei�s−�/T − 1
[1 + o(1)] + O(e−dT (1/4)b

)

= e−� − 1

ei�s−�/T − 1
[1 + o(1)] + O(e−dT (1/4)b

) (A.18)

with the o(·) and O(·) terms holding uniformly over s.
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Combining (A.12), (A.13) and (A.18), we have

T −1∑
h=0

(
1 − h

T

)�

ei�sh = e−� − 1

ei�s−�/T − 1
[1 + o(1)] + O(e−dT (1/4)b

)

= 1

1 − ei�s−�/T
[1 + o(1)],

uniformly over s, as stated.

Proof of Lemma 2. Let � = aT b for some a > 0 and 0 < b < 1. We start by writing

K�(�s) =
T −1∑

h=−T +1

(
1 − |h|

T

)�

cos(�sh)

= 2
T −1∑
h=0

(
1 − h

T

)�

cos(�sh) − 1

= 2 Re

{
T −1∑
h=0

(
1 − h

T

)�

ei�sh

}
− 1. (A.19)

From Lemma K, we have

T −1∑
h=0

(
1 − h

T

)�

ei�sh = 1

1 − ei�s−�/T
[1 + o(1)], (A.20)

uniformly over s. Direct evaluation gives

Re

(
1

1 − eix−(�/T )

)
= 1 − e−(�/T ) cos x

1 + e−(2�/T ) − 2(cos x)e−(�/T )
,

and so

Re

(
1

1 − eix−(�/T )

)

=
1 − cos x

[
1 − �

T
+ 1

2

( �

T

)2 + o

(( �

T

)2
)]

2 − 2 cos x

[
1 − �

T
+ 1

2

( �

T

)2 + o

(( �

T

)2
)]

− 2�

T
+ 2
( �

T

)2 + o

(( �

T

)2
)

=
1 − cos x

[
1 − �

T
+ 1

2

( �

T

)2 + o

(( �

T

)2
)]

2 − 2 cos x − 2�

T
(1 − cos x) +

( �

T

)2
(1 − cos x) +

( �

T

)2 + o

(( �

T

)2
)

=
1 − cos x

[
1 − �

T
+ 1

2

( �

T

)2 + o

(( �

T

)2
)]

(1 − cos x)

(
2 − 2�

T
+
( �

T

)2
)

+
( �

T

)2 + o

(( �

T

)2
) ,

uniformly over x.
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It follows that

2 Re

(
1

1 − e−(�/T )+ix

)
− 1

=
2 − 2 cos x

[
1 − �

T
+ 1

2

( �

T

)2 + o

(( �

T

)2
)]

2(1 − cos x)

[
1 − �

T
+ 1

2

( �

T

)2
]

+
( �

T

)2 + o

(( �

T

)2
) − 1

=
2�

T
− 2
( �

T

)2 + o

(( �

T

)2
)

2(1 − cos x)

[
1 − �

T
+ 1

2

( �

T

)2
]

+
( �

T

)2 + o

(( �

T

)2
)

=
2�

T
[1 + o(1)]

2(1 − cos x)[1 + o(1)] +
( �

T

)2[1 + o(1)]

= 2�T

2T 2(1 − cos x) + �2 [1 + o(1)],

uniformly over x. Combining this result with (A.19) and (A.20) gives

K�(�s) = 2�T

2T 2(1 − cos �s) + �2 [1 + o(1)]

uniformly over s, as stated.

Proof of Theorem 3. We prove the results for the scalar vt case, the vector case follows without further complication.
Part (a): From (19)

f̃vv(0) = 1

T

T −1∑
s=0

K�(�s)Ivv(�s). (A.21)

To find the asymptotic variance of f̃vv(0), we can work from the following standard formula (e.g., Priestley, 1981, Eq.
6.2.110 on p. 455) for the variance of a weighted periodogram estimate such as (A.21),3 viz.,

Var{f̃vv(0)} = 2fvv(0)2 1

T

T −1∑
h=−T +1

k�

(
h

T

)2

[1 + o(1)], (A.22)

which follows directly from the covariance properties of the periodogram of a linear process (e.g., Priestley, 1981,
p. 426). To evaluate (A.22), we develop an asymptotic approximation of

1

T

T −1∑
h=−T +1

k2
�

(
h

T

)
= 1

T

T −1∑
h=−T +1

(
1 − |h|

T

)2�

= 2

T

T −1∑
h=0

(
1 − h

T

)2�

− 1

T
.

3 Note that inversion of Ivv(�) = 1
2�

∑T −1
h=−T +1 �̃(h)e−i�h gives �̃(j) = ∫ �

−� Ivv(�)ei�j d� so that

f̃vv(0) = 1

2�

T −1∑
h=−T +1

k�

(
h

T

)
�̃(h) = 1

2�

∫ �

−�
Ivv(�)

⎧⎨⎩
T −1∑

h=−T +1

k�

(
h

T

)
ei�h

⎫⎬⎭ d� = 1

2�

∫ �

−�
Ivv(�)K�(�) d�,

is an alternate form of (A.21).
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This can be accomplished by Euler summation, viz.,

n∑
k=0

g(k) =
∫ n

0
g(x) dx + 1

2
{g(0) + g(n)} +

∫ n

0

(
x − [x] − 1

2

)
g′(x) dx

applied to g(x) = (1 − x/T )2� giving

T −1∑
h=0

(
1 − h

T

)2�

=
∫ T −1

0

(
1 − x

T

)2�
dx + 1

2

{
1 +

(
1 − T − 1

T

)2�
}

+
(

−2�

T

)∫ T −1

0

(
x − [x] − 1

2

)(
1 − x

T

)2�−1
dx. (A.23)

Note that

1 +
(

1 − T − 1

T

)2�

= O(1), (A.24)

and ∣∣∣∣(−2�

T

)∫ T −1

0

(
x − [x] − 1

2

)(
1 − x

T

)2�−1
dx

∣∣∣∣
�2

�

T

∫ T −1

0

(
1 − x

T

)2�−1
dx = 2�

∫ 1−1/T

0
(1 − y)2�−1 dy

= [(1 − y)2�]1−1/T
0 = O(1), (A.25)

whereas∫ T −1

0

(
1 − x

T

)2�
dx

= T

∫ 1−1/T

0
(1 − y)2� dy = T

2� + 1
[−(1 − y)2�+1]1−1/T

0

= T

2� + 1

[
1 −

(
1 − T − 1

T

)2�+1
]

= T

2� + 1
+ O

(
1

�T 2�

)
. (A.26)

It follows from (A.23)–(A.26) that

T −1∑
h=0

(
1 − h

T

)2�

= T

2� + 1
+ O(1),

so that

1

T

T −1∑
h=−T +1

(
1 − |h|

T

)2�

= 2

T

T −1∑
h=0

(
1 − h

T

)2�

− 1

T

= 2

T

∫ T −1

0

(
1 − s

T

)2�
ds + O

(
1

T

)
= 2

∫ 1−1/T

0
(1 − y)2� dy + O

(
1

T

)
= 2

2� + 1
+ O

(
1

T

)
= 1

�
[1 + o(1)], (A.27)
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giving

1

T

T −1∑
h=−T +1

k2
�

(
h

T

)
= 1

�
[1 + o(1)]. (A.28)

Using (A.27) in (A.22) we have

Var{f̃vv(0)} = 1

�
2fvv(0)2[1 + o(1)],

and so

�Var{f̃vv(0)} = 2fvv(0)2[1 + o(1)] → 2fvv(0)2,

which gives

lim
T →∞ �Var{�̃�} = 2(2�)2fvv(0)2 = 2�2,

as required. The stated result for the vector case follows in a straightforward way.
Part (b): Since f̃vv(0) = 1

T

∑T −1
s=0 K�(�s)Ivv(�s) and

T −1∑
s=0

K�(�s) =
T −1∑

h=−T +1

k�

(
h

T

) T −1∑
s=0

ei�sh = T k(0) = T ,

we can write the scaled estimation error as

√
�{f̃vv(0) − fvv(0)}

=
√

�

T

T −1∑
s=0

K�(�s)[Ivv(�s) − fvv(0)]

=
√

�

T

T −1∑
s=0

K�(�s)[Ivv(�s) − fvv(�s)] +
√

�

T

T −1∑
s=0

K�(�s)[fvv(�s) − fvv(0)]. (A.29)

Using Lemma 2, we have

K�(�s) = O

(
2�T

(2�s)2 + �2
[1 + o(1)]

)
uniformly over s = 0, 1, . . . , [T/2]. (A.30)

By A2, |f ′
vv(�s)|� 1

2�
∑∞

−∞ |h||�(h)|, so that

|fvv(�s) − fvv(0)|�
(

1

2�

∞∑
−∞

|h||�(h)|
)

�s .
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Hence, the second term of (A.29) can be bounded as follows:

√
�

T

T −1∑
s=0

K�(�s)[fvv(�s) − fvv(0)]

= 2
√

�

T

[T/2]∑
s=0

K�(�s)[fvv(�s) − fvv(0)] = O

⎛⎝√
�

T

[T/2]∑
s=0

K�(�s)�s

⎞⎠

= O

⎛⎝�3/2

T

[T/2]∑
s=0

2T �s

�2 + (2�s)2

⎞⎠= O

(
�3/2

T

∫ T/2

0

x

�2 + (2�x)2 dx

)

= O

⎛⎝�3/2

T

[
log{�2 + (2�x)2}

2(2�)2

]T/2

0

⎞⎠
= O

(
�3/2 log T

T

)
= o(1), (A.31)

since � = aT b with b < 2
3 . Then, by (A.29) and (A.31), we have

√
�{f̃vv(0) − fvv(0)} =

√
�

T

T −1∑
s=0

K�(�s)(Ivv(�s) − fvv(�s)) + op(1).

In view of A2, we have vt = C(L)�t =∑∞
j=0 Cj �t−j , where the �t are iid(0, �2) and have finite fourth moment �4.

The operator C(L) has a valid spectral BN decomposition (Phillips and Solo, 1992)

C(L) = C(ei�) + C̃�(e
−i�L)(e−i�L − 1),

where C̃�(e
−i�L) =∑∞

j=0 C̃�j e−ij�Lj and C̃�j =∑∞
s=j+1 Cseis�, leading to the representation

vt = C(L)�t = C(ei�)�t + e−i�̃��t−1 − �̃�t , (A.32)

where

�̃�t = C̃�(e
−i�L)�t =

∞∑
j=0

C̃�j e−ij��t−j

is stationary. The discrete Fourier transform of vt has the corresponding representation

w(�s) = 1√
2�T

T∑
t=1

vte
it�s

= C(ei�s )w�(�s) + 1√
2�T

(̃��s0 − ein�s �̃�sn)

= C(ei�s )w�(�s) + Op(T
−1/2).
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Thus, using the fact that
∑T −1

s=0 |K�(�s)| =∑T −1
s=0 K�(�s) = T , we have

√
�{f̃vv(0) − fvv(0)}

=
√

�

T

T −1∑
s=0

K�(�s)(Ivv(�s) − fvv(�s)) + op(1) (A.33)

=
√

�

T

T −1∑
s=0

K�(�s)(w(�s)w(�s)
∗ − fvv(�s)) + op(1)

=
√

�

T

T −1∑
s=0

K�(�s){[C(ei�s )w�(�s) + Op(T
−1/2)]

× [C(ei�s )w�(�s) + Op(T
−1/2)]∗ − fvv(�s)} + op(1)

=
√

�

T

T −1∑
s=0

K�(�s)

[
C2(1)

(
I��(�s) − 1

2�
�2
)]

+ Op

(√
�

T
T

1

T 1/2

)
+ op(1)

=
√

�

T

T −1∑
s=0

K�(�s)

[
C2(1)

(
I��(�s) − 1

2�
�2
)]

+ op(1), (A.34)

where we have used �/T → 0.
Let m1 = 0 and for t �2,

mt = �t

t−1∑
j=1

�j ct−j ,

where

cj = C2(1)

2�

√
�

T 2

T −1∑
s=0

(K(�s) cos(j�s)).

Then we can write

√
�

T

T −1∑
s=0

K�(�s)

[
C2(1)

(
I��(�s) − 1

2�
�2
)]

= 2
T∑

t=1

mt + √
�

C2(1)

T

T −1∑
s=0

K�(�s)
1

2�

(
1

T

T∑
t=1

�2
t − �2

)

= 2
T∑

t=1

mt + 2
√

�
C2(1)

T

(
T −1∑
s=0

K�(�s)

)
Op

(
1√
T

)

= 2
T∑

t=1

mt + Op

(√
�

T
T

1√
T

)

= 2
T∑

t=1

mt + op(1).
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By the Fourier inversion formula, we have

cj = C2(1)

2�

√
�

T
k�

(
j

T

)
. (A.35)

Hence

T∑
j=1

c2
j = O

⎛⎝ �

T 2

T∑
j=1

k2
�

(
j

T

)⎞⎠= O

(
�

T

1

2� + 1

)
= O

(
1

T

)
. (A.36)

The sequence mt depends on T via the coefficients cj and forms a zero mean martingale difference array. Then

2
T∑

t=1

mt→dN

(
0,

�4C4(1)

2�2

)
= N(0, 2f 2

vv(0)),

by a standard martingale CLT, provided the following two sufficient conditions hold

T∑
t=1

E(m2
t |Ft−1) − �4C4(1)

8�2 →p0, (A.37)

where Ft−1 = �(�t−1, �t−2, . . .) is the filtration generated by the innovations �j , and

T∑
t=1

E(m4
t )→p0. (A.38)

We now proceed to establish (A.37) and (A.38). The left-hand side of (A.37) is

⎛⎝�2
T∑

t=2

t−1∑
j=1

�2
j c

2
t−j − �4C4(1)

8�2

⎞⎠+ �2
T∑

t=2

∑
r �=j

�r�j ct−rct−j := I1 + I2. (A.39)

The first term, I1, is

�2

⎛⎝T −1∑
j=1

(�2
j − �2)

T −j∑
s=1

c2
s

⎞⎠+
⎛⎝�4

T −1∑
t=1

T −t∑
j=1

c2
j − �4C4(1)

8�2

⎞⎠ := I11 + I12. (A.40)

The mean of I11 is zero and its variance is of order

O

⎡⎢⎣T −1∑
j=1

⎛⎝T −j∑
s=1

c2
s

⎞⎠2
⎤⎥⎦= O

⎡⎣T

(
T∑

s=1

c2
s

)2⎤⎦= O

(
1

T

)
,

using (A.36).
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Next, consider the second term of (A.40). We have

T −1∑
j=1

T −j∑
s=1

c2
s = C4(1)

4�2

�

T 2

T −1∑
j=1

T −j∑
s=1

k2
�

( s

T

)

= (1 + o(1))
C4(1)

4�2

�

T

T −1∑
j=1

∫ 1−1/T

j/T

y2� dy

= (1 + o(1))
C4(1)

4�2

�

T

T −1∑
j=1

(
1

2� + 1

)[(
1 − 1

T

)2�+1

−
(

j

T

)2�+1
]

= C4(1)

4�2

�

T

(
1

2� + 1

)
T

(
1 − 1

T

)2�+1

(1 + o(1))

− C4(1)

4�2

�

T

(
1

2� + 1

)
T

2� + 2
(1 + o(1))

= C4(1)

8�2 + o(1).

We have therefore shown that

I1 = �2
T∑

t=2

t−1∑
j=1

�2
j c

2
t−j − �4C4(1)

8�2 →p0.

So the first term of (A.39) is op(1).
Now consider the second term, I2, of (A.39). I2 has mean zero and variance

O

⎛⎝2
T∑

p,q=2

min(p−1,q−1)∑
r �=j

(cq−rcq−j cp−rcp−j )

⎞⎠

= O

⎛⎝2
T∑

p=2

p−1∑
r �=j

c2
p−rc

2
p−j + 4

T∑
p=3

p−1∑
q=2

q−1∑
r �=j

(cq−rcq−j cp−rcp−j )

⎞⎠ . (A.41)

In view of (A.36), we have

T∑
p=2

p−1∑
r �=j

c2
p−rc

2
p−j = O

⎛⎜⎝T

⎛⎝ T∑
j=1

c2
j

⎞⎠2
⎞⎟⎠= O

(
1

T

)
.
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For the second component in (A.41), we have, using (A.36) and the Cauchy inequality,

4
T∑

p=3

p−1∑
q=2

p−1,q−1∑
r �=j

(cq−rcq−j cp−rcp−j )

�4
T∑

p=3

p−1∑
q=2

q−1∑
r=1

c2
q−r

q−1∑
r=1

c2
p−r

�4
T∑

i=1

c2
i

T∑
p=3

p−1∑
q=2

q−1∑
r=1

c2
p−r �4

(
T∑

i=1

c2
i

)⎛⎝ T∑
p=3

p−1∑
q=2

p−1∑
r=p−q+1

c2
r

⎞⎠

= O

⎛⎝ 1

T

T∑
p=3

p−1∑
q=2

p−1∑
r=p−q+1

c2
r

⎞⎠= O

(
1

T

T −2∑
r=1

r(T − r − 1)c2
r

)

= O

(
�

T 3

T −2∑
r=1

r(T − r − 1)
(

1 − r

T

)�
)

= O

(
�

T 3

T −2∑
r=1

r(T − r)
(

1 − r

T

)�
)

= O

(
�

1

T

T −2∑
r=1

r

T

(
1 − r

T

)�+1
)

= O(�B(2, � + 2))

= O

(
��(2)�(� + 2)

�(� + 4)

)
= O

(
�

(� + 3)(� + 2)

)
= O

(
1

�

)
= o(1).

Hence, I2→p0 and we have therefore established condition (A.37).
It remains to verify (A.38). Let A be some positive constant, then the left-hand side of (A.38) is

�4

T∑
t=2

E

(
t−1∑
s=1

�sct−s

)4

�A

T∑
t=2

E

⎛⎝ t−1∑
s=1

t−1∑
r=1

t−1∑
p=1

t−1∑
q=1

�s�r�p�qct−sct−rct−pct−q

⎞⎠
�A

T∑
t=2

(
T∑

s=1

c4
t−s

)
+ A

T∑
t=2

t−1∑
s=1

t−1∑
r=1

c2
t−sc

2
t−r

�AT

(
T∑

t=1

c2
t

)2

= O

(
T

1

T 2

)
= O

(
1

T

)
using (A.36), which verifies (A.38) and the CLT.

With this construction we therefore have

√
�

T
C2(1)

T −1∑
s=0

K�(�s)

[(
I��(�s) − 1

2�
�2
)]

= 2
T∑

t=1

mt + op(1)→d2N

(
0,

�4C4(1)

8�2

)

= N

(
0,

�4C4(1)

2�2

)
= N(0, 2f 2

vv(0)).
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This gives the required limit theory for the spectral estimate at the origin, viz.,

√
�{f̃vv(0) − fvv(0)} =

√
�

T

T −1∑
s=0

K(�s)(Ivv(�s) − fvv(�s)) + op(1)→dN(0, 2f 2
vv(0)),

from which we deduce that

√
�(�̃� − �)→dN(0, 2�2).

The stated result for the vector case follows directly by standard extensions.
Part (c): By definition,

E(f̂vv(0) − fvv(0))

= 1

2�

T −1∑
h=−T +1

k�

(
h

T

)
ECh − 1

2�

∞∑
−∞

�(h)

= 1

2�

T −1∑
h=−T +1

(
1 − |h|

T

)�+1

�(h) − 1

2�

∞∑
−∞

�(h)

= 1

2�

T −1∑
h=−T +1

[(
1 − |h|

T

)�+1

− 1

]
�(h) − 1

2�

∑
|h|�T

�(h)

= 1

2�

T/(� log T )∑
h=−T/(� log T )

[(
1 − |h|

T

)�+1

− 1

]
�(h)

+ 1

2�

∑
T −1� |h|>T/(� log T )

[(
1 − |h|

T

)�+1

− 1

]
�(h) + 1

2�

∑
|h|�T

�(h), (A.42)

where the second equality follows from the fact ECh = (1 − (|h|/T ))�(h). Now∣∣∣∣∣∣ T

� + 1

∑
|h|�T

�(h)

∣∣∣∣∣∣ � 1

�

∑
|h|�T

|h||�(h)| = o

(
1

�

)
= o(1),

by virtue of A2, and∣∣∣∣∣∣ T

� + 1

T −1∑
T −1� |h|>T/(� log T )

[(
1 − |h|

T

)�+1

− 1

]
�(h)

∣∣∣∣∣∣
� T

� + 1

T −1∑
T −1� |h|>T/(� log T )

∣∣∣∣∣1 −
(

1 − |h|
T

)�+1
∣∣∣∣∣ |�(h)|

� T

� + 1

T −1∑
T −1� |h|>T/(� log T )

|�(h)|� T

�

(
� log T

T

)1+� T −1∑
T −1� |h|>T/(� log T )

h1+�|�(h)|

= o(1),

for some small � > 0, in view of A2.
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The first term of (A.42) can be written as

1

2�

T/(� log T )∑
h=−T/(� log T )

[(
1 − |h|

T

)�+1

− 1

]
�(h)

= 1

2�

T/(� log T )∑
h=−T/(� log T )

[
1 − (� + 1)|h|

T
+ O

(
(� + 1)2|h|2

T 2

)
− 1

]
�(h)

= − 1

2�

T/(� log T )∑
h=−T/(� log T )

(� + 1)|h|
T

�(h) + O

⎛⎝ (� + 1)2

T 2

T/(� log T )∑
h=−T/(� log T )

h2�(h)

⎞⎠

= − 1

2�

T/(� log T )∑
h=−T/(� log T )

(� + 1)|h|
T

�(h) + o

⎛⎝ (� + 1)2

T 2

T

� log T

T/(� log T )∑
h=−T/(� log T )

|h||�(h)|
⎞⎠

= − 1

2�

T/(� log T )∑
h=−T/(� log T )

(� + 1)|h|
T

�(h) + o

(
�

T log T

)
.

Therefore

lim
T →∞

T

�
(E�̃� − �) = lim

T →∞

⎛⎝−
T/(� log T )∑

h=−T/(� log T )

|h|�(h)

⎞⎠
= − 2�f (1) = −�(1),

as required.
Part (d): Since �3/T 2 → ϑ ∈ (0, ∞), we have � ∼ ϑ1/3T 2/3 and then

T

�
∼ T

ϑ1/3T 2/3
= ϑ−(1/3)T (1/3) ∼ ϑ−(1/3)

√
�

ϑ
1
3

=
√

�√
ϑ

. (A.43)

It follows from (A.43) that

MSE(�, �̃�, W)

= �E{vec(�̃� − �)′W vec(�̃� − �)}
= �E{vec(�̃� − E�̃� + E�̃� − �)′W vec(�̃� − E�̃� + E�̃� − �)}

= ϑ

(
T

�

)2

E{vec(E�̃� − �)′W vec(E�̃� − �)}[1 + o(1)]

+ � tr{WE[vec(�̃� − E�̃�)]vec(�̃� − E�̃�)′}.

Using parts (b) and (c), we obtain

lim
T →∞ MSE(�, �̃�, W)

= ϑ vec(�(1))′W vec(�(1)) + tr{W(I + Kmm)(� ⊗ �)}.
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The corresponding result for the spectral density estimate is

lim
T →∞ MSE(�, f̃vv(0), W)

= ϑ vec(f (1))′W vec(f (1)) + tr{W(I + Kmm)f ⊗ f )}. �

Proof of Theorem 4. Assumption B below is based on corresponding conditions in Andrews (1991). It allows for the
effect of using �̂ in the HAC estimate and is sufficient for the consistency of �̂� and for �̂� to have the same asymptotic
distribution as �̃�. Let � denote some convex neighborhood of �0, the true value of �. Let vat denote the a’th element
of vt . Let 
a1...a8(0, j1, j2, . . . , j7) denote the cumulant of (va10, . . . , va8j7), where a1, . . . , a8 are positive integers less
than p + 1 and j1, . . . , j7 are integers.

Assumption B. (1) Assumption A2 holds with vt replaced by (v′
t , vec((�/��′)vt (�) − E(�/��′)vt (�))′)′.

(2) {vt} is eighth order stationary with summable cumulant function 
a1···a8(0, j1, j2, . . . , j7), i.e.,
∑∞

j1=−∞ · · ·∑∞
j7=−∞ |
a1···a8(0, j1, j2, . . . , j7)| < ∞.

(3) WT →pW.

Proof of Part (a). A Taylor expansion gives

√
�(�̂� − �̃�) =

[√
�/T

�

��′ �̃�(�)

]√
T (̂� − �)

+ 1

2

√
T (̂� − �)′

[√
�

T 2

�2

�� ��′ �̃�(̃�)

]√
T (̂� − �),

for some �̃ lies between �̂ and �. Manipulations similar to those in the proof of Theorem 1 of Andrews (1991) lead to√
�

T 2

�2

����′ �̃�(̃�)

�
√

�

T 2

T −1∑
−T +1

∣∣∣∣(1 − |h|
T

)�∣∣∣∣ 1

T

T∑
t=|h|+1

sup
�∈�

∥∥∥∥ �2

�� ��′ vt (�)vt−|h|(�)

∥∥∥∥
= √

�

(
1

T

T −1∑
−T +1

∣∣∣∣(1 − |h|
T

)�∣∣∣∣
)

Op(1)

= op(1),

where the last equality follows from the fact, shown earlier, that 1/T
∑T −1

−T +1|(1 − (|h|/T ))�| = O(1/�).

The proof of the rest of the theorem involves calculations similar to those given above and in Andrews (1991) and
is therefore omitted. �

Proof of Theorems 5 and 6. These results follow directly from standard weak convergence arguments. �
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