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 Optimal Designs for Evaluating a Series of Treatments

 Denis Heng-Yan Leung

 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center,

 1275 York Avenue, New York, New York 10021, U.S.A.

 email: leungdbiost.mskcc.org

 and

 You-Gan Wang

 Department of Biostatistics, Harvard School of Public Health,

 655 Huntington Avenue, Boston, Massachusetts 02115, U.S.A.

 email: ygwang~hsph.harvard.edu

 SUMMARY. Several articles in this journal have studied optimal designs for testing a series of treatments
 to identify promising ones for further study. These designs formulate testing as an ongoing process until
 a promising treatment is identified. This formulation is considered to be more realistic but substantially
 increases the computational complexity. In this article, we show that these new designs, which control the
 error rates for a series of treatments, can be reformulated as conventional designs that control the error
 rates for each individual treatment. This reformulation leads to a more meaningful interpretation of the
 error rates and hence easier specification of the error rates in practice. The reformulation also allows us to
 use conventional designs from published tables or standard computer programs to design trials for a series
 of treatments. We illustrate these using a study in soft tissue sarcoma.

 KEY WORDS: Bayesian; Optimality; Phase I studies; Screening; Sequential trials; Soft tissue sarcoma.

 1. Introduction

 A number of research programs at Memorial Sloan-Kettering

 Cancer Center (MSKCC) have prompted the need to test a

 series of treatments to identify promising ones for more in-

 tensive studies. One example is in the Immunology Program,

 where a large number of vaccines are to be screened for po-

 tentially efficacious ones for further study. Another example is

 in the Soft Tissue Sarcoma Chemotherapy Program, where a

 large number of Phase II trials are to be implemented for iden-

 tifying promising chemotherapy agents. In response to these

 needs, a number of design strategies have recently been pro-

 posed (Yao, Begg, and Livingston, 1996; Wang and Leung,

 1998; Yao and Venkatraman, 1998). A novel aspect in these

 designs is the recognition that it is not possible to predict

 when a promising treatment will appear and therefore no up-

 per limit is placed on the number of treatments to test in these

 designs. The goal is to find the first promising treatment with

 the smallest expected number of patients while the errors of

 falsely accepting a nonpromising treatment and of rejecting

 one or more promising treatments are controlled for.

 Yao et al. (1996) (referred to as YBL hereafter) used a

 single-stage design to solve this problem. That is, n patients

 are to be tested on each treatment and a treatment will be ac-

 cepted or rejected depending on whether >k or <k successes

 are seen. More recently, Yao and Venkatraman (1998) (here-

 after called YV) considered a two-stage design after YBL.

 The design consists of a series of two-stage trials. The max-

 imum sample size in the two stages are ni and n2, respec-

 tively. If k1 or fewer successes at the end of the first stage

 or a total of k2 or fewer successes at the end of the second

 stage are observed, the treatment will be rejected. They fur-

 ther suggested a truncated two-stage design. For example,

 if (kl, ni, k2, n2) are the parameters, then we need not test
 the treatment any further as soon as ni - k1 failures are ob-

 served because this treatment will definitely be rejected even

 if we finish the first-stage testing. Similarly, the design can be

 truncated at n2 + ni - k2 failures in the second stage. There-
 fore, they suggested stopping testing as soon as these events

 have been observed. Hence, they have changed their two-stage

 monitoring to fully sequential monitoring except the stopping

 boundaries remained defined by an optimal two-stage design.

 In fact, the optimal fully sequential design is given by Wang

 and Leung (1998) (hereafter called WL), in which the two

 types of error rates are achieved by using Lagrangian con-

 straints.

 Although it is more realistic to consider testing a series of

 treatments as an ongoing process, this approach adds sub-

 stantial conceptual complexity to the design problem. In this

 article, we show that the design for testing a series of treat-

 ments is merely a series of identical designs for testing the
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 individual treatments. The design for individual treatments

 can be one of the conventional designs (one stage, two stage,

 multistage) in the literature. We will establish a link between

 the error rates in the conventional design and the error rates

 in the design for the ongoing process. This link will allow us to

 convert the error rates for different designs. We identify two

 uses of our work. First, we show in Sections 2 and 3 that the

 error rates for the individual treatments are easier to interpret

 and hence easier to specify in practice. When designing tri-

 als involving a series of treatments, we suggest specifying the

 error rates for the individual treatments. As long as the con-

 verted error rates are used in the conventional design for the

 individual treatments, the overall errors for testing a series

 of treatments will be maintained at the desired level. Second,

 the design problem for a series of treatments can be solved

 using conventional designs, which are easily available from

 published tables or from standard computer programs. We

 illustrate these uses in an example in soft tissue sarcoma.

 2. Ongoing Process Versus Single Treatment

 The problem of testing or screening a series of treatments can

 be written formally as follows. Suppose the success proba-

 bility of the ith selected treatment is Oi and a treatment is
 considered to be promising if Oi > 0*. The trial consists of a
 series of testing of

 Ho: Oi < 0* versus H1: Oi > 0*.

 In general, 0i is unknown but we may impose a prior distribu-
 tion on 0i to reflect our knowledge about the treatments. In
 practice, it is impossible to predict how many treatments to

 test before a promising one can be identified. Therefore, we as-

 sume that there is an indefinite series of treatments available

 and that a rejected treatment will never be tested again, so

 after a rejection, the screening problem returns to its original

 state (see YBL, YV, and WL). This assumption is important
 because the order in which a treatment arrives becomes ir-

 relevant and so the same testing strategy can be used for all

 treatments in the screening trial.

 For any particular design used in the screening process,

 two types of errors can be identified, (1) that of accepting a

 nonpromising treatment (al) and (2) that of rejecting one or
 more promising ones (a2). If we denote the testing outcome
 for a treatment as Y (0 = rejected and 1 = accepted), then
 the two error rates can be expressed as (see YBL)

 a1 =Pr(0i <0* IY= 1}= P+- _

 a2 = P +, l

 where

 p__ = Pr(Y = 0, Oi < 0*),

 p-+ =Pr(Y =-0,Oi> 0*),

 p+_= Pr(Y =l,O i<0*),

 p++ = Pr(Y = 1,Oi > 0*).

 The design problem is to minimize the expected overall num-

 ber of patients to find the first promising treatment when

 al and a2 are controlled. Note that al and a2 are posterior
 probabilities and are different from traditional Type I and II
 errors.

 By considering the screening trial as an ongoing hypothe-

 sis testing problem, each treatment is considered to have the

 same response distribution in the design for the ongoing pro-

 cess. Therefore, the same design can be used for all treatments

 in the trial. However, the ongoing process still adds consid-

 erable complexities to the determination and interpretation

 of the design. Here we show that the ongoing process is inti-
 mately linked to the tests of the individual treatments.

 2.1 Error Rates

 From (1), it is clear that the four quantities (p p+, p_+,
 p++) are determined entirely by the errors (a1, a2) together
 with the two constraints: p++ + p-+ = Pr(0 > 0*) and
 p++ + p+- + p-+ + p__ = 1. The value Pr(Oi > 0*) will
 be denoted as p for convenience.

 Now consider the error rates for any particular treatment
 rather than the overall error rate of the screening process. The

 false-positive error, al, is unaffected but the false-negative
 error is the probability that a rejected treatment is in fact a
 promising one, i.e.,

 a* = Pr(0i > 0* Y = 0}= P-+
 2 ~~~~p-+ +p--

 From (1), we can obtain the relationship between a2 and

 a2 as

 * R2P .'2

 a a2P ~~~~~~~~~~(2) 2 a1- 2)(al +P)'

 Consequently, if one is interested in an optimal design for
 the screening trial with error rates (al , aL2), one simply needs
 to find the optimal design for a single treatment trial with

 error rates (ai, a*). This conventional design for a single
 treatment trial with error rates (a1, a*) is also the optimal
 design for the ongoing process with error rates (a 1, a2)- Some

 values of c2 and a* for various values of p and al = 0.1
 are given in Table 1. We note that, from Table 1, a2 is in
 general larger than a*. But this is not true when p is large,
 as it results in a large probability of acceptance each time
 (i.e., when the expected number of treatments needed to test

 before a promising one can be found is small).
 Because the screening of new treatments is modeled as

 an ongoing process, the use of a2 is appealing. However,

 Table 1

 Values of a2, a* for different
 values of p Pr(0 > 0*), al = 0.1

 P a2 2

 0.100 0.050 0.006
 0.300 0.050 0.024
 0.500 0.050 0.058

 0.100 0.150 0.018
 0.300 0.150 0.068
 0.500 0.150 0.153

 0.100 0.250 0.029
 0.300 0.250 0.107
 0.500 0.250 0.227

 0.100 0.350 0.040
 0.300 0.350 0.142
 0.500 0.350 0.287
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 (2 is defined in terms of the expected number of rejected
 treatments before a promising one is declared. This limits

 its practical use in two ways. First, it cannot be used to

 make statements about the false-error rate among rejected

 treatments in any particular trial because the number of

 rejected treatments is a random number. Second, its interpre-

 tation is only meaningful if the expected number of rejected

 treatments is also reported. Therefore, we suggest specifying

 a* instead. The interpretation of a* is clear; it is simply the
 probability of a false negative when a treatment is rejected.

 Because of (2), the use of a* will also control the overall error
 of the trial to be bounded by (2. If we choose to control

 ((:x, a*), the design would have (p++,p+-) given by

 (- l)(P- a2)

 a- 1-e- a*'

 From a Bayesian viewpoint, (1 - alac*) are the two
 posterior probabilities of being promising when the treatment

 is accepted or rejected. Note that the prior probability of

 being promising is p. Therefore, (1 - al)/p measures the
 efficiency of screening and a* /p can be interpreted as the
 remaining efficiency among those rejected. Other variations of

 the error probabilities may be used depending on the context

 of the trials. Or alternatively, one can just specify the desired

 proportions p++ and p+-, and a variety of error probabilities
 can then be evaluated. As we mentioned, the error rates are

 all essentially determined by p++ and p+-.

 2.2 Sample Size

 If E(T) is the expected sample size for each treatment to be

 tested, the expected sample size until a promising treatment

 is identified is N = E(T)Nv, where N, is the expected
 number of treatments to be tested before a promising one

 is accepted. For any given error probabilities ((:x,(:x2), the
 expected number of trials required to identify a promising

 one is

 N 1-= I (1 - a2)
 (1- a2)P

 The design aims to minimize the expected sample size,

 N, until a promising treatment is identified. In fact, given

 two error probabilities, (al, a:2) or (ai, :x), or any other
 variations (functions of p++ and p+-), Nv is a constant
 for any design, i.e., Nv = [1 - al(1 - a2)]/[(1 - a2)P].
 So an optimal design can be obtained by minimizing the
 expected sample size for testing each treatment, E(T), with

 controlled error rates ((xi,(:x). Therefore, treating screening
 as an ongoing process does not change any essential aspects

 of the design, i.e., a design that is optimal for each individual

 treatment is also optimal for the overall ongoing process (until
 a promising one is identified) and vice versa.

 2.3 Connection to Conventional Designs Under a

 Two-Point Prior

 So far, we have formulated the hypothesis testing problem as a

 test of Ho: Oi > 0* versus H1: Oi > 0*. But often, we simplify
 the problem to that of testing Ho: 0i = So < 0* against
 H': Oi = Oa > 0*. In that case, we can assume a two-point
 prior for the success probability O- so that Pr(02 =o) 1-p

 and Pr(Oj = Oa) = p. Let

 a = Pr(Y = I I Oi -00); ,3 = Pr(Y = 0 l Oi = Oa)

 be the frequentist Type I and II error rates. Then one can

 show (cf., Lee and Zelen, 2000) that ar and ,3 can be obtained
 from al and a* using the following relationships:

 al1(P-ca*)
 (I1-p)(I l- - a*)
 c*(1 - at1 - P)

 2 ~~~~~~~~~(3) p(l - a - a*)'
 Therefore, to design a trial for testing a series of treatments,

 with errors (a1,ac2), we first use (2) to convert (a1,ac2) to

 (al, a*). Then we use (3) to convert (ael, a*) to the frequentist
 errors (oe,3). Based on (ae,,l3), the optimal design for a series
 of treatments can be easily obtained from standard tables or

 programs.

 3. Soft Tissue Sarcoma Trials

 Every year, MSKCC conducts a large variety of clinical

 trials on treatments for different types of malignancies.

 Among these are the trials in the chemotherapy program for

 soft tissue sarcomas (NIH grant PO1-47179). The primary

 goal of this program is to identify promising chemotherapy

 treatments, through a series of Phase I and II trials, for further

 study. A total of 12 different Phase II trials are planned for

 the next 5 years. We illustrate the implications of the issues

 raised in Section 2 in this context.

 We used prior knowledge from 52 historical Phase II trial

 results (Yang et al., 1993) to help us in designing the new trials

 in the program. We acknowledged that there is a possibility

 of publication bias, which will be ignored in this illustration.

 The 52 historical trials arise from 30 different combination

 chemotherapy treatments. The number of patients used on

 these combination treatments ranges from 8 to 732. In

 forming the prior, we included only studies with doxorubicin-,

 epirubicin-, and ifosfamide-based treatments because the new

 treatments to be tested are either combinations based on

 one of these three or with similar activities to these three.

 The efficacy of each treatment is measured in terms of the

 percent of complete response, which is defined as complete

 disappearance of the tumor. We assumed that each treatment

 has a probability of complete response that follows a beta

 distribution. We found the best fitting beta-binomial model

 to these data to be beta(1.3, 8.6).

 Our clinical collaborators have indicated that only

 treatments with a complete response rate of >20% are worthy
 of further investigation. Under the prior, the proportion

 of treatments worthy of further study is 0.217. We limit

 the false-positive error (ael) to be under 10% and false-
 negative error (ac2) to be under 30%. YV's optimal design,

 when restricting N = ni + n2 < 100, is (k,rnl, k2,rn2) =
 (2,17,16,56). The average number of patients required to find
 a promising treatment using this design is 225.5. Using WL's

 fully sequential design and constraining the maximum sample

 size of each Phase II trial to be the same as YV's design, the

 optimal design requires, on average, 145.2 patients to reach a

 promising treatment. Therefore, the savings by adopting the

 fully sequential design over a two-stage design is about 35%.
 The fully sequential design reduces patient numbers by having
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 the opportunity to stop earlier. Note that the sample size per

 Phase II trial is quite large in order to control for moderate

 values of al and a2. However, from (2), we can obtain a* to
 be 0.084 only. In other words, when a treatment is rejected,

 the probability that it has a response rate of >20% is 8.4%.

 Therefore, the design controls (al, a*) to be under 10% each
 even though a2 is 30%.

 Using a1 = 0.1 and c2 = 0.3, the average number

 of treatments to test before a positive one is declared is

 (NV - 1) = 5.2. This number is a constant for the design, with
 (a1, a2) = (0.1,0.3) or, equivalently, (a,, a*) = (0.1,0.084).
 The interpretation of al is clear; it is the probability of
 a false-positive error. However, the interpretation of a2 is

 not as straightforward. Suppose, in a particular trial, we

 rejected four treatments before accepting a promising one.

 Then, even though we know a2 = 0.3, we cannot use it to

 make statements about the chance of false-negative errors
 in any of the four rejected treatments. On the other hand,

 using a* = 0.084, we know the chance of a false negative for
 each rejected treatment is 8.4% in each of the four rejected
 treatments.

 A second problem in interpreting a2 is as follows. The

 quantity a2 = 0.3 refers to the probability that at least one of

 the rejected treatments is promising and is equal to 0.3. This

 probability is based on an average of 5.2 rejected treatments

 (i.e., N -I = 5.2). If we keep a2 = 0.3 but specify al to be
 0.2, then (NV - 1) becomes 4.7. In this case, even though a2
 is still 0.3, it is now based on an average of only 4.7 rejected

 treatments, which is more serious than when it is based on an
 average of 5.2 rejected treatments. Therefore, two identical
 specifications of a2 represent two different levels of errors

 committed. The interpretation of a2 depends on NV, which in
 turn depends on (a1, a2), and the observed NV value follows
 a geometric distribution. This makes it difficult to specify the

 error rates in terms of (ael, ar2) in practice. On the other hand,
 the meaning of a* is unchanged, as its interpretation is for
 individual treatments rather than for a series of treatments.

 When al changes to 0.2 from 0.1 while fixing a2 at 0.3, a2
 changes to 0.091 from 0.084.

 Finally, we illustrate how the design problem for a series of

 trials can be simplified when one assumes a two-point prior

 for Oi. Based on the data, we assume that we are interested in
 testing Oi 0.1 versus Oi = 0.3 and Pr(0i = 0.1) = 0.7
 and Pr(i= 0.3) = 0.3. Furthermore, suppose we allow
 errors of al - 0.1 and a2 = 0.1. For ease of illustration, we
 use the one-stage design of YBL. Then using (2), we obtain
 a* = 0.042. From (3), we then have (a,:3) = (0.043,0.098).
 Using standard programs from standard single-treatment

 trials, with (ae,,/3) = (0.043,0.098), we obtain the optimal
 one-stage design as in YBL (Table 1). This design is given
 by (n, k) = (33, 6) and it means to use 33 patients for each
 treatment and then declare the treatment as promising if more
 than six successful responses are observed.

 4. Discussion

 In this article, we established a link between the overall

 error probability for the ongoing process framework and the
 errors for each individual treatment. Error probabilities in
 terms of the individual treatments may be more meaningful
 in practice. This concept was also suggested in a recent

 discussion paper by Lee and Zelen (2000) in a different
 context. The interpretation of these error rates is also easier.
 For example, if (cei, ?c2) are controlled at (0.1, 0.05), we would

 expect 90% of those accepted for further study are truly
 promising and only 5% among those rejected are promising.

 On the other hand, a2 is the probability of rejecting

 one or more promising treatments before we recommend

 a promising one. But since the number of treatments

 tested before recommending a promising one is a random

 variable (geometrically distributed with a mean of Nb),

 the interpretation of a2 is awkward. We therefore believe

 specifying a* is more meaningful in practice. Furthermore,
 when the prior is a two-point prior, standard programs or

 published tables can be used to obtain optimal designs with

 specified (a1,ac*) values.
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 RESUME

 Plusieurs articles, dans cette revue, ont etudie des plans
 optimaux permettant de tester differents traitements-
 les uns a la suite des autres dans le but d'identifier
 ceux qui s'avereraient suffisamment prometteurs pour faire
 l'objet d'investigations ulterieures. L'analyse de ces plans
 peut etre consideree comme l'analyse d'une serie de
 tests qui se poursuivent jusqu'a ce que soit identified un
 traitement prometteur. Plus realiste, cette formulation accroit
 cependant, et de facon non negligeable, la complexity
 calculatoire du problem. Dans cet article, nous montrons
 que ces nouveaux plans experimentaux, ou l'on contr6le les
 risques d'erreur pour l'ensemble des traitements, peuvent
 aussi etre formulas comme des plans classiques ou l'on
 contr6le les risques d'erreur pour chaque traitement pris
 separement. Cette reformulation permet, lorsque l'on a
 besoin de construire un plan experimental concernant une
 serie de traitements, d'utiliser les tables publiees pour les
 plans classiques, ainsi que les logiciels correspondents. Nous
 illustrons tout ceci a partir d'une etude dans le sarcome des
 tissus mous.
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