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Abstract: 
It is theoretically possible that non-fundamental idiosyncratic shocks to agents’ rational expectations are a 
source of economic fluctuations. Studies using data on consumer and investor sentiment suggest that this 
is indeed a significant source of fluctuations. We present the results of a study that uses forecasts from 
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1. Introduction 
 It is theoretically possible for non-fundamental idiosyncratic shocks to rational expectations to be 

a source of economic fluctuations. Such a view can be justified by dynamic models that generate multiple 

equilibria, e.g., Azariadis (1981), Cass and Shell (1983), Benhabib and Farmer (1994), and Farmer and 

Guo (1994). Under equilibrium indeterminacy, these “sunspot” shocks can affect the economy through 

endogenous forecast errors. If the resultant “animal spirit” fluctuations are empirically important, then 

there are implications for macroeconomic policy, forecasting and perhaps forecast evaluation. For 

instance, Carlstrom and Fuerst (2001a, 2001b) argue for monetary policy to be designed in a way that 

does not generate welfare-reducing sunspot fluctuations (see also Levin, Wieland and Williams, 2001). 

Macroeconomic forecasting models would need to focus more on capturing the driving force behind 

seemingly inexplicable shifts in expectations and its effects on the macroeconomy (Fuhrer, 1993; Throop, 

1992; Carroll, Fuhrer and Wilcox, 1994).  

 One way to empirically verify the importance (or otherwise) of non-fundamental sources of 

economic fluctuations is to calibrate to data a structural model that allows for sunspots, and examine 

whether the model supports this possibility (e.g., Hamilton and Whiteman, 1985; Farmer and Guo, 1994; 

Lubik and Schorfheide, 2002). An alternative approach is to directly measure the importance of the non-

fundamental component of expectations in business cycle fluctuations, without specifying the exact 

mechanism through which it affects the economy. This approach identifies shocks to an expectations 

variable that are orthogonal to a set of fundamental variables as sunspot shocks, and then evaluates the 

importance of these particular shocks as a source of economic fluctuations. For example, Oh and 

Waldman (1990) use revisions to the initial release of the U.S. Leading Index as expectational shocks and 

find that these shocks constitute 20% of the fluctuations in quarterly growth rates of industrial production; 

Matsusaka and Sbordone (1995) use a vector autoregressive (VAR) approach and find that between 13% 

and 26% of economic fluctuations can be explained by non-fundamental shifts in consumer sentiment; 

Chauvet and Guo (2003) consider both consumer and investor sentiment, and allow for asymmetric 



effects of non-fundamental expectational shocks over different stages of the business cycle. They find that 

these shocks played an important role in several recessions. 

 This paper pursues the second approach. The results of empirical studies often depend on the 

dataset used, the sample period, and the method for identifying non-fundamental shocks. Our study 

differs from previous work in that we do not make use of data on consumer sentiment, nor of investor 

sentiment. Instead, we use forecasts of output and inflation from a survey of professional forecasters and 

interpret optimistic or pessimistic forecasts (relative to a set of fundamentals) as forecast shocks or 

sunspot shocks. We have several motivations for focusing on professional forecasts. One is that it allows 

us to make use of real-time, rather than revised, data in generating shocks to expectations, unlike previous 

studies which utilized revised data. While macroeconomic researchers today have available to them 

updated data, forecasters in real time do not; hence, the use of real-time data can sometimes lead to drastic 

reversals of results in forecasting studies (Diebold and Rudebusch, 1991; Croushore and Stark, 2001). 

The identification of sunspots with forecast shocks can be justified via the “strategic 

complementarity” argument in Oh and Waldman (1990) whereby false announcements, i.e., inaccurate 

forecasts concerning the economy, can lead agents to increase (or decrease) production because they 

believe aggregate production will be high (low). 1  Furthermore, it seems reasonable to expect that 

economic forecasts from professional forecasters may be an important factor in agents’ expectations 

formation since the former are given wide coverage in the financial and popular press. Optimism or 

pessimism showed by forecasters could well be a source of shifts in macroeconomic variables that capture 

sentiment.2 

                                                      
1 The notion that “a forecast can affect the subject of the forecast” is an old one, and several early papers discuss 
issues related to this (e.g., Grunberg and Modigliani, 1954; Devletoglou, 1961; Kemp, 1962 and Rothschild, 1964). 
Many of these were concerned with the possibility and desirability of accurate macroeconomic forecasting. 
 
2 It is not difficult to find comments in speeches, newspaper articles and books that allude to the importance of 
forecasts in generating business cycles. A light-hearted application of this idea is the R-word index – the number of 
times the word “recession” appears in British newspapers, compiled by The Economist (The Economist, 1998). Also, 
Farmer (1999) says “I like to think of sunspots as the predictions for the economy by the Wall Street Journal … 
these predictions can be self-fulfilling in some types of economies if agents believe in them.” 
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 The remainder of the paper is organised as follows. In the next section, we set out the empirical 

model and our assumptions. In Section 3, we describe the data and summarize the properties of the non-

fundamental component of forecasts. In Section 4, the results of our study are presented and their 

robustness discussed. Section 5 concludes. 

 

2. The VAR Model 

 Following Matsusaka and Sbordone (1995) and Chauvet and Guo (2003), we generate non-

fundamental idiosyncratic shocks to expectations using a VAR. The idea in these studies is to incorporate 

some measure of agents’ expectations (either consumer or investor sentiment) into the VAR as an 

endogenous variable. Idiosyncratic shocks to the variable can then be interpreted as non-fundamental 

shifts in expectations and useful statistics such as variance decompositions can be computed to quantify 

the importance of these shocks to fluctuations in other macroeconomic variables. As explained earlier, we 

choose to use an average of forecasts from professional forecasters instead of sentiment measures. 

 The empirical model that we use can be written as 

 , t = 1, 2, …, T (1) 1 2 11 1
|
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)where   is an (n × 1) vector of variables and   is a (2 × 1) 

vector of one-step ahead forecasts of a subset of the variables in  made by professional forecasters at 

time t.  is an (n × n) matrix of unobserved parameters, as are C i
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parameter matrix. A  and  are (2 × 2) matrices of parameters, and b  and b  are (n × 1) and (2 × 1) 

vectors of constants respectively. The ‘0’s in (1) and in the rest of the paper represent zero matrices of the 

appropriate dimensions. The structural innovations u u
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zero mean and a diagonal variance-covariance matrix: 
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 In our baseline model,  contains real output growth and inflation, an interest rate, stock returns, 

consumption growth and investment growth; later, we consider using other variables. We include two 

expectations variables in , viz., one-step ahead forecasts of output growth and inflation. To correctly 

measure non-fundamental forecast shocks, the fundamentals entering into the forecast equations ought to 

be the vintage of the data that was available to the forecasters at the time the forecasts were made. 

Accordingly, the exogenous variables in y y

ty

t1 |
f

ty +

| 1, | 2, | , |( , ,..., )t i t t i t t i t n t i ty y− − − − ′=% % % % , i = 1, …, p, are real-time 

observations of  available to forecasters at time t, with corresponding (2 × n) parameter matrix given 

by .

t iy −

iD 3 

Apart from a wider choice of variables, our empirical model is fairly similar to that in Matsusaka 

and Sbordone (1995). The other difference is that we explicitly specify a structural VAR model in (1) 

with plausible assumptions about the contemporaneous relationships that hold between macroeconomic 

variables. Since we wish to explore the separate impacts of our two expectations variables on 

macroeconomic fluctuations, the shocks in the model are orthogonalized by constraining  to be a lower 

triangular matrix, so that output forecasts contemporaneously affect inflation forecasts but not vice 

versa.  is similarly restricted so that the first six equations basically follow a recursive structure where 

the fundamental variables are ordered as interest rate, stock returns, consumption growth, investment 

growth, output growth and inflation, but modified slightly to allow for simultaneity between real output 

on the one hand and consumption and investment on the other.

2A

1A

4 The exact specification is 

                                                      
3 Note that by using real-time data, we do not attribute to “fundamentals” future revisions of y  that were not 
available to forecasters. 

|t i t−%

4 To achieve exact identification of the structural VAR model, we have to impose two additional restrictions − real 
consumption growth has no contemporaneous effect on investment growth and stock returns only affect real output 
growth indirectly through their impact on consumption and investment.  
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Unlike Matsusaka and Sbordone (1995) and Chauvet and Guo (2003), we do not carry out any 

specification searches, but enter all the endogenous variables into our model simultaneously. The 

coefficient matrix on the left-hand side of the VAR is also taken to be block diagonal. This assumption is 

natural given the way we have structured our equations: the upper-right zero restrictions are reasonable 

because forecasts should not have any impact on current realizations of , while the bottom-left zero 

restrictions are appropriate since observations of  are generally not available to forecasters at time t. 

ty

ty

To quantify the impact of sunspot shocks on economic fluctuations, consider the variance 

decomposition of the forecast errors from a VAR(1) specification of our model. We rewrite the model in 

reduced form as: 
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The 1-step ahead forecast error of  can be obtained by generating the reduced form VAR equations and 

substituting backwards once. Maintaining the i.i.d. assumption for the structural innovations u  and u , 

the Mean Squared Forecast Error (MSFE) is 

ty
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where  represents information available at time t, tΩ ja  is the j-th column of A  and  is the k-th 

column of A  (see Hamilton, 1994). The contribution of the k-th forecast shock to the MSFE of 

 is then . 

1
1
−
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3. Data and Preliminary Analysis 

3.1 Data 

 The sample period of our study is from the fourth quarter of 1974 to the second quarter of 2002. 

The choice of sample period is partly due to data availability as we explain shortly. We will use three 

types of data: mean forecasts from professional forecasters and real-time data on fundamentals are used to 

generate forecast shocks, and later, we use the latest available data when measuring the impact of these 

forecast shocks on economic fluctuations. In the rest of the paper, we refer to the latter as “revised data”. 

 Data on forecasts is obtained from the Survey of Professional Forecasters (SPF), maintained by 

the Federal Reserve Bank of Philadelphia. The SPF is the oldest quarterly survey of macroeconomic 

forecasts in the United States; the first survey was initiated in 1968. It was conducted by the American 

Statistical Association and the National Bureau of Economic Research prior to the Philadelphia Fed, who 

took over in 1990. The SPF covers one- to four-quarter ahead point forecasts of the major macroeconomic 

variables, as well as density and long-term forecasts of some of these variables.5 We focus on one-quarter 

ahead forecasts of real output growth and inflation (as measured using the output deflator) and study non-

fundamental shocks to these forecasts. 6 

                                                      
5 A density forecast of a variable is a forecast of the probability distribution of possible values of that variable (see 
Tay and Wallis, 2000). 
 
6 Full details on the SPF and the Real-Time Data Set can be found in Croushore and Stark (1993, 2001), and on the 
Philadelphia Fed’s website at http://www.phil.frb.org/econ/index.html. Every quarter, participating forecasters are 
provided with the advance release on the previous quarter’s value for a range of macroeconomic variables and asked 
to provide forecasts for the current and following four quarters. For most of the variables in the dataset, seasonally-
adjusted forecasts of levels are provided. We calculate mean one-step ahead forecasts of real output growth and 
inflation by taking the average of the individual forecasters’ growth and inflation forecasts. As an example, the 
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An important feature of the forecast data is the changes in the definition of output over the sample 

period. Prior to 1992, the real output measure used in the survey was fixed-priced GNP. Survey data on 

real GNP were not available prior to 1981Q3, but as forecasts of both nominal GNP and the GNP deflator 

were available, we calculated the real GNP forecasts implied by these two series. Starting from 1992, the 

measure changed to fixed-priced GDP and from 1996 onwards, the data are chain-weighted. The deflator 

also follows the changes in the definition of output. We were careful to account for these definitional 

changes when calculating growth rates and constructing real-time and revised time series for output 

growth and inflation. Besides the changes in definition, we also accounted for changes in base years. 

 Real-time data on fundamentals is obtained from the Real-Time Data Set which is also compiled 

and maintained by the Philadelphia Fed. This dataset comprises numerous data files each associated with 

a particular date. These files contain time-series observations on a range of variables in the vintage that 

was available to forecasters at the date corresponding to the file. We use real-time data on real output, the 

price level, real consumption and real non-residential investment.7 Other variables used as fundamentals 

in our analysis are an interest rate, the oil price and stock prices. There are no revisions in these three 

series. For these variables, we use the 3-month Treasury bill rate, the West Texas Intermediate spot oil 

price and the S&P 500 share price index. The 3-month T-bill rate, the oil price, and the revised versions 

of real output, the price level, real consumption and real investment are obtained from the Federal 

Reserve Bank of St. Louis’ FRED II database. Data on the S&P 500 share price index are obtained from 

Datastream. Our choice of variables representing economic fundamentals was limited to a certain extent 

by the availability of real-time data. In particular, we would have included a fiscal variable in our model 

                                                                                                                                                                           
1|

f
t ty +current quarter’s one-step ahead forecast of real output growth  is computed as 

 where Y  is forecaster i’s forecasted level of real output, and n is the total 

number of respondents for period t. 
( )1| , 1 ,1

100 1nf f f
t t i t i ti

y Y Y n+ +=
 = − ∑ ,

f
i t

7 We faced a few instances of missing data. The reasons for the non-availability of these observations are carefully 
explained in the Fed’s documentation that accompanies the dataset. We substituted these missing observations with 
suitable replacements. For instance, the government shutdown in early 1996 meant that no data for 1995Q4 was 
available for the 1996Q1 file. We replaced these observations with the advance release for 1995Q4 that was 
supplied to forecasters in the 1996Q1 survey (which was also delayed as a result of the shutdown). 
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had there been real-time data for it. Nonetheless, the variables we use are similar to those in typical VAR 

forecasting models (e.g., Webb, 1985). 

 

3.2 Preliminary Analysis 

 To obtain a preliminary indication of the importance of sunspots in expectations, we extract the 

non-fundamental components in professional forecasts and analyze their properties. We do this by 

regressing mean forecasts of output growth and inflation on real-time observations of our set of 

fundamental variables. Setting the C  matrices to zero in (1), the forecast equations from the VAR are:  4i

  (6) 2 1 | 2 | 2
1

p
f

t t i t i t t
i

A y b D y u+ −
=

= + +∑ %

where = (forecasted real output growth, forecasted inflation1|
f

ty + t )′  and  is assumed to be lower 

triangular. For the time being, we use fundamental information on interest rates, stock returns, real 

consumption growth, real investment growth, real output growth and inflation. We consider p = 4 lags of 

the fundamental variables. 

2A

 We estimate (6) over 1974Q4 to 2002Q2 and plot both elements of u  in Figure 1, along with 

the timing of recessions identified by the NBER. Table 1 reports summary statistics on u . The table 

shows that non-fundamental output shocks reach minimum and maximum values of −0.8 and 0.8 percent, 

which are fairly large when compared with our sample’s output growth range of − 2.3 to 3 percent. The 

range of the inflation expectations shocks is substantially smaller, ranging from just under −0.2 to just 

over 0.2 percent. The mean inflation rate in our sample is 1 percent per quarter. 

2ˆ t

2ˆ t

Visual inspection of the figures suggests that output expectations shocks are characterized by 

cycles, which may be indicative of waves of optimism and pessimism. Our sample period covers four 

recessions as dated by the NBER, and it is clear that the first and last of these recessions were preceded 

by steep falls in the output shocks. This does not appear to be the case with the middle two recessions. 

Cycles appear to be less prevalent in non-fundamental inflation shocks although all four recessions were 
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preceded by deflationary expectations. Our visual inspection is corroborated by the summary statistics in 

Table 1. Both expectations shocks are autocorrelated although this is more persistent in the case of real 

output. Output shocks are also positively correlated with current values and leads of actual output growth, 

while inflation shocks are positively correlated with leads of both output growth and realized inflation.  

  

4. Empirical Evidence 

 The VAR model is estimated in two stages. In the first stage, the model’s reduced form is 

estimated by ordinary least squares, equation by equation.8 In the second step, the restrictions discussed in 

Section 2 are imposed and the structural model is recovered via the technique of full information 

maximum likelihood (see Hamilton, 1994). 

 

4.1 Baseline Results 

We report the results from the estimation of (1) and examine the role of non-fundamental 

expectations shocks using variance decompositions and impulse responses. Table 2 shows the percentage 

contributions of the non-fundamental output and inflation shocks to the MSFE of each of the six variables 

in our baseline model.9 Figures 2 and 3 show the standardized impulse responses from these shocks. 

Table 3 displays the variance decompositions for real output growth and inflation. 

 Several regularities stand out from Table 2. First, the contributions of expectational shocks are 

small in all cases except for that of inflation forecast shocks to the MSFE of inflation. Second, the impact 

of non-fundamental output shocks on real output growth is only significant after 8 quarters. The 

corresponding effect on real consumption growth is also significant. It appears that output forecast shocks 

might be affecting actual output growth through their effect on consumption, as borne out by the impulse 

                                                      
8 The potential increase in efficiency from using the method of seemingly unrelated regressions is not likely to be 
significant given that the right-hand-side variables in our system are nearly identical. We use four lags of each 
variable as suggested by the usual VAR lag length selection statistics. 
9 Tests of significance of variance decompositions are based on bootstrapped standard errors obtained from 500 
replications. 
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responses in Figure 2. If so, our results are qualitatively consistent with the findings of Matsusaka and 

Sbordone (1995) and Chauvet and Guo (2003). The magnitudes are small, however, and economically 

insignificant. Table 3 shows that the main driving forces in output fluctuations – at longer horizons – 

appear to be its own shocks (50%), interest rates (14%) and stock returns (11%), and not non-fundamental 

expectational shocks. 

 Our finding that forecast sunspot shocks do not matter much for output fluctuations is 

corroborated by Lubik and Schorfheide (2002). These authors took the first approach to the study of 

sunspot fluctuations by constructing and estimating a dynamic stochastic general equilibrium (DSGE) 

model that allows for equilibrium indeterminacy. Like us, they assume that sunspots trigger belief shocks 

that lead to a revision of forecasts and induce business cycle movements. They then develop a Bayesian 

posterior odds test for indeterminacy to assess the importance of sunspot fluctuations and conclude that 

while the U.S. was in a sunspot equilibrium before 1979, aggregate output fluctuations were not due to 

sunspot shocks. 

The results indicate that inflation sunspot shocks are statistically significant, contributing nearly 

15 percent to the 8-quarters ahead MSFE of inflation. But are they economically important? Table 3 

shows that inflation is largely driven by its own shocks: at the 8-quarters horizon, the contribution of 

these shocks is 51 percent, while the next most important shocks are inflation expectations (14.5%) and 

interest rates (11%). To put some perspective on these magnitudes, we calculated the MSFE of an 8-step 

ahead forecast of quarterly inflation to be approximately 0.25 percent. A 95 percent confidence interval 

would be approximately 1 percent in length, so that 15 percent of this seems small. Using Livingston 

Survey data on expectations in conjunction with small VAR models, Leduc, Sill and Stark (2002) find 

that expectations shocks are much more important for the variability of inflation than exogenous oil, fiscal 

and monetary policy shocks, accounting for a much larger 30–50 percent compared to the 15 percent 

contribution from non-fundamental inflation shocks that we find. 
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Figure 3 shows the impulse responses of a one-standard deviation shock to inflation forecasts in 

the model. This is a shock of about 0.1 of a percentage point on a quarterly basis, or 0.4 percent annually 

(from Table 1). The initial impact on actual inflation is an increase of about half a standard deviation, 

which amounts to an approximately one-to-one effect, i.e., 0.4 percentage points per annum, as compared 

to our sample’s mean annual inflation rate of about 4 percent. The effect of the one-time shock on 

inflation dies down rapidly while the impact on the interest rate follows the same pattern. Our estimated 

impulse responses for these two variables, though less persistent, resemble the responses in Leduc, Sill 

and Stark (2002). 

 

4.2 Robustness 

 To check the robustness of the results, we consider two extensions to the baseline model. In the 

first extension, we include the oil price as an exogenous variable in the VAR model. Most theories of 

inflation postulate that, in addition to excess demand and a measure of inflation expectations, the supply 

side is another important influence on the price level. In our sample period, there are three episodes when 

the oil price rose above US$30 per barrel. These were the second OPEC shock in the late 1970s which 

persisted into the early 1980s, the brief shocks in the early 1990s associated with the Gulf war, and 

another recent spike in the year 2000. There is a visible impact on inflation in the first case, although in 

the second and third episodes, inflation appears to have been less affected (see Hooker, 2002). We 

therefore incorporated the growth rate of the West Texas Intermediate spot oil price as an exogenous 

variable in the VAR model but do not report the results of this analysis in detail as they are very similar to 

those from the model excluding oil price inflation. In particular, expectational shocks continue to have 

only small and insignificant effects on output growth. At the same time, there remains a self-fulfilling 

element in inflation forecast shocks even after accounting for the effects of oil shocks on prices. 

  The second extension to the baseline model allows for the possibility that forecasters’ information 

set might include fundamental variables that are not included as regressors in our VAR. If this were the 
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case, then the residuals in the forecast equations would pick up the effects of the omitted variables, which 

would then be interpreted as non-fundamental shocks. Although this is a criticism which can be leveled at 

any VAR, we address it partially by including in our model the U.S. Leading Index, compiled formerly by 

the Department of Commerce and more recently by The Conference Board (TCB). We added real-time 

observations of the index provided by TCB to the set of fundamentals used in the forecast equations of 

our VAR and re-estimated the model. Again, the impulse responses from this extension are virtually 

identical to those in the baseline model. 

 The variance decompositions are shown in Table 4. On the whole, the results are not much 

changed although, as expected, the contributions of the non-fundamental shocks to economic fluctuations 

are slightly reduced with the inclusion of the Leading Index in forecasters’ information set. The impact of 

output forecast shocks on real output and consumption growth is even less economically significant than 

before. However, inflation sunspot shocks continue to influence actual outcomes, contributing 14 percent 

to the 8-quarters ahead MSFE of inflation. 

 

5. Conclusion 

 We evaluated in this paper the effects of non-fundamental expectations on economic fluctuations. 

The non-fundamental expectations were extracted from a survey of professional forecasters by regressing  

forecasts of real output growth and inflation on a list of variables representing economic fundamentals 

and viewing the residuals as non-fundamental shocks. Our results show that non-fundamental shifts in 

expectations have in general small effects on economic fluctuations, except in the case of inflation. This 

conclusion was obtained by studying variance decompositions and impulse responses from a vector 

autoregression of the U.S. macroeconomy, extended to incorporate forecasts. 

 Our empirical findings are similar to the results in Lubik and Schorfheide (2002), who concluded 

using a very different methodology that sunspot shocks increased the variability of inflation significantly 

prior to 1979, but essentially did not affect output fluctuations. The results are also consistent with the 
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findings of Leduc, Sill and Stark (2002) and provide further evidence from an altogether different set of 

survey data to show that self-fulfilling expectations played a role in the U.S. inflation of the 1970s. On the 

other hand, the results of this paper are quite different from studies that use variables which measure 

agents’ sentiments. Those studies generally find non-fundamental shifts in sentiment to be a significant 

factor in explaining economic fluctuations. As we used a different variable to extract non-fundamental 

shifts in expectations, our study should be viewed as complementary to these studies, and does not 

preclude the possibility that consumer and investor sentiment do play non-negligible roles in business 

cycle fluctuations. Neither does it preclude the possibility of sunspot fluctuations in general. However, it 

appears that we can rule out forecasts made and reported by professional forecasters as a significant 

source of these fluctuations. 

 Finally, we mention several caveats and avenues for further research. One drawback of our use of 

real-time data is that forecasters may actually have access to more timely information than we assume. In 

effect, this means that forecasts would be responding to contemporaneous developments. The forecast 

survey data might even reflect fundamental information not captured by historical data. There is little we 

can do about these inherent problems but we wish to emphasize that despite them, we do not find non-

fundamental expectations to be a significant source of output fluctuations. Our research also ignores 

possible non-linear effects such as a greater role for non-fundamental expectations shocks around the time 

of recessions, and further analysis along the lines of Chauvet and Guo (2003) may provide interesting 

results. Finally, we have not fully exploited the richness of the data available in the Survey of 

Professional Forecasters. Although we focused on the sample average of forecasts from individual 

forecasters, it would be of interest to look at other statistics such as the skewness in the distribution of 

forecasts, which may better reflect optimism and pessimism. 
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Figure 1 
Non-Fundamental Expectations Shocks and NBER Recessions 

 

 

 
 

Note: The shaded regions refer to periods of recession as dated by the NBER. The graphs depict variation in mean 
one-step ahead forecasts that are not explained by fundamentals in real time. 
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Figure 2 

Standardized Impulse Responses of Output Forecast Shocks  
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Figure 3 
Standardized Impulse Responses of Inflation Forecast Shocks 
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Table 1 
Summary Statistics of Non-Fundamental Expectations Shocks: 1974Q4 − 2002Q2 

 
  
 Shock 
 Output Inflation 
   
   

Std. Deviation    0.268    0.102 
Maximum    0.810    0.246 
Minimum − 0.759 − 0.249 

Autocorrelation at   
lag 1    0.502    0.314 
lag 2    0.203 − 0.038 
lag 3    0.165    0.022 
lag 4    0.265    0.061 

     
Correlation with Real Output Inflation Real Output Inflation 

 Growth  Growth  
at lead/lag     

+2    0.130 − 0.063      0.229* 0.088 
+1    0.159  − 0.045    0.113   0.198* 
0      0.279*    0.033    0.114 0.140 
−1 − 0.003    0.038    0.061 0.047 
−2 − 0.038    0.068 − 0.085 0.037 

     
 

Notes: Non-fundamental expectations shocks refer to the components of mean one-step ahead forecasts that 
are not explained by real-time observations on fundamentals. Denoting a variable by  and the expectations 

shock in the forecast  by , the correlation between the shock and the variable at lead j is 

. * denotes significance at 5%.  

ty
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Table 2 

Contributions of Forecast Shocks 
 

 
Percentage Contribution of Forecast Shocks to h-period ahead MSFE of 

    
    
 Real Output Growth  Inflation 

Shock Output Inflation  Output Inflation 
2-step 0.528 0.069  2.582 11.94** 
4-step 1.934 0.321  4.498 16.41** 
8-step     5.146** 2.327  4.178 14.50** 

      
 Interest Rates  Stock Returns 

Shock Output Inflation  Output Inflation 
2-step 2.772 0.806  1.983 1.255 
4-step 7.463 3.981  1.847 1.154 
8-step 7.342 4.515  1.992 1.976 

      
 Real Consumption Growth  Real Investment Growth 

Shock Output Inflation  Output Inflation 
2-step 2.256 0.113  0.828 0.058 
4-step 4.464 0.107  1.297 0.814 
8-step      7.791** 1.324  3.480 1.369 

      
 
Note: ** denotes significance at 1%.  
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Table 3 

Variance Decompositions for Real Output Growth and Inflation 
 

 
Percentage Contribution to h-period ahead MSFE of Real Output Growth of Shocks to 

 
         

h 
Real 

Output 
Growth 

Inflation Interest 
Rates 

Stock 
Returns 

Real 
Consumption 

Growth 

Real 
Investment 

Growth 

Output 
Forecast 

Inflation 
Forecast 

         
2-step 81.39** 0.218 12.15** 2.489 1.820 1.336 0.528 0.069 
4-step 59.41** 1.996 16.13** 11.93* 1.700 6.583 1.934 0.321 
8-step 50.36**    5.800* 13.91** 11.23* 1.854 6.373   5.146* 2.327 

         
 

Contribution to h-period ahead MSFE of Inflation of Shocks to 
 
 

h 
Real 

Output 
Growth 

Inflation Interest 
Rates 

Stock 
Returns 

Real 
Consumption 

Growth 

Real 
Investment 

Growth 

Output 
Forecast 

Inflation 
Forecast 

         
2-step 0.450 72.81** 6.402 1.128 1.136 3.550 2.582 11.94** 
4-step 5.822 58.88** 7.286 2.326 1.133 3.640 4.498 16.41** 
8-step   8.471* 50.78**   10.77**   5.663* 1.254 4.378 4.178 14.50** 

         
 
Note: * and ** denote significance at 5% and 1% respectively. 
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Table 4 
Contributions of Forecast Shocks (Model with Leading Index) 

 

 
Percentage Contribution of Forecast Shocks to h-period ahead MSFE of 

    
    
 Real Output Growth  Inflation 

Shock Output Inflation  Output Inflation 
2-step 0.428 0.064  2.796 11.189** 
4-step 1.553 0.250  5.036 15.945** 
8-step  4.056* 2.283  4.615 14.161** 

      
 Interest Rates  Stock Returns 

Shock Output Inflation  Output Inflation 
2-step 2.772 0.753  1.844 1.171 
4-step 7.463 4.301  1.715 1.096 
8-step 7.342 5.239  1.925 1.915 

      
 Real Consumption Growth  Real Investment Growth 

Shock Output Inflation  Output Inflation 
2-step 1.964 0.105  0.679 0.054 
4-step 3.885 0.125  1.001 0.654 
8-step     6.366** 1.474  2.465 1.129 

      
 
Note: * and ** denote significance at 5% and 1% respectively.  
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