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A simple approach to the parametric estimation of
potentially nonstationary diffusions™

Federico M. Bandi®*, Peter C.B. Phillips®

AGraduate School of Business, University of Chicago, 5807 South Woodlawn Avenue, Chicago, IL 60637, USA
>Cowles Foundation for Research in Economics, Yale University, USA

Abstract

A simple and robust approach is proposed for the parametric estimation of scalar homogeneous
stochastic differential equations. We specify a parametric class of diffusions and estimate the
parameters of interest by minimizing criteria based on the integrated squared difference between
kernel estimates of the drift and diffusion functions and their parametric counterparts. The
procedure does not require simulations or approximations to the true transition density and has the
simplicity of standard nonlinear least-squares methods in discrete time. A complete asymptotic
theory for the parametric estimates is developed. The limit theory relies on infill and long span
asymptotics and is robust to deviations from stationarity, requiring only recurrence.

JEL classification: C14; C22

Keywords: Diffusion; Drift; Local time; Parametric estimation; Stochastic differential equation

1. Introduction

The estimation of continuous-time models, such as those described by potentially
nonlinear stochastic differential equations, has been intensively studied in recent research.

* A preliminary version of this paper entitled ““Accelerated asymptotics for diffusion model estimation”™ was
written for the Cowles Foundation Conference “New Developments in Time Series Econometrics”, Yale
University, October 23-24, 1999.

*Corresponding author. Tel.: +17738344352; fax: + 1773702 0458.

E-mail address: federico.bandi@gsb.uchicago.edu (F.M. Bandi).



In the last few years, this literature has shown a tendency to turn to fully functional
procedures to identify and estimate the two functions that describe the solution to the
stochastic differential equation of interest, namely the drift and diffusion functions (the
interested reader is referred to the review by Bandi and Phillips, 2002, hereafter BP, and
the references therein). The motivation for this focus is clear. By not imposing a specific
parametric structure, fully functional methods reduce the extent of potential misspecifica-
tions. Unfortunately, they do so at the expense of slower convergence rates and inferior
efficiency over their parametric counterparts. Yet, the informational content of accurately
implemented functional methods can be put to work as a useful descriptive tool to
understand more about the underlying dynamics from a general perspective and to
investigate more effective procedures for parametric inference.

This paper secks to design a simple parametric estimation method that matches
parametric estimates of the drift and diffusion functions to their functional counterparts.
In order to do so, we specify a parametric class for the underlying diffusion process and
estimate the drift and diffusion parameters individually by minimizing two criteria which
can be readily interpreted as the integrated squared differences between functional
estimates of drift and diffusion and their corresponding parametric expressions. The first-
stage nonparametric estimates are defined as straightforward sample analogs to the
theoretical functions. Drift and diffusion function are known to have conditional moment
representations. Hence, the nonparametric estimates are empirical analogs to conditional
moments written as weighted averages. The weights are constructed using conventional
kernels (Bandi and Phillips, 2003).

The limit theory relies on infill (i.e., increasingly frequent observations over time) and long
span asymptotics (i.e., increasing span of data). Both features are crucial to derive the
consistency of the first-stage nonparametric estimates and, as consequence, of the final
parameter estimates under recurrence. Recurrence is the identifying assumption used in this
paper. It guarantees return of the continuous sample path of the scalar diffusion process to
sets of nonzero Lebesgue measure in its range an infinite number of times over time. Being the
infinitesimal moments defined pointwise, the return of the path of the process to
neighborhoods of each spatial level appears to be an important property to exploit for the
purpose of their identification. More precisely, the infill assumption allows us to approximate
the continuous sample path of the underlying process with its discrete counterpart while
replicating the infinitesimal features of the conditional moments of interest by virtue of
sample analogs. The long span assumption permits us to make use of the dynamic properties
of the underlying Markov process for the sake of the consistent estimation of drift and
diffusion through repeated visits to each spatial set, as implied by recurrence.

Recurrence is known to be a milder assumption than stationarity and mixing (see, e.g.,
Meyn and Tweedie, 1993). Recurrent processes do not have to possess a time-invariant
probability measure. They are called null recurrent in this case. Positive recurrent processes
are recurrent processes that are endowed with a stationary density to which they converge
in the limit. Stationary processes are positive recurrent processes that either have reached
the time-invariant stationary density or are started at it. The validity of the limit theory in
this paper only requires recurrence. Even though our theory could (and will) be specialized
to the positive recurrent and stationary case, in general potential users do not have to make
assumptions about the stationarity properties of the process when estimating individual
infinitesimal moments. Consistency of the drift (diffusion) parameter estimates is preserved
under misspecification of the diffusion (drift) function in the recurrent class. Furthermore,



while it is true that the dynamic features of the underlying process shape the asymptotic
distributions in general, we show that all the relevant information about such features is
embodied in estimable random objects that define the variances of asymptotically normal
variates. Hence, from the sole point of view of statistical inference, the limiting
distributions do not depend on whether the process is stationary or not, being defined
in terms of random norming. Such invariance is a valuable feature for applied work.

Some additional observations are in order. Starting with the fundamental work of
Gouriéroux et al. (1993) and Gallant and Tauchen (1996), a variety of simulation-based
methods have been recently introduced to consistently estimate parametric models for
diffusions. For example, Brandt and Santa-Clara (2002), Durham and Gallant (2002),
Elerian et al. (2001), and Eraker (2001), among others, suggest simulation-based procedures
for maximum likelihood estimation. Somewhat different is the approach in Ait-Sahalia
(2002) who recommends approximations to the true, generally unknown, transition density
of the discretely sampled process for the purpose of consistent likelihood estimation.
Carrasco et al. (2002), Chacko and Viceira (2003), Jiang and Knight (2002), and Singleton
(2001) suggest characteristic function-based generalized method of moment (GMM)
estimation. GMM-based estimation is also discussed in Conley et al. (1997), Duffiec and
Glynn (2004), and Hansen and Scheinkman (1995), inter alia. While some of these
techniques permit to achieve the same efficiency that (the generally infeasible) maximum
likelihood estimation would guarantee,! they do so at the cost of some computational
burden. In addition, most of these methods explicitly trade off robustness for efficiency.

The parametric procedure that we discuss in this paper has two main features. The first
feature is computational simplicity: the methodology only requires straightforward
estimation of nonparametric functionals a la Nadaraya—Watson type in the first stage
and implementation of a minimization routine similar to conventional nonlinear least-
squares in the second stage. The second feature is robustness. Specifically, the statistical
assumptions that are used for consistency are minimal and the information contained in
the nonparametric estimates of drift and diffusion is fully exploited for the purpose of
parametric inference. As such, our method can be employed as a preliminary descriptive
tool and be regarded as complementary rather than alternative to some existing methods.

Furthermore, the “minimum distance” type of estimation that is discussed in this work
might be interpreted as extremum estimation for potentially nonstationary and nonlinear
continuous-time models of the diffusion type. Minimum distance methods for robust
estimation have a long history in statistics (the interested reader is referred to Chiang,
1956; Ferguson, 1958; Koul, 1992; and the review papers in Maddala and Rao, 1997) and
have been recently applied to potentially nonlinear, but strictly stationary, diffusion
processes by Ait-Sahalia (1996). Altissimo and Mele (2003) have recently extended the
procedure in Ait-Sahalia (1996) to estimate multivariate models with unobservables
through simulation methods. Ait-Sahalia estimates nonparametrically the stationary
density of the process and, given a parametric class for drift and diffusion, designs an
estimation method that matches the nonparametric density function of the process to its
uniquely specified parametric counterpart. Specifically, matching is obtained through
minimization of the mean-squared difference between the nonparametric estimate of the
density function of the process and its parametric counterpart.

'The true conditional distribution of the discretely sample data is known in closed-form only for few processes
(see, e.g., Lo, 1988).



There are several differences between our approach and the methodology in Ait-Sahalia
(1996). First, we do not employ the informational content of the nonparametric density. As
pointed out earlier, the adopted parametric model might not imply the existence of a time-
invariant measure and can be null recurrent. Second, in our framework, parametric inference
on the second infinitesimal moment does not depend on inference on the first infinitesimal
moment. In other words, when interested in the identification of the diffusion function, as is
often the case in practise, the econometrician does not have to estimate the first infinitesimal
moment or specify a parametric class for it. Interestingly, we show that this is true even if the
two moments imply explosion (or attraction) of the underlying diffusion and finite returns
(rather than infinite returns, as implied by recurrence) to sets of nonzero Lebesgue measure.
Hence, the consistency of the diffusion parameters, as well as the feasibility of their
asymptotic distribution, are not affected by potential misspecifications of the drift function.
In addition, the process can be transient. As far as the drift parameters are concerned, only
their asymptotic covariance depends on the true infinitesimal second moment. However, the
drift parameters may be consistently estimated even when the diffusion function is
misspecified provided the underlying process is in the recurrent class.

The above-mentioned properties are achieved through the use of increasingly frequent data
points in the limit as well as increasing spans of data. The appropriateness of this twofold limit
theory is an empirical issue which depends on the application. Nonetheless, it is known to be a
realistic approximation in fields, such as finance, where data sets are often characterized by a
large number of observations sampled at relatively high frequencies over long spans of time.
The simulation studies of Bandi and Nguyen (1999) and Jiang and Knight (1999) show that
daily data, for example, are good approximations to very frequent observations for estimators
relying on very frequent observations. Long spans of daily data are commonplace in finance.
Higher than daily frequencies are also now available in finance, albeit over generally shorter
time spans. However, the use of very high-frequency (intradaily, for example) observations
poses microstructure-related issues (see Bandi and Russell, 2005 for a review of recent
contributions on this topic). Dealing with these issues is beyond the scope of the present paper.

The paper proceeds as follows. Section 2 presents the model and the objects of econometric
interest. Section 3 details the estimation procedure. Section 4 lays out the limiting results. In
Section 5 we specialize our general theory to the Brownian motion and positive recurrent
case, as well as to the stationary case. Section 6 discusses covariance matrix estimation.
Section 7 focuses on efficiency issues. Section 8 concludes and discusses extensions. Appendix
A provides proofs and technicalities. A glossary of notation is in Appendix B.

2. The model

We consider a filtered complete probability space (2,3, (3;),~, P) on which is defined
the continuous adapted process

t t
X, = Xo+ / WX, 0% ds + / o(X..0°)dB,, (1)
0 0

where {B;:t>0} is a standard Brownian motion. The initial condition X, is square
integrable and is taken to be independent of {B; : t>=0}. The probability space satisfies the
“usual hypotheses” (Protter, 1995), namely (i) 3, contains all the null sets of I and (ii)
(3:),>0 is right continuous, i.e., I, =, ,3u V. The parameter vectors 0" and 0” are such
that (0*,607) = 0 € O, where O is an open and bounded subset of R for a generic M. More



specifically, 6 € @* C R™ and 0° € O° C R™ with m; + my = M. The vectors 6* and 6°
jointly define a parametric family for the process in Eq. (1). Since we will be dealing with
extremum estimation procedures, it is convenient to denote the true values of these
parameters by 0 and 0.

As in BP (2003), the following conditions are used in the study of the continuous process
in Eq. (1). In what follows the symbol © denotes the admissible range of X,.

Assumption 1. (i) u(.,0") and o(.,0%) are time-homogeneous, B-measurable functions on
D = (/,u) with —co</<u< oo, where B is the o-field generated by Borel sets on ®. Both
functions are at least twice continuously differentiable. Hence, they satisfy local Lipschitz
and growth conditions. Thus, for every compact subset J of the range of the process, there
exist constants C{ and C3 such that, for all x and y in J,

|,LL(X, OH) - .“(V» 0!1)| + |O'(X, 00) - O—(ya 00)' < C{'-x - J/|

and
lu(x, 09)] + |a(x, 0°)| < Co{1 + |x[}.

(ii) ¢*(.,0°)>0 on D.
(ii1) We define S(a, 6), the natural scale function, as

o Vv 2 ( ’9/.1)
s [on{ [ 2}

where ¢ is a generic fixed number belonging to ©. We require S(«, 0) to satisfy

liml S(e, 0) = —o0

and

lim S(a, 0) = oo.

(iv) u(x, 0*) and o(x, 6%) are at least twice continuously differentiable in 6 and 6° for all
x e D.

Under Conditions (i)—(iii), the adapted process in Eq. (1) is recurrent (see, e.g., Karatzas
and Shreve, 1991). Condition (iv) will be used in the development of our asymptotics. If, in
addition to Conditions (i)—(iii), we have

m= / m(a, 0)da<oo,
)

where m(., 0) is the so-called speed function defined as

2
2(,0)S'(,0)

with S’(., 0) being the first derivative of the scale function in Eq. (2), then the process is
positive recurrent and possesses a time-invariant probability measure f(.,0) = m(.,0)/m
according to which it is distributed, at least in the limit. As mentioned, our theory also
applies to processes for which Conditions (i)—(iii) are satisfied and 77 = co. Such processes
are nonstationary. They are typically called null recurrent. Brownian motion is an example
of null recurrent diffusion. Nonetheless, the class of null recurrent diffusion processes is

m(.,0) =



substantially broader than Brownian motion and is known to include highly nonlinear
processes (see, e.g., BP, 2002).

As discussed in the Introduction, if interest centers on the identification of the second
infinitesimal moment, recurrence can be further relaxed. In fact, this moment can be
estimated consistently under transience, that is, in situations where the process of interest is
not guaranteed to visit every level in its admissible range an infinite number of times over
time with probability one, as implied by our Assumption 1(iii). We will come back to this
observation (see Remark 11).

The objects of econometric interest in this paper are the drift, u(., 0*), and the diffusion
term, (., 0%). The conditional moment interpretations of these objects are well known,
representing the “‘instantaneous’ conditional mean and the “instantaneous’ conditional
variance of increments in the process (see, e.g., Karlin and Taylor, 1981). More precisely,
u(., 6%) describes the conditional expected rate of change of the process for infinitesimal
time changes, whereas o2(.,07) gives the conditional rate of change of volatility, for
infinitesimal variations in time.

3. The econometric procedure

We define a “minimum distance” type of estimation that exploits the consistency of
accurately defined functional estimators and provides estimates of the parameters of
interest by matching the parametric expressions to their nonparametric counterparts.

The first step consists of defining the functional estimates. We consider the estimators in
BP (2003) in their single smoothing versions. Assume the data X, is recorded discretely at
{t=1t1,12,...,1,} in the time interval (0, T], where T is a positive constant. Also, assume
equispaced data. Hence,

{Xf :XA,,’TaXZA X3An§T"":XnAn’T}

nT?

are n observations at

(h=du71,00 =241, =34, 7,..., 1, = nd, 1},

where 4,7 = T /n. The drift estimator is defined as

ntyr (Xid, =
1 2o K( o )[X G0y = Xjd 7]

ﬁ(n,T)(') = A X = 3
n,T Z;’ZIK( ]hn:; )
The diffusion estimator is defined as
ZV!—IK X.fAn,T_' X, — X 2
P 1 j=1 /1,[’]" [ (/+1)A11,T /An,T]
G(n,T)(') = Ant n Xjdyr—- : 4
s Zj:lK( hn:T )

The function K(.) that appears in Egs. (3) and (4) is a conventional kernel whose properties
are listed below.



Assumption 2. The kernel K(.) is a continuously differentiable, symmetric and non-
negative function whose derivative K'(.) is absolutely integrable and for which

/ K(s)ds =1, / K*(s)ds<oo, supK(s)<Cs,

o0

and
K; = / sK(s)ds < oo.

Remark 1. The estimators in Egs. (3) and (4) are straightforward sample analogs to the
theoretical functions. BP (2003) discuss their properties of consistency and asymptotic
normality. They show that recurrence, which is implied by Assumption 1, rather than
positive recurrence or stationarity, is all that is needed to achieve identification. BP (2003)
derive the asymptotics as the time span (7) and the number of data points (7)) increase
with the frequency of observations (4,7 = T/n — 0). Increasing the data frequency over
time is crucial for the consistent estimation of continuous-time models using fully
functional methods under general assumptions on the statistical evolution of the
underlying process and equispaced data. By letting the time span increase to infinity, the
drift and diffusion function can be recovered in the limit since the process continues to
make repeated visits to all spatial points in its range by virtue of recurrence. However,
enlarging the time span is necessary only for consistent drift estimation. The local
dynamics of the process contain sufficient information to identify consistently the
infinitesimal second moment.

In other words, recurrence suffices for the pointwise estimation of diffusion processes
since it is all that one needs to imply infinite returns to each spatial level x with probability
one. When we combine the recurrence property with differences between adjacent
observations X JAnT’X G+ 1 going to zero as 4,7 — 0, it is intuitive to understand why
Hin.y(x) and G, o( T (x) represent consistent estimates of the infinitesimal first and second
moments for all x € © (BP, 2002 contains further discussions).

Remark 2. More general sample analogs to the true functions of the convoluted type
described in BP (2003) could be used instead to derive the functional estimates. Here we
employ specifications based on simple smoothing rather than on convoluted kernels, as in
the most general case examined by BP (2003), for simplicity in the proofs.

The use of more involved specifications is known to potentially improve the asymptotic
mean-squared error of the pointwise functional estimates and be beneficial in a finite
sample (see, e.g., Bandi and Nguyen, 1999). In particular, we know that the choice of the
optimal smoothing parameter for the drift is empirically cumbersome. Yet, the use of
convoluted kernels limits the effects of potentially suboptimal choices. Extensions to
convoluted kernels can be easily derived from the apparatus presented below. BP (2003)
discuss bandwidth selection.

We now turn to parametric estimation. Consider a subset of 77<n observations over a
fixed time span T<T. Assume the observations are equispaced with distance between
adjacent data points given by A7 = T /7. Let u be the column Vector of nonparametric
drift estimates at the 7 data points X;,_ T with i=1,...,7, i.e., f= (Hy T)(XA;)

Hg (X 7ia_— )) Let u(0") be the column vector of the parametrlc drlft spemﬁcatlons at the
same 71 data points, i.e., u(0") = (,u(XA = 0, ..., (X5 4 0")). Assume 6> and 6%(0°) are



defined analogously. Consider the criteria

T _ , T ,
AT = = | — p(0))° = %; (,u(n,T)(XiAﬁj) - ,U(Xmﬁ, 0")) Q)
and
. T, T
Qs =—116° = (O =~ G5, (Xia ) = 0*(Xia 1. 0))’. (6)
i=1 ’

where 7, (.) and ?f%n,T)(.) are defined in Egs. (3) and (4), respectively. Egs. (5) and (6) can
be interpreted as the integrated mean-squared differences between the kernel estimates and
their corresponding parametric specifications.

The kernel estimates are defined over an enlarging time span 7, whereas the criteria are
defined over a fixed time span 7 < 7. In both cases, we assume that the distance between
observations goes to zero asymptotically, namely 4.+ — 0 and 4,7 — 0. Our sampling
scheme can be easily understood with an example.> Assume T = J/n, for instance, but a
different increasing function of n could be adopted. Then, the observations in the full sample
are equispaced at times {1//n,2//n,..., 1,1 +1//n,...,/n} since A7 =T/n=1//n.
We can now split the sample into two parts, namely observations in (0, 7] and observations in
(T, T). Assume, without loss of generality, that 7 = 1. Also, in agreement with our previous
notation, assume that there are 77 equispaced observations in the first part of the sample. Then,
1/ = 1/4/n. This implies that the number of observations in the first part of the sample,
which is defined over a fixed time span7 = 1, grows with /i, whereas the number of
observations in the second part of the sample grows with n. Given this discussion, one should
really write T, and 7,, to make the dependence of T and 7 on #n explicit. We choose to simply
write 7" and 7 for conciseness in the formulae.

From a theoretical standpoint, fixing the time span over which the criteria are defined is a con-
venient way to discuss consistency issues, as in Theorems 1 and 3, without having to deal with a
possibly unbalanced criterion function. The intuition is as follows. As we show in Theorems 1
and 3, the criteria depend on a random quantity, i.e., local time, which diverges to infinity almost
surely in the case of recurrent processes. In order for the criteria to be bounded in probability,
local time would have to be defined over a fixed observation span. This is what our sampling
scheme accomplishes. Alternatively, one could let T go off to infinity just like 7T, but local time
would have to be standardized appropriately for the criteria to be bounded in probability. The
standardization would have to be process specific and, as such, would defeat the goal of the
present paper.> Having made this point, we should stress that it is relatively straightforward to
obtain weak convergence results even when T — oo (see, e.g., Remarks 12 and 13).

From an applied standpoint, fixing the time span 7 over which the criteria are
constructed while defining the kernel estimates over an enlarging time span 7 is
immaterial. It simply implies that the entire sample (i.e., data between 0 and 7)) is used to
define the kernel estimates, whereas the first part of the sample (i.e., data between 0 and T

>We thank an anonymous referee for suggesting this example.

3Even given a complete parametric model that fully specifies drift and diffusion in the recurrent class, the
relevant standardization would be known only in few specific cases (see Section 5). In general, however, one might
be simply interested in either the drift or the diffusion function. In this case, one might wish to avoid imposing
unnecessary structure on the other infinitesimal moment.



with T< T) is used to define the criteria. But, of course, the first part of the sample can be
chosen to be large (i.e., T can be chosen to be approximately equal to 7, if not equal to 7).

To summarize, in the sequel the notation 7" — oo will refer to the situation where the
kernel estimates are defined over an enlarging span of time. The criteria in Egs. (5) and (6)
will always be defined over a fixed time span T < T unless otherwise noted (cf., Remarks 12
and 13). In all cases n, the number of equispaced observations between 0 and 7, and 7, the
number of equispaced observations between 0 and 7, will be assumed to diverge to infinity
with 4,7 = T/n and 4,7 = T /7 going to zero.

Specifically, we will use the notation 7;p> and 7? for consistency and weak conver-

n,T—00 n,n,T—00

gence results obtained as the time span 7" over which the kernel estimates are defined increases

while the time span T over which the criteria are defined are fixed. We will use the notation L
n—oo

and = for consistency and weak convergence results obtained as both the time span T over

n—0o0
which the kernel estimates are defined and the time span T over which the criteria are defined
are fixed (in this case we will also assume that T = T = constant and n = 7). Finally, we will

use the notation = to define weak convergence results obtained as both the time span T over
n,T—o00

which the kernel estimates are defined and the time span 7" over which the criteria are defined
increase asymptotically (in this case, again, we will assume that T = Tand n = 7).
The parametric estimates 0, - . and 0; ;- are obtained as follows:

0,57 = arg min Q) - = arg min— ||z — p(0")| (7
0HeOtcO oheorco N
and
- T
i : : ~ 2 2
0,5 = arg min @y - » = arg min— [|¢~ — ¢~(0°)||". ®)
0°c0°CO 0°co’co Il

Remark 3. As in the fully nonparametric case discussed in BP (2003), we identify the drift
and diffusion parameters separately. This is of particular importance when one is
interested in the parametrization of a specific function in situations where the other
function is treated as a nuisance parameter. On the other hand, the drift and the diffusion
function can have parameters in common. If this is the case, one should entertain the
possibility of achieving efficiency gains by accounting for this commonality. We discuss the
case of common elements in Section 7.

4. Limit theory

We start with the drift case. In what follows, we use the notation u(a, 0f)) and py(a)
interchangeably. Equivalently, we use interchangeably the notation ¢2(a,0f) and a3(a).
These notations are convenient and should cause no confusion.

Theorem 1 (Consistency of the drift parameter estimates). Assume n,i — oo, T — oo, and
hyr =0 (as nT —o00) so that (Ly(T,x)/hyr)(Ayrl0g(1/4,1)'* = 045(1) and
Ly(T, x)h,7— 0o Vx € D, then

p

0 B 0r000) = A ((a, 03) — (@, 0) L (T, a) da ©)



uniformly in 0", where Lyx(T,a) is the chronological local time of the underlying diffusion
process at T and a, i.e., the nondecreasing (in T) random process which satisfies

Lu(T.a) = lim e / Lo (X)R(X) s,

with probability one. Now, let B(6",¢) denote an open ball of radius ¢ around 0" in O".
Assume that Ve>0

inf / (w(a, 04) — u(a, 0")*Ly(T,a)da>0 as. (10)
0 ¢ B(0y2) JD

Then,

0" 5o

”nT)'l)'l;i)OO
Theorem 2 (The limit distribution of the drift parameter estimates). Given n,ni — oo,
T — oo, and hyr — 0 (as n,T — o00) such that (Ly(T,x)/hy, T)(A,,Tlog(l/A,,T))l/z
= 0,5.(1), ”’I(T)h 220, and Ly(T, x)h, 1= 00 Vx € D, then

ET) VO, -0 = NO,L,), (11)

nn,T— 00

nn, T

where E «W(T) is a consistent estimate of 5,(T) as defined by
E(T) = B(T) V(T) B(T)# , (12)
with

— 0 0
BT, = ( [ T (T da)

Opto(a) Optg (a)> (Ly(T,a))’ )
V(T), = 2 ) = da),
(1), (/3 ao(a)< 0 oo ) TuTa)
where Ly(.,a) is the chronological local time of the underlying diffusion process at a. If

2. (Tl = O4s.(1), then
ED) 2O, — 0 =T = N(O,1L,),

nn,T— o0

where

6m(a) 2
P B [ K <auo(a) 1o uo(a)) WD 7
D

0a m(a) 2 Oa 06"
m(.) is the speed function of the underlying diffusion and K, = ffooo ?K(c)dec.

Remark 4. Both the chronological local time Ly(T,x), i.e., the random amount of time
that the diffusion spends in the local neighborhood of the generic spatial point x, and the
speed function of the process of interest play a role in the definition of our asymptotics.
This is a by-product of the generality of our assumptions.

As opposed to the time-invariant probability density that emerges from stationary
estimation procedures, both quantities are known to be well-defined for stationary as well
as for nonstationary diffusion processes, while having a close connection to the stationary



density f(x) should positive recurrence, or strict stationary, be satisfied. In fact,

—f(x) = T (13)

Vx € D as T — oo when the process is positive recurrent (77<o0). Theorem 6.3, in Bosq
(1998, p. 150) contains an even stronger (with probability one) consistency result in the
case of strictly stationary processes. For positive recurrent processes, the result can be
derived from an application of the Darling—Kac theorem, for example (see, e.g., Darling
and Kac, 1957; Bandi and Moloche, 2001 for a recent use of the theorem).

Eq. (13) says that the standardized local time of a positive recurrent diffusion process
converges to its stationary density. Additionally, Ly (T, x) diverges linearly with T Ifiit = oo
and the process is null recurrent, then local time diverges at a speed slower than 7. In
general, the local time of a recurrent process diverges to infinity with 7" almost surely since (i)
the process visits every level in its range an infinity number of times as the time span
increases indefinitely and (ii) local time measures data density. As shown, the divergence
properties of the local time factor affect the convergence properties of the drift parameter
estimates (cf., Eq. (11)). A similar result applies to the diffusion case that we discuss below.

Remark 5. For a smoothing sequence converging to zero at a fast enough rate as to
eliminate the asymptotic bias term I'* (i.e., so that E;I(T )hiT 2 0), the weak convergence
result in Eq. (11) is consistent with what we would expect to obtain in a correctly specified
standard nonlinear regression context with heteroskedastic errors (see, e.g., Davidson and
MacKinnon, 1993 for a classical treatment). The only difference is that we replace integrals
with respect to probability measures with spatial integrals, i.e., integrals defined with
respect to local time (see, e.g., Park and Phillips, 1999, 2001 for discussions in the context
of unit-root models for discrete time series).

Remark 6. Coherently with the fully nonparametric case discussed elsewhere (BP, 2003), the
rate of convergence is path-dependent and is driven by the rate of divergence to infinity of the
local time factor through the spatial integral V,,. By virtue of the averaging, this rate is generally

faster than in the fully functional context where it is known to be equal to /A, Lx(T,x).

Remark 7. The limit theory clarifies the sense in which enlarging the time span (7" — c0) is
crucial for consistent estimation of the infinitesimal first moment of a diffusion. In effect, if
we fix T(= T), then Ly(T,.) is bounded in probability and does not diverge to infinity with
probability one. Consequently, the matrix z W(T) = ) W(T) = E,(T) + op(1) is also bounded
in probability. Hence, gﬁ(zﬁﬁn:ﬁ—g 05 when T is fixed (cf., Eq. (11)). Thus, even though we
define the criterion over a fixed span of data T, the drift kernel estimates ought to be
defined over an enlarging span of observations to obtain consistency of the drift parameter
estimates. This result mirrors the analogous result in the fully functional case where it was
shown that, contrary to the diffusion function, the drift term cannot be estimated over a
fixed observation span (see, e.g., BP, 2003).

We now turn to the diffusion parameter estimates.

Theorem 3 (Consistency of the diffusion parameter estimates). Assume n,n — 00, T — 00,
and h,r — 0 (as n, T — 00) such that Cx(T,x)/hyr)(Anrlog(l/4,7)"* = 045(1)



Vx € D, then
Oipr@), 5 0000 = [ (@@ )~ a0 Le(T.a)da (14)
n,,T— 00 D

uniformly in 0°, where Ly(T,a) is the chronological local time of the underlying diffusion
process at T and a, i.e., the nondecreasing (in T) random process which satisfies

e—=0¢&0

(T, a) = lim - 5 / Taso (X)X ) ds,

with probability one. Now, let B(6°,¢) denote an open ball of radius ¢ around 0° in O°.
Assume that Ye>0

inf / (0%(a,03) — 6*(a,0°))* Ly(T,a)da>0 as. (15)
0° ¢ B(0S.2) Jp

Then,

Theorem 4 (The limit distribution of the diffusion parameter estimates). Given n,n — 0o,
T — oo, and hyr — 0 (as nT — oo) such that (Lx(T,x)/h,1)(A,710g(1/A4,, /2=
0a5(1) Vx € D and 5 I(T)hn T/AnT—> 0, then

Eo(D) 20557 —05) = NO,Ly,), (16)

A/ A”L T n n T—o0
where EG(T) is a consistent estimate of Z,(T) as defined by

E,(T) = B(T),; ' V(T),B(T);" (17)
with

B(T), = ( f‘;g&“) aggf,“) Ly(T, )da)

B 4, - (0a3(@)da3(a)\ (Lx(T,a))*
v, = ( [ oG ) T )

where Ly(.,a) is the chronological local time of the underlying diffusion process at a. If
EJI(T)}Z4 7/ 4n1 = Ous(1), then

(u (1) 2057 — 05— T7) = NO,Ly,),

\/ nn,T— 00

where

Om(a) )
g2 =1 o(a) 10°g(a) aGo(a)
= h, +B(T), A Kz( » m(a)+2 " 0 Ly(T,a)da,

m(.) is the speed function of the underlying diffusion and K, = ffooo ?K(c)de.

Remark 8. In light of Remark 5, the integrals B, and V,; can be interpreted as spatial analogs
of the integrals with respect to probability measures that would arise from the standard



nonlinear estimation of conditional expectations in discrete time. The term 20'3(61) is due to
the quadratic nature of the nonparametric estimator of the infinitesimal second moment.

Remark 9. As in the drift case, the rate of convergence is path-dependent being driven by a
local time factor. Also, the parametric estimates entail efficiency gains with respect to their
nonparametric counterparts. In fact, the functional estimates have generally slower

pointwise convergence rates given by /A, 7Lx(T,x)/\/Anr (BP, 2003).

Remark 10. The rate of convergence of the diffusion estimates is faster than the rate of
convergence of the drift estimates. The difference is given by the multiplicative factor
1/+\/4,7 = /n/T and is consistent with corresponding results in the fully functional case.

We now consider the case where the diffusion parameters are estimated by defining both
the kernel estimates and the relevant criterion over a fixed observation span. In other
words, we assume that 7 = T and is fixed. The symbol MN in Theorem 5 denotes a mixed
normal distribution.

Theorem 5 (The limit distribution of the diffusion parameter estimates with T fixed). Given
n(=n) — oo and h,7 — 0 (as n — o0) so that (l/hnj)(zlnjlog(l/zlnj))l/2 =o(l) and
h:T/An,T — 0, then

! (0°= — 05) = MN(0,5,(T))
47 e
with
2,(T) = B(T), ' V(T),B(T);" (18)
and

= da3(a)dod(a)—
B(Tx,—( | LX<T,a>da>,

v, = ([ 2ot (BB 2,7y,

where Ly(.,a) is the chronological local time of the underlying diffusion process at a.

Remark 11. The diffusion parameters can be identified over a fixed time span. Hence,
recurrence is not necessary to identify the second infinitesimal moment and the process can be
transient. In this case, the convergence rate ceases to be path-dependent. We experience /n-

convergence for the parametric estimates (since 1/, /4,7 = Jn/ VT and T is fixed) and

\/h,, 7-convergence for the nonparametric estimates in Eq. (4) above (see, e.g., BP, 2003). The

gain in efficiency which is guaranteed by the adoption of the parametric approach in this paper
is noteworthy and coherent with more traditional semiparametric models in discrete time (see,
e.g., Andrews, 1989).



5. Some special cases: Brownian motion and stationary processes

Since the rate of convergence of the estimates is influenced by the rate of divergence to
infinity of the chronological local time factor, it is worth analyzing the cases for which such
a rate is known in closed-form, namely Brownian motion and the wide class of positive
recurrent and stationary processes.

It is important to point out again that consistent estimation of either infinitesimal moment
of interest does not require a complete parametrization of the underlying process. Hence,
potential users do not have to take an a priori stand on the stationarity properties of the
process in general. This is an important aspect of our methodology. Furthermore, the
dynamic features of the process affect the limiting distributions only through estimable
random objects that characterize the variance of asymptotically normal variates. While null
recurrent processes are expected to converge at a slower pace than positive recurrent and
strictly stationary processes due to the slower divergence rates of the corresponding local time
factors (cf., Remark 4), the convergence rates are embodied in random variance—covariance
matrices (in Egs. (12) and (17)) which can be estimated from the data as we discuss in Section
6. Consistent estimation of the variance—covariance matrices only requires recurrence.

In what follows we explicitly discuss the convergence rates of the parametric estimates in
the two cases that were mentioned above: Brownian motion and positive recurrent (as well
as strictly stationary) processes. The results in this section are mainly of a theoretical
interest but can also be of help to the user should stationarity of the underlying process be
known, for instance. We start with Brownian motion.

5.1. Brownian motion

Assume the data are generated from a Brownian motion B = ¢ B, with local variance ¢2.

We parametrize the diffusion process as

t t
Xt=X0+//1ds+/adBS
0 0

and minimize the criteria in Egs. (5) and (6). It follows that

~

T .
O = %Z Hon, 1) (X mﬁ) = s
p

and

—~ T
en,ﬁ,T =A\l7 Z] U(,l,T)(XzAﬁj) = Onpu,T-
=

The limit theories can be expressed in closed-form since the rate of divergence to infinity of
the Brownian local time is known. In particular, ® = (—o0, 00) and

 Bpp(a@) Qug(@)
B, = ( [ N aogu agﬂ’ LX(T,a)da)

= /_00 ZE(T’ a)da

[e¢]



1 ~
1By

<1 1
/ *T 12 LB<1,]2a> da
—0 0 T/ g

/ TLs(1,x)dx

o0

[B];

T
T

_ > 2 Opg(a) Ouy(a) (ZX(T,CI))2
V= (/_ 00@( 30" ae»”) (T, q) da)

also

1/2
o  LTLy, i a)

0'
o) 1 TI/ZLB(I, 7126 )

da

ooa O’T/ 1/2 7%,
T LB(15T1/2 —i2g

o T ' L(1,x))
‘/2de
o0 T2 Lp(1,L 1/2x)

.7
/00 1T1/2 (T L1, 1/20))
.7

T (Ly(1, ) dx.

T T2 L(1,0+ o(1)) /_oo
Then,

o ) -1/2 R
T4 / o 7(16‘;(1 X)) dx 4 op(1) 0" . —1) = N@O,1)
—0 LB(l 0) e nn,T— o0

with u, = 0. The rate of convergence, T'/4, is faster than in the fully nonparametric case,
where it is known to be T”“h;j/ﬁ (BP, 2003).
We now turn to diffusion estimation. Write

5 ( In 0@ 0@ ;7 da)

oo 00° 307
= / 40222?{7, a)da
= 46°T

and

[ 4 (O63(a)dcd(a)\ (Lx(T,a))
Vo= (/ 2““‘”( 20" 69”’) Ly(T.a) d“)

— / 20%(4a 2)<(~())> da
. IT.a)



_ > 4,4 2\73/2 2
= L0 % o) /_Oo 26"(46°)T""(Lp(1, x))" dx.

In consequence,

T1/4 o) 2 (LB(I x))
el U e D) S

As in the previous case, the rate of convergence that would emerge from purely functional
estimation is slower and equals (74, /4, T)hn T

Remark 12. It appears that we can increase further the rate of convergence by working
with criteria defined over an enlarging time span 7 = T(— oo) implying » = 7. In this
case,

f(eﬂ — 1) = N0,

n,T— 00

with yy = 0, and
Jn (et —0) = N(,id.

n,T— 00

5.2. Positive recurrent and stationary processes

Since local time converges to the stationary density of the process f(.) when standardized
by T (cf., Remark 4), in the drift case we obtain

VT (u,l+op(1>)—1/2(0,1”—9"> = NOLy),

T— o0

where
E.=B(T),'V,.B(T),’

and

— 0 0
BT, = ( [ D LT ).

(@@ LT )
V= (L 7(4) ( 30" aeu’) @ d")'

In agreement with the Brownian motion case, the rate of convergence ~/ T, 1is faster than in
the fully nonparametric case where it was shown to be /A, 7T (BP, 2003). As for the
diffusion case, we can write

NT
i
= Vn(E, +0op(1) V2077 —05) = N(O,1,),

nn T—o0

(Zo + 0p(1) 207 7 — 0F)

where

5, = B(T),'V,B(T);’



and

B(T), =

( daj(a) dai(a)

Ly(T
o aea 600-/ X( ,a)da),

B 4, (003(a)0a3(a)\ (Lx(T,a))*
ve= ([ 2o (G ) i)

Again, the diffusion estimates converge at a faster speed, /1, than in the fully functional
case, /nh, .

Remark 13. We can now define the criteria over an enlarging time span T = T(— oo) with
7n=n. Contrary to the Brownian motion case, no additional improvement in the
convergence rates is obtained over the situation illustrated above. Nonetheless, the
asymptotic variances have a more familiar look. In fact,

VT(E, +o0p() (0 = 0) = N1,

n,T—o0

and
3 Oug(a) Opy(a) [ Opo(X) Bpo(X)
B"_( A AN T &
Opto(@) Bpg(a) Opto(X) Opto(X)
_ > 0 0 _ 2 2R ) ER0AE
Vll - (/1; (70(61)( 0" 69“, f(a) da) =E O-O(X) ol agﬂ/ ’
Additionally,
V(Es + op(1) (07 7 — 07) = N(0,1,,),
where
Z,=B'V,B;!
and
B 063 (a) 962(a) - (063(X) 053 (X)
B(,_< 0 o7 f(@da) =E(—55 07 )

Vo= ( A 205(a) (aggéga) agg,(f)>f (a) da) = E<203(X) aaaggx ) a?@(}( )).

6. Covariance matrix estimation

We now discuss estimation of the covariance matrices in Theorems 2 and 4.
We only focus on the first infinitesimal moment. The results readily extend to the
diffusion case with obvious modifications. From Theorem 2, write the asymptotic



covariance as

acov(0"; 1) = Eu(00) = (Bu(00))~"(V u(00))(B,(0)) ™"

with
_ ([ Onta05) outa.05)
B,(0p) = ([9 30" v Ly(T,a)da
and
Ou(a, 0y) dp(a, O )) (Lx(T,a))’ )
VL 0,) = 2 , Q° 0 - 0 - d )
= ( [V ) P
It is straightforward to show (see the proof of Theorem 4) that
EH(QM)E,T
n Op(Xia_—, 0°)Ou(Xia__,0")
— A—* nT n,T
n,T p ae,u 60’/
I It
g /6u(a 40 ) dula, 0 )L x(T,a)da
n—oo o 0* 60
= B(0)
and
Vi@

nT

jA_f id-
Op(Xia, 7, 0") O Xia, 7,0“)21 1K( b7 )

nT( , T) 2 4
= g 1 77’0
. E_ (Xia

7 An, 30" aeﬂ’ n oy (Kitr =Xt
T e
dp(a, 0y du(a, 0")\ (Lx(T,a))*
= 0'2(61, 00) < :uéaé’u ) :u(a: : )) ( 7X( 5 (1)) V’u(())
nn,T—00 [ o0O* LX(T, a)

uniformly in 0. We combine this result with the continuity of du(., 0")/00" and a’(.,0%) at
0y and 6 (cf., Assumption 1) and the consistency of 6“7 5 and Gnn o (from Theorems 1 and
3) to yleld

M(HnnT 7T 7_p) BH(GO)

nn,T—00

and
5 p
Vu(en,ﬁ,T)nﬁ,T 7 VH(HO)-
nn,T— o0

The proof follows standard arguments in extremum estimation (see the proof of Theorem
2 for a similar derivation). In consequence,

=~ A S 1,5 N = AR _
du(ef,tjj) = (B,u(ggﬁ,r)ﬁj) 1(Vu(en,ﬁ,T)n,ﬁ,T)(Bu(Hnﬁ,T)ﬁj) :
p

= (Bu(00))"'V,(00)(B(00)"" = Z,(00).

n,n,T— 00



Defining the criterion over an enlarging time span as in Remarks 12 and 13, we obtain

Bﬂ(gﬁ,7)11,T
4 1 O Xig, s 0 7) O X ia, 1, 0) )
— dnT - aeu 60’/
0 040 0 —
7_[)) / iu’(aau ()) :u(a’ - (]) LX(T, Cl) da
n(=h) T(=T)—>oc0 Jo 00 Gl
= B,(0o) (19)
and
f/\vﬂ(b\n,T)n,T
Z (X, g, 01 ) Op(X iy, 1 01 )
_ 2 . o , n,T nT> " p T
= A7 Z o*(Xis, 7> 077) G G

i=1

I i
L4 o2(a, 07) Opta, 6y) dpu(a, 0y) Ly(T,a)da
- 0 600 o
n(=n),T(=T)—00 JD o0

= V,(0p). (20)

This discussion further clarifies the analogy between the methods developed here and more
standard nonlinear estimation problems. As conventional in correctly specified nonlinear
regression models with heterogeneous errors, the asymptotic covariance matrix can be
consistently estimated using sample averages involving the outer-product of the gradient of
the conditional expectation calculated at the estimated parameter vector.

In sum, the methods proposed here can be viewed as nonlinear least-squares in continuous
time. The main difference between the standard approach in discrete time and the approach
in this paper is that preliminary kernel estimates of drift and diffusion function must be
obtained. Normality of the resulting estimates can be fruitfully used for inference. As always,
the asymptotic covariance matrices can be estimated by virtue of sample analogs.

7. Efficiency issues
7.1. Presence of cross-restrictions between drift and diffusion function

Standard econometric theory suggests that if the first and second moment have elements
in common (namely if @ N @’ #0 in our case), one should consider taking an optimally
defined convex combination of the estimated common parameters for the purpose of
minimizing their asymptotic variance and increase efficiency. In general, though, the drift
and diffusion parameter converge at different rates (cf., Theorems 2 and 4). In this sense,
our problem is nonstandard. In the limit, in fact, a linear combination of drift and
diffusion parameters would have an asymptotic distribution that is dominated by the terms
that converge at the slowest pace, namely the drift parameters. Thus, should the drift and
diffusion have parameters in common, we recommend recovering the parameters of
interest from the diffusion estimates. Not only are these estimates consistent over a
relatively short time span (as indicated by Theorem 5), but they also converge at a faster
speed than the corresponding drift estimates.



7.2. Weighted least-squares in continuous time

We can push the analogy between our methods and conventional least-squares procedures
with heteroskedastic errors a step forward. Specifically, given the form of the asymptotic
variances, one can employ generalized or weighted least-squares methods to increase efficiency.

Consider estimation of the diffusion function over a fixed time span 7 as in Theorem 5.
Let V7~ be a diagonal matrix of size 7 x 11 (or equivalently in this case, of size n x n) with

dlagonal elements glven by 20(” T)(X A ,) 20(,, (X7 A ) Write now the criterion
075 = arg min— ||(av“ 2)2@ - (01 1)
" 0°co’co N

The following corollary to Theorem 5 readily derives.

Corollary to Theorem 5. Given n(=n) — oo and hn? — 0 (as n — o0) so that
1

o A log(1/4, 7)) = o(1)

and hfﬁ/AnT — 0, then

n,T

1
- (@3 —05) = MN(©,E7(T)

n,T

with

ZGLS 7 1 363(a)dsi(a)— -
o (T)_(/ 20%(a) 00° 007 LT, a)da> ’

where Ly(.,a) is the chronological local time of the underlying diffusion process at a.

Both &Z,(T) in Eq. (18) and EJGLS(T) can be converted from spatial integrals to integrals
over time by virtue of the occupation time formula. EELS(T), for example, can be

expressed as follows:

/T 1 aao(X)aao(Xs)
o 200(Xy) 007 307

Conventional geometry in L2[0, 7], therefore, reveals* that the random matrix Z,(7) —
EUGLS(T) is positive semi-definite with probability one. Hence, the weighting guarantees
efficiency gains.

Generalized or weighted least-squares are expected to be beneficial even in the case where the
kernel estimates are defined over an enlarging time span while the criteria are defined over a
fixed span of observations as in Theorems 1-4. However, due to the path-dependency of the
rates of convergence in this case, the results are, at least theoretically, less clean than in the case

“By the Cauchy-Schwarz inequality, in the scalar function case we have ( / fh)2 < [f 2 J 12, Setting f = g /o and
h = ag this leads to (fgz)zs J(g*/c?) [ g*a? so that (f‘(]2/(72)7l <(fg2)7l (fg202)(fgz)7l. In a similar way,

Tl =Ll =

Jhf120. Setting f=g/c and h=o0g as before, this leads to [(1/d%)gg’ —fgg’(fazgg’)fl S99 =0 or
(f(l/crz)gg’)f1 <(f gg’)71 (fo*g9) (fgg’)fl, as required.

in the vector function case when [k is positive definite we have




of Theorem 5. Let 'I’;T be a diagonal matrix of size 77 x 77 (= n x n) with diagonal elements
given by E(ZH’T)(X 477), .. ,an’r)(X M*T)' Assume the criteria in Egs. (5) and (6)) are weighted

by ‘I’gf and Y?_, respectively, as in the case of Eq. (21). Hence, the limiting covariance

T nT’
matrices in Theorems 2 and 4 can be represented as follows:
=GLS _ pGLS 77— 1,GLS GLS 77— 1
E;”=B"(1), V,;>(T)B>>(1),
with
- 1 Ouy(@)dpgl@)~
BSS(T), = / : U Ly(T,a)d
( )u < 36%((1) 0" ae#/ X( aa) al,

GLS _ 1 Opio(a) dpg(a) (Lx(T, a))2
V= (Aaé(a)( 00" 00" ) Ly(T,a) d“)’

and
ESLS(T) — BGLS (T);l VGLS(T)GBGLS (T);l
with
_ 1 002(a)002(a)~ —
BGLS T) — / 0 0 . Lv(T d
( )a ( 1\203(0) 00° 00° X( ,Cl) al,

GLS _ 1 do(a) aag(a)) (Lx(T,a))* )
4 (T)J_</3203(a)< 30" 00" ) TyT.a) °4)

Since potential users will typically choose T close to T, if not equal to it (see the discussion in
Section 3), then

_ 1 dpg(a) duy(@) — -
FOLS ~ 0 T (T, a)d 22
5 (L o g DT -

and

=GLS ~
:‘g (T) ~

T~T

1 Gaﬁ(a)f)o-(z)(a)i o -1
([s%é(a) 0" 00" LX(T’a)da> ' (23)

The expressions in Egs. (22) and (23) confirm the benefit of weighted least-squares for the case
where the kernel estimates are defined over expanding spans of observations.

8. Conclusions and extensions

This paper discusses a methodology that utilizes the informational content of
nonparametric methods in the parametric estimation of continuous-time models of the
diffusion type while improving on their generally poor convergence properties.

The technique presented here allows us to estimate the parameters of the infinitesimal
moments of potentially nonlinear stochastic differential equations in situations where the
transition density of the discretely sampled process is unknown, as is typically the case in
practice. Our procedure does not require simulations, or approximations to the true
transition density, and has the simplicity of standard nonlinear least-squares methods in
discrete time.



The method combines the appeal of limit theories that can be interpreted as spatial
counterparts of the standard asymptotics for nonlinear econometric models with the
generality of procedures that are robust to deviations from strong distributional
assumptions, such as positive recurrence or strict stationarity. In both the stationary
and nonstationary (but recurrent) cases the limiting distributions are normal with limiting
variance—covariance matrices that can be readily estimated from the data. Several
extensions can be considered.

(1) Parametric estimation of multivariate diffusions and jump-diffusion processes—Given
the nature of our criteria, both extensions would require preliminary consistent estimates
of the corresponding infinitesimal moments under recurrence. However, these moments
can be evaluated as in recent work by Bandi and Moloche (2001) in the case of multivariate
diffusions and Bandi and Nguyen (2003) in the case of jump-diffusion processes. In
particular, in Bandi and Moloche (2001) it was shown that the absence of a notion of local
time for multivariate semimartingales does not represent an impediment when deriving a
fully nonparametric theory of inference for functionals of multidimensional diffusions.
Similarly, the absence of a notion of local time is not expected to hamper parametric
estimation by virtue of (weighted) least-squares methods as in this paper.

(2) Specification tests for possibly nonstationary diffusions—A testing procedure for
alternative parametric specifications for diffusions based on our quadratic criteria can be
provided. Designing specification tests for diffusions is a vibrant area of recent research. Ait-
Sahalia (1996) provides a specification test for parametric drift and diffusion function based on
the stationary density of the process. Corradi and White (1999) focus on the infinitesimal
second moment but dispense with the assumption of stationarity. Hong and Li (2003) discuss
specification tests for both the drift and the diffusion function of a stationary diffusion process
relying on the informational content of the process’ transition density. Empirical distribution
function-based tests for stationary scalar and multivariate diffusion processes are discussed in
Corradi and Swanson (2005). In order to fix ideas in our framework, consider the drift case.
Assume one wishes to test the hypothesis Hy : to(x) = u(x, 0") against Hy @ po(x) # u(x, 60*).

Provided a consistent (under the null) parametric estimate of 6, 55: say, is obtained and the

distribution of Q' T(Eﬁ) is derived under the null, intuitions and methods typically employed
in discrete time can be put to work to construct a consistent test. Interestingly, while the drift

parameter estimates discussed in this paper are natural candidates for 0, alternative estimates,
eventually obtained by virtue of one of the existing consistent methods for diffusions, such as
those cited in the Introduction, can be employed. In consequence, a testing method relying on
Qﬁ,ﬁ,T or Q5 ; r might be regarded as a specification test for a chosen parametric model versus
a consistent functional alternative. This procedure would be in the tradition of more
conventional semiparametric tests of parametric specifications for marginal densities as in
Bickel and Rosenblatt (1973), Fan (1994), Rosenblatt (1975), and, more recently, Ait-Sahalia
(1996) in the context of diffusion estimation. Due to the broadly applicable identifying
information that is embodied in the estimated functional drift and diffusion functions
and the finite sample accuracy of the asymptotics of the functional estimates (Bandi and
Nguyen, 1999), such a testing methodology is likely to be attractive. It can, for instance, be
expected to have better size properties and more power than testing methods for potentially
nonlinear continuous-time processes based on density-matching methods relying on
stationarity (Pritsker, 1998). Research on this subject is under way and will be reported in
later work.
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Appendix A. Proofs

Proof of Theorem 1. In the proof of Theorems 1-4 we assume that 4, 7 — 0 and

ZX(T, x)

(4,7 log(l JAnT)'? = 045(1) VxeD
n,T

given n, T — oo with 4,7 = T/n— 0. First, we prove uniform convergence of the
criterion Q) - (0") as in Eq. (9). Write

Q5 7(0")

T n N
= %;(M(n,r)(){ ia.7) = W(Xia o, "))

1

i n_lK XJIAWTT_X’»AE_? X X
T n 1 Zj:l hn,T [ (j+l)An,T - .fAn,T]
S —u(Xig -, 0"
n ; Anr S K(XM”’T_X"AM> s A )
j=1 hn,T
i n—1 Xjdnr _XMET ?
T 7 2t K\ = | X vty — Xia |
T 1 } T—n , X o
- %; At " K X/A,,,T—Xmﬁ +%Zi:l'u ( 457 )
L Zl: ! fin,7 bnﬁ,T
A 0T
Xig —Xis _
—1 JAn T4
T 1 27:1K</7n,T ’T>[X G0y =~ Xja, 7]
A 1
_ijﬂ(X’Aﬁ?H) A Xjtyr—Xia__
n =1 g n,T n K JanT s T
Zj:l hn,T
S, T

Using the modulus of continuity of a diffusion as in Florens-Zmirou (1993, p. 797), as well
as the occupation time formula for continuous semimartingales (Revuz and Yor, 1994,



Corollary 1.6, p. 15), we can readily show that
T 5
o= 4 u
bz = — ; W (X g 0°)

T
_ / 12X, 0%) ds + 045 (1)
0

- / 120, 0y (T, @) da+ 0gs. (1)
D

(see, e.g., BP, 2003). Furthermore, we can write

D ‘K< ’A"Z”'A”> AT (X ) ds

CuiT = —2— Zﬂ(XzA_fs

A T JAnT ™ IA,-*

n ZJ 1K< " " .T)
c‘nﬁ T

n—tye [ Xianr =Xidi 2\ ), g

T n 1 Zj:l K 11" T f (Xs) st
—2%2#(1\11'4137:0#) A7 Xip, +—Xig
— d n, n JnT e

i=1 Zj=1K< T ,T>

2,57

It follows that

id_=

n—tyy [ Xitr=Xit 7
Z K B Pr— to(Xja, 7 + 0as.(1))

T n
clymr = —Z%ZM(X,»Aﬁ,G“) ( 1 Xip )
i=1 S 7” AT
nT
T i Jo K (S X + 00 (1) du
— / (X, 00 [ 2 ds + 045.(1)
0 ,1Tf0 ( }l T )da
z/oo o S K(,} T>M0(u+o“(1))LX(T wdu s 4 ons ()
— s, ,8)AS T Ogs.
. i S5 K (122) Le(T. ) da *
_ Lo K(po(s + hure)Lx(T, s + hype)de\—
= 2[ s, 0")( T KLy (.5 + hyre)de Ly(T,s)ds + 045.(1)

a.s

) A wa, 0)uy(a)Lx (T, a)da,

nn,T— o0

given Assumption 2, namely ffooo K(s)ds = 1. As in the proof of Theorem 2, one can also
show that
P

2,57 _—> O,
nn,T— 00

and
O 2(T)e2,51r = Op(1),



with

»(7T) = / (402(41 0 (a eﬂ)m) da

We now examine the quadratic term a,z;y. Write

| e K<MT:AT> X G002, = Xjay ] 2
3 2 K( )ffi*;”” x|
| A, > ( /Anrn fm”)

aln,ﬁ,T

anlK XjA”’T_X'.Aﬁ,? U+1)AI1,T (X )dB :
1 j=1 /1,,, T JAn,T %0 s S

Tﬁ
7

T n
+ = E
n i=1 Anr Z K X = XM'T
j=1 n T
azn,ﬁ,T
2 Xty r—Xis - Xiayr—Xin -
2 1 n—1 J4nT WT nT WT (k+1) A7 G+D4n1
LN (ﬂ) Zw‘zl“( Tt >K< Tt ) Jiayr " mo(X ) ds fig, " o0(X) dB
+Z Xig »—Xig _ Xiea —Xig—
pa Z" K JAn1 T " nT T
j=1 hn,T k=1 hy.T
a3,

We start with the first term, namely al, ;. Following the same steps leading to the
asymptotic expression of term cl, 5 7 above we deduce that

al,zr R 12(a, 0 Lx(T,a)da.
n,n,

T—o0

We now examine term aZ,,j’T. Write

azn,ﬁ,T

— = . 2
T 1 1L (X = Xia 2\ 0+DAr

S ) | [ — / a0(X,) dB,
n <= (A,,’T n K<Xf4‘n.T7XiA;j>) h"»T j=1 hﬂ»T JjAn,T

hn.T j=1 hn,T

T 1 5

= ; 2(Mn T(l)) )

=1 (Aur Z” K X/AH’T—XiAR?
hn,T j=1 hn,T

where

=L (X — X G+ dn1
) = k(2 Ty / co(X,) dB,
T hur j; P {mdn.r 21457} jdnT



1 Xiyy = Xia_= rndp g ;
TR ] L D / 0(X,)dB,
hn,T hn,T { Anr> AnT} JA, T ’

for J = [rn] with [x] denoting, as conventional, the largest integral that is less than or equal to
x. M, r(r) is a martingale. Since we focus on the case r = 1, here (and in similar arguments
below) we drop the indicator function for notational convenience. Now notice that

. 1 Xytyr — XiAﬁ
dMn T(r) —K h GO(XrnA,,‘T) dBrnAn’Ts
T n,T

n

and
d[M;,T’ Mﬁ,T]r = dM;1,T(r) dM];,T(")
ndy g (Xianr = Xia o Xiyr — Xka_
- [ . k < hy,r I) . ( N1 - G%(XW‘"’T) dr
n, > >
Then,
r
[MZ,Ta Mﬁ,T]r = /0 d[M;z,T» Mﬁ,T]x
N ndyg o, (Xisnanr = Xia_; Xy — Xka_x
e o G A
n,T
Sl ) (X )
= — K K 2(X,) | du+ oy (1).
3 O\ Ay P
hn,T 0 hn,T hn,T (24)
Furthermore,
M, 1(r) = /O dM'(s)
" Xisndyr — Xia_=
= / T K <hT> O-O(XsnAn’T) stnAn,Ta
0 *n,T n,T
and

MfLT(r)Mf;T(r)z /0 M, 1 (s)dM, (s) + /0 MY 1 (s)dM, () + [MY, 7, ME 11, Vr € [0,1],
(25)

(see, e.g., Chung and Williams, 1990). Hence,

azn,ﬁ,T/r = = Z P (M;,T(r))z
T

jA,lT tA_
nT
- Iy Ml
i=1 nT JAn Xia,
< ﬂTZ] lK( nT ))

nnT/r




N

T on 1 r i X
+ 222 ( e 5 ( /0 M;’T(s)dM;,T(s)) . (26)

azn,ﬁ,T /r

Using Eq. (24) and proceeding as for term b, 7 and term ¢1,,5 7 above, the quantity a2, r Ir
can be readily evaluated at » = 1 and represented as follows:

@nﬁ, T/1

Xig
T n h f() <> GO(XM) du

n i=1 ”’TZ"l K XjAn,T X’AET
hn,T j=1 hn,T

Tkl K () o) du

(AR () ae)

:L/ an Kz( >00(u)LX(T u)du
e J- (i K () TnT, da)2

o L(T.a)
-k (/E (a i )da> +op(1),

where Kz f K>(s) ds < 0o, by Assumption 2. In consequence,
1 i
7 Z 5 M, 71
//]n T X’Aﬁ?
Zj lK hy, T ’

_ ! (/ oy 9 )da> +oh) B 0
hnT D L)((T ) nn,T—o00
if b, 7Ly (T, x)—> oo Vx € D, as stated in our assumptions. We now analyze the second
component of term a2,;r/, namely a2, ; /- Given {Xy_ T ci=1,...,7), a2,; T/r
constitutes a weighted sum of continuous martingales evaluated at r € [O 1] By virtue of
Eq. (25) and noting that jO[Mn T,Mﬁ Tls d[Mn T M’;’T] [Mn T Mf,r 1:/2, the variation
process of a2n,n,T/,at r =1 can be expressed as follows. Write

5+ 0op(1)

ds + op(1)

Ly(T,s)ds + op(1)

[ﬁnﬁ, T]r: 1

(
d

3|

fo M;lq T(S)Mn 7(s) d[Miz,T’ MII;,T]s

)2 ﬁ
_X: 2 A 2
i=1 k=1 [ dnr K Xjanr=Xia 7 At K Xjtyr=Xka -
hnT f 1 hn,T hn,T j=1 hn,T

2 7
) [M”,MﬁT%

—-X; —X,
(hn T Z/ IK( n,T hn T Z/ IK I7)1.T

3N

SN

EMN

5+ 0p(1)




T Xu*XiAz,—‘ Xu XkAz,— 2
T
= 2 - Z “ + Op(l)
n < Xig —Xig iA Xia_— 2
=l k=1 (Ang ~n e f AT TEGE AnT S K #
hn,T j=1 /ln,T hn T j=1 n,T
2
Xu—Xa Xu—X, 2
f() h ( hn,T )K( hn,T b) Jo(Xu) du)

(£
L e et

hn T /1,, T

dadb + op(1)

u ) K(u b) o)Ly (T, u) du> ’

(f.% (1
_2/ / ,,Tf KhTL W dr) (s K (5

I,

S Lx(T, &)Ly (T, b)dadb + o,(1)

)ZX(T, e) de)

L / (7 K (1)K (1) B (T ) ) T, a) (T, By da
nrf k(i )LX(Tf)df>( S k(g )Lx(Te)de)2

/ / i ji K(c)K o b+c)00(a+zh,, PLx(T,a+ chy, T)dc) Ix(T, &)Ly (T, b)dadb

+op(1)
nT

i Tx(T, @) (Lx(T, b)) +0p(1)
! / / (%, K(OK(k + )a3(@Ly(T,a)de) Ly(T, )Ly (T, a — hyrk) dadk o)
L T o
hn’T - (LX(T, a))z(LX(T, a— hn’Tk))z p

(e, (1 (1 )
_2hn,7<4mda /_oo /_OOK(C)K(k—i-c)dc dk | + op(1).

Now fix T = T. By virtue of conventional arguments (see, e.g., Revuz and Yor, 1994,
Theorem 1.9, p. 175, and Theorem 2.3, p. 496) each martingale fo M, ! #(s)dM ! +(s) can be
embedded in a Brownian motion with quadratic variation process glven by
[ N M;j(s) dM;’T(S)L. Let T increase. Thus,

—1/2
{ / M;’T(s)dMil’T(s)] / M;T(s)dM;’T(s) = N(O,1) Vi=1,...,n
0 r 0 nn,T—o00

Similarly, when standardized by its vanishing variation process at r=1, the linear
combination a2,5 r/,—; is normally distributed in the limit. In fact,

[82,5. 71,8257 =1 = Op(1),

where

@) Lu(T, a) °°< o )2
(et o) ([ ([ womin o) ) +on0)



This, in turn, implies that

T 1
ZtE
ne3

2 <
g g (K Xinyz
Iy, =1 hn,T

Similar steps allow us to show that the term a3,5 ¢ 7;p> 0. This proves pointwise weak
nn,T—o00

1
/ M;T(s)dM;T(s)> 2 o
0 ’ ’ nn,T—o00

convergence of QO ﬁ’T(H“) to Q"(6*,0y). We now prove uniform convergence. Define
Zunr(0,00) = Q' .(0) — 0"(0, 6). Using our regularity conditions from Assumptions 1 and
2, it readily follows that Ye>0 3y>0 such that

nn,T—00 0o ¢* eB(0y)

lim P<SUP sup (lZnﬁ,T(e*, 00) — Z,7,7(0, 00)| >8)> <e, (27)

where B(6,7) is an open ball of radius y centered at 0. The expression in Eq. (27) is a
stochastic equicontinuity condition. By virtue of the boundedness of @, let {B(Gj-., y):ij=

1,...,J} be a finite cover of @ C O so that UI?ZIB(Hj, 7) 2 OF. We wish to show that ar,n,

and 7 so that for T>T, n>n, and 7>7 there exists an arbitrarily small ¢>0 such that

P(sup 10" (0) — 0"(0,00)] >2g) <e. (28)
pcon "
Write
lim P<sup |Z,07.7(0, 00)| >2a>
nn,T— 0o DecOH

< lim P| max sup |Z,;7(0,00)>2¢
n,i1,T— 00 1<j<d 963(9]—.,)})

< lim P| max  sup |Z,57(0%00) — Z5i,1(05,00) + Zy, 5,707, 00)| > 2¢

n,i,T—00 1<j<J 0*63(0;,}')

< H p ( sup  sup |Zn,ﬁ,T(0*a 00) - Zn,ﬁ,T(Oa 00)' > 9)

n,i,T— 00 0O 0*eB(0,y)

+ Iim P( max |Z,z7(0;, 0o)l >8>

n,T— 00 1<j<T
<e,

where the last inequality follows from (i) the condition in Eq. (27) and (ii) pointwise weak

convergence of O__(0) to 0"(0,0,), as shown earlier. Hence, uniform convergence of the
& nn,T

criterion function holds. This result proves the first part of the theorem. We now discuss
consistency. For every ¢>0, 3¢>0 such that

~

P@©", ¢ B(0).¢)



<P(Q”(9,,,1T, 00) — ©"(0,00) = &)
<P(Q#(0n n,T? 00) — n 7, T(Hn 7, T) + Qn 7 T(egﬁ,T) - Q#(gﬂ’ 00)= <)
<P(Q”(9,,,, - 00) — QZﬁ,T(H,,,, )+ O 1(05) + op(1) — 0(6f, 00) =€)

<P<2 sup |Q"(0,05) — Q)5 +(0)| + Op(1)>f> — 0,
et ”

nn,T— 00

where the first inequality follows from the identification condition implied by Eq. (10), the
third inequality derives from the fact that @fj a7 1s defined to satisty

9 nn,T € o co and an T(Hitln T)\ rénn an T(9)+ Op(l)

and the final result is implied by uniform convergence of the criterion. This result proves the
second part of the theorem. [

Proof of Theorem 2. Using the mean-value theorem, write

95}1 r— 0= _[QZ,E,T(H;,E,T)]_I an r(05),
where
HZ,E,T € (b\f’;ﬁ,'r’ 95)9
. T~ a,u(XiAﬁﬂ 05)
~Ohr®) = 53 Gy Xia) = WX O) 55—
T . ou(X 47> 05, 7.7) Ou(X A 0,77)

1l
— (0%
Qn,n,T( n,n, T) 7 ; aeu 0"

!

(A) o
Qy (0/1 n, T
a/“‘(XiAnf> Qz,ﬁj)

T n
- = 7} Xi =) Xi 730*7 7
ﬁ;w,n( ) = X 2 O ——

2 1(B)
Qn n, T( nn, T)

P . P
Notice that 0z, — 0y since 0,., — 0 and 0,

lies on the line segment
nn,T— o0 nn,T— o0

nn,T

connecting 0" s and 05 First, we examine Qz(n )T(an 7). Consider QZ(H)T(Q").Using

previous methods, we obtain
Qy(A) 0" — Tiaﬂ()(mﬁ, 0") a#(Xmﬁ, 0")
nn,T - 7 - 60/1 ae’u/
B /T (X, 0") du(X s, 0M)
S 00" 00"

ds + 045.(1)



Oula 0 opa0) 1
= 7 L T, d + Oas. 1
LS A et o)

/ Ou(a, 0") dp(a, 9” )+
Jy 00t o

(60", 00) + 0a5.(1). (29)

LX(T a)da—i— Oas(l)

< 1i(A)

=0
Now notice that, given pointwise strong convergence as implied by Eq. (29) and the
continuity of QH(A)(., 0p) from Assumption 1, the result

(4) (A)
sup 10h27(0) — 0" 5

(0,00)] e (30)

can be proved by using the same methods that were discussed in the proof of Theorem 1 to
obtain Eq. (28). Hence,

= pi(A) - pi(A)

|an T(gf:n T) - Q

(A) = u(A) (A) = u(A)
<0 ) = 000 1. 00) + 0704 1. 00) — O (04, 00)]

(A . . (A (A
<I0M0@ ) — V@ 1 001+ 10" @ 1. 00) — 0" (08, 00)

P
<op()+op(1) > 0,

(05, 0o)|

wA)

where the second inequality holds by the triangle inequality and the final result follows
from uniform convergence of an T(G) to Q“(A)(G, 0y) over O (cf., Eq. (30)), continuity of
QH(A)(., 0y), and consistency of HMT. Since GZﬁ’T lies on the line segment connecting 55 s
and 0y, then

wA)

O (075 ) = 0" (08, 00) + 0p(1).

We now analyze —QZ’ﬁ,T(Qg‘), writing

- ,U( T ’eﬂ)
— 0,0 == Z(uw)(m )~ 1 Xia 7.0 o))#

id-

1 Jdnr ™ X 5
T i hn T Zn K( T T) [X(i+1)A"vT - XjA"’T] a:u(XlA =9 06[)
n

— (X, 00) o
i=1 AnT K jA”T [AET mT
/ln T z] 1 hn T

0"

For simplicity, and given that there is no ambiguity with the notation, we express
M(Xm,?,@g) as p1y(X4_) and obtain
n, n,

- QZ,E,T(G’(;)



X; iA
1 —1 JAnT i G+D4,. 1
T = > K <hn " ) Jitr " Wo(Xs) = po(Xia, D) ds | gy (x; 42
7

i=1 An T K XJ.A”J' _XME.? agu
hn T hn,T
Anﬁ,T
X .
n—1 JAnT ’Azj (+D4,, 1
T n hn T Z K ( n T ‘]}AH,T GO(X‘Y) dB? a:uO(XiAZT)
+ = :
i3 At Xjang —Xiayz o0
hn,T j=1 hn,T
B, (D)

First, we examine the second term, namely B, 7(1). Write
[nr]—1 G+1 )An,T
Buar() = > wXu,p) [ aoXdB,
Jj=1 jAﬂ,T
with

LK Xityr—X iz Ouo (X fAﬁ)
T n /’ln T hn T 00K
W(XfAn,T) = — E

-X
n i1 n T ]An T ’A,-lf
n T
[nr]—1

— (A, 1 . G+D4,, 7
Bur(r) = (" 05,00+ 0y(1) Buar) = > s, [ au(x d.
/An,T

=1

Also, write

where
W(X4,,) = (077 (04, 00) + 0p(1)) "' W(X )4, ).

The quantity B, 7 7(r) is a weighted sum of Brownian integrals whose quadratic variation
can be characterized as

B P ) -1 2, (Bo(@) dug(@)\ Lx(T, ) -
Borrl 2 @000 ( L oo<a)( it ) AT, a)da>

u(A)

2 u(A4)

x (0" (04, 00) "

Now consider ﬁnﬁj(r) = ([Bur)) " /*Bysr(r). Hence,
B, = (Buzr]) Bzl (Busrl)) /.

For r = 1, given the asymptotic orthogonality between its elements, the vector ﬁnﬁj(;’) can

be embedded in a vector Brownian motion with quadratic variation [ﬁnﬁ,r(r)],,:1 =1,
(see, e.g., Revuz and Yor, 1994, Corollary 2.4, p. 497). Then,

(Borrl) " Buzr(l) =  N(O,L,). (31)

nn,T— o0



Next, we examine A, ;7. Write
An,ﬁ,T

id_

1 Jan, Xi W T o)
T ;,”Zn K(M)(ﬂO(X)_ﬂO(XMnT))A”T a,uO(X,A ,)

A dur Xt —Xia_— 00"

= nT Z ( hn,T YT)
l,
nn, T

| =n—ly [ Kitnr—Xia
TN Tr Z,-:1K T (MO(X]A”) :UO(XML ))AnT aﬂo(XA 7)
+%; ,,T Xjtyg—Xit oor
n T Z n T
Avar

where X* € (X(/+1)A
as follows:

7> Xja,7) by the mean-value theorem. The term A}qﬁ,T can be bounded

T n 6.“0(X1A7 )
1 2 : nT
AnnT\C4KnT<n T s

i=1
where k,7 = max;j<, SUPjs s <s<(+)a, o1 Xs — Xja, 71 We know that
1/2
K7 = Ous(4)/710g(1/4,7)).

Then, the bound becomes

€10, (42 log<1/An,T)>( ( [ SO LT da) N oa,s,u)) |

Now consider the term Ann r- Using the Quotient Limit Theorem (Revuz and Yor, 1994,
Theorem 3.12, p. 408) as in Bandi and Moloche (2001), we obtain
A2

nn, T

n—1 JAnr T4
T hnTZ, 1K<h"TT>(ﬂ0(X;AnT) #o(XzA, NAnT oo (X s ,7)

— X I
n4 Ay K Xjty = Xia_= o0
hn T I 1 hn‘T

om(a) 2
I
e / K> (a"‘)(“) w10 0(“)> WD T (T ayda+ o2 ).
D

0a m(a) 2 0 oo

where m(.) is the speed function of the process and K; = ffooo c*K(c)dc<oo. Following
similar steps as those leading to Eq. (31), we can show that

(B) P
Qﬁ 71, T( nn, T) g 0.

nn,T— 00

Then,
=—1/2 D
:’,u / (T)(Qﬁil,ﬁ,T - 08)



o Outo(a) dpto(a) + -

_ =12 0 0 1 2 ~

— = (T)< » 00" 66" LX(T a) da + Op(l) [An,ﬁ,T + An,ﬁ,T + Bn,n,T(l)]
-1

d 12 a:“o(a) Optgla) — 2 _

= (T) ( o aeﬂ 60" LX(T )da + Op(l) [Op(hn,T) + Bn,n,T(l)]

= 0,L,)
nn,T—

[x]

WT) = B(T),'V(T),B(T), ",

B, = (A Oug(a) Opg(a) — ILy(T, )da)

20" pe¢

Ly(T,a))
v, = ( / Gé(a)<aﬂo(:l)aﬂo(?)>(x( @) da)
> 00" 00" ) Lx(T,a)
provided hi,TEZ(T)a—‘SS 0. If i} 1271 (T) = Oy (1), thus
EMTOhr — 05— T = NO,Ly,).

nn,T— o0

and

where

B dug(a) 52 197p(a) | dpo(a) -
I = (.7)B, /DK2< a0 @ T3 e | aor LrT-oda

with K, = [%_ ¢?K(c)de. This proves the stated result. [
Proof of Theorem 3. We can follow similar steps as for the proof of Theorem 1. O
Proof of Theorem 4. Write

/H\Zﬁ,T [Qn 7, T(0n 7, T)] : Q:,E,T(Qg)ﬂ

where

nnTe(ennT’ )

ao_ (XIA,—, QU)
0
—Qunr(05) = Z(a(n (X 2) — UZ(X,A,,,OJ))f’
QU (9* )_ T n aa (XiAﬁ,T’ ﬂ,ﬁ,T) 60' (XI-AE’?’ :,E,T
nn,T\VnnT/) — 7 - 20° aeo/
QZ(nA;( nn, T)

0 (X i 7 On.r)
00° 00"

TN
n Z(G(Z"’T)(Xi"ﬁ,?) B oz(XiAﬁ,?’ 0p7.7)
i1

- 6(B)
QM,E,T( n,ﬁ,T)



First, we examine QZ’ET(Q 7). Consider an T(@”) We obtain

o) T 00 (X,Af,,O‘T)GJZ(X,AfT 0%)
Qo r(07) = —Zl G o
. /TGJZ(XS, 07)d0*( X, 07)
0 00° 00”
002(a, 0°)90*(a,0°) 1
- L 0" 0" aia
002(a, 0°)dc(a, 9“)
B /s 06° 20"

(07, 60) + 0as.(1), (32)

ds + 04,.(1)

LX(Ta a)da 4+ 0,5.(1)

Lx(T,a)da + 0,5(1)

-a(A)

=0

using the continuity of the underlying semimartingale as in previous proofs and the
occupation time formula. Uniform strong convergence over @ can be shown following
the same steps leading to Eq. (28) in the proof of Theorem 1. Hence,

"D, o)l L (33)

7, T— 0o

- 6(A) .
sup |0, 5 7(0) — Q
0O’

Then, using the continuity of Q ( 0y), the consistency of 0n 77> and the result in Eq. (33)
as in the proof of Theorem 2, we can readily obtain

- (A) - 5(A) .
Qn 7, T(Hnn T) = Q (0 5 90) + Op(l)a

since, as earlier, 0  lies on the line segment connecting 65 » and 6. Furthermore,

- o(B)

an T(Gnn T) = Q
Now, consider _QZ,E,T(GS)' Write

P05, 00) + 0p(1) = 0p(1).

- Qn 7, T(G )
_ 2 o
T _00°(Xia_, 05)
= %Z (G(n,r)(Xmﬁ) - Jz(XiAﬁ, 96))T

i=1

n—1 Jdnr ™ IA- 2
T n hnT Z] 1K< hn,T >(X(]+1 AT XjAn,T)
m

-X;
i—1 AMT K /AnT IAET
h hn,T

00> (Xus_,05)
00

- UZ(XiAﬁ, 03)

X



Using the notation ¢%(X 4 T 05) = aO(X,A ,) we obtain

— 0,5.7(605)

1 janr = Xia 2\ G+,
T n .7 Zn K( %3 T) ‘]}AII,T ! 2(XY a XjA"’T)MO(XS) ds ao—(%(XiAﬁf)
n

—-X _ g
) n T /An T lAﬁ.T 60
n T n T

AT
X’/I _X'A_— .
—1 JAn A G+D4, 1
TXx h,llT27:1 K( T T) jdn T 2(Xs - X/An,T)UO(Xs)dBS Gaé(X,-A_,)
2| ’ ’
+—=
3 dur g g Kitnr —Xidyz 00"
hn,T j=1 hn,T
B, ar()

” Ay —Xid_ n,
1 Zj 11K</T—> (H_I)A T( (X)—U()(Xm 7))dS aGO(XA —)

hn,T /1n T

K Xjayr=Xia = 00°
hnT Z/ 1 nT

Cn a,T

Il
—_

+
S|
'M:\

First, we examine the second term, namely B, j; r(1). Consider

[m] 1 G+D)An 1
Buar(r) =[5 3 wXia,p) / X, — Xy, )o0(X,) dB,,
11 jAn,T

where

Xig . —X; 002 (X;
1 K JanT IAE,? ‘70( IAE‘?)
T AT Tt 307

M}(A//An T) - = in - —Xig
i=] AnT Z K Xjyr =i T
hnT j=1 nT

As in the case of the corresponding term in the proof of Theorem 2, /(1/4,.7)B,z7(r) is a
weighted sum of Brownian integrals whose quadratic variation can be expressed as

1 1 [nr]—1
[\/;Bn,n,T] = A Z W2(XJ'A,,,T) |:2 / MJdMS:| + Op(l) (35)
nT r nT j=1 jA;x,T~U+1)An,T

with M, = [0, . 00(X,)dB,. For simplicity, in Eq. (35) we abuse notation by writing w2()

(34)

even though w?(.) is an m,-vector. The simplification should cause no confusion. Hence,
1 [nr]—1
[ ABM,Tl == > WX, [ / M, dMs} +0p(1)
nT r nT Jj=1 JAn G+ 401
[r)—1 G+ AT
S W [ a2+ o,
j=1 jAn,

An,T



[nr]—1

5 U+1)An,T
=3 W [ A+ o)
nT j=1 jAn,T

[mr]=1 2
Z ) (M]" G+D)a, 7
= X : —_— ’ 1
Ant 45 i ]A"’T)< 2 it )+Op()

o) [nr]—1 5 G+, 5 2
= > WA (X, ) / aa(X5)ds | +op(1)

j=1 JAnT

_ 4, . (0d3(a)daj(a) (ZX(T,a))zf
= A20'o(a)( 20" aeg/) Zi(T,a) Ly(rT,a)da + op(1).

By using the same steps leading to Eq. (31) in the proof of Theorem 2, we can show that

| Qp— 1=
T Bl Buar() = NOLy),
where
[En,ﬁ,T]l
A0 g o 4 a"%(a)af’(z)(a)> (Lx(T,a))’ ) 20(A) o o
= 05,0 2 - = = d 05,0
(@ o0 ([ 20t (“T ) CHTO aa) .00
and

- 6(A)

Busr(1) = (0" (07,00) "Bz 7(r).
Now examine C,5; 7. Write
Cn,ﬁ,T
1 n Xidr =Xz \ 5 1 2
TN > K T hr (0(X™) = 05(Xja, 7 ) AT aaﬁ(XiA_T)

. Z
i3 An1 K(X]A”'T X"‘a.r) 00

hn, T

1

Cn,n,T

X; —Xig -
JAnT lAI_LT

7 /,nl,r Z;I_IK(/%T )(O'(%(XjAn,T) - Gﬁ(Xmﬁ))An,T 002(X 14 )

X 13 ’
1 dnr s g Xjayr=Xia_~ 00
hn,T j=1 hn,T
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Cn,n,T

+

Sl

1

where X* € (X(41)4, 7> Xj4,) by the mean-value theorem, as earlier. Analogously to Ai,ﬁ,T
in the proof of Theorem 2, we can show that

o2 Om(a) 1@2 2 d62(a)—
Cﬁﬁ,T Zhﬁ,TAlQ( o(@) =5, 4= ay(a) JO(a)LX(T,a)da+o(hiT),

0a m(a) 2 Oa 06°



where K, = ffooo c?K(c)de, by virtue of the Quotient Limit Theorem. As for A,sr and
C::,E,T’ it is immediate to see that A,z 7 = op(B,5 (1)) and C:,,ET = Op(Ci,ﬁ,T)' Then,
1 N
—=E, D)0 — 0F)
An,T w

1 _ e | o .,
=5, DNy (O s (0)
n,T

| << da3(a)dod(a)— > >
- / = r 4 —~Lx(T,a da | + o,(1
An,T g ( ) ® 60 605 X( ) ]'J( )
X[Byzr(1) + Azir + Criirl
a b p do3(a)dod(a@)~ -1 ) 7
a V An,T w0 (T)(< D 00° a@"’ LX(T’ ll) da | + Op(l) [Op(hn,T) + Bn,n,T(l)]~
If hi,TE;l(T)/An,Ta—-i 0, then
1
An,T

—1

E;I/Z(T)(ﬁﬂ —07) = OON(O,Imz),

nn, T

where
2.(T) = B(T),' V(T),B(T),",

60'2(61) 60'2(61) [ —
B, = 0 O T (T, a da),
( ® 00° 00° X( )

B 4, - (003(a)003(a)\ (Lx(T,a))*
V,= </D200(a)< o0 og” ) To(T.) da>.

If it 22,1 (T)/ Ay = Ogs (1), then

and

e EVAT) 055, — 05— T7) = N(O,Ly),

An,T n,n,T— 00

where
2 om(a) 2 2 2
=i [ K (a%(”) L “0(“)) D (T, a)da

’ 0a m(a) 2 Oa 06°

with K, = ffooo c*K(c)dc. This concludes the proof of Theorem 4. [

Proof of Theorem 5. The proof largely follows the proof of Theorem 4. We simply need to
show mixed normality of the limiting distribution when performing the asymptotics over a
fixed time interval T (with n = 7). Consider

[nr]—1 G+D4 =
1 1 n,T
—B, ()= [— D> WX ) 2(X = X4 )oo(X;)dBy
An,? ’ An,? Jj=1 " ./Anj "



with w(X;4 _) as defined in Eq. (34). By using standard embedding arguments (see, e.g.,
Revuz and?or, 1994, Theorem 2.3, p. 496), it is simple to show that

[ 15 4, [(003(@) 003 (@)~ , =
mBn,T(”)n_:fooW<Az%(a)< 0" o007 Lx(rT,a)da |,

where W denotes Brownian motion. We now need to prove that W is independent of the
asymptotic variance or, equivalently, of Ly(rT,.), for mixed normality to hold. To this

extent, we evaluate the limiting covariation process between , /(1/4, 7B, #(r) and

[nr]—1
Xp=X7-Xo+Xo= ) (Xgina,
=

T

= Xju )+ Xy — — Xo) + Xo.

- b7
n,T

Consider

1
Bn T ani
[ An’T ! 7T‘| r

1 [nr]—1 (/‘+1)Ani
=\/5= WX ) /A 2(X, — X/Aﬁ)aﬁ(XS) ds + op(1)
7 Jia - ,

nT Jj=1 n,T

5 =l (+D4, 7 s )
= \/; Z W(Xj"n,?) [A ) 2 [A B o0(X)dBy | op(X ) ds + op(1)
n,T

Jj=1 n,T

[nr]-1 (+4, 7 G+04, 7
= Z WX )2 / aa(Xs)ds / oo(X,)dB,
’ j4 j

j=l / n,? ‘ An,?

) [nr]—1 (+D4, 7 s
+ \fT D wlXs )2 / / a2(X,)ds |oo(X,)dB; | + 0,(1)
/:1 ' ]An,i A,

T nT

NiE=

_ 1 2
=qv,7+qu, 7+ op(1),

where the first and the second asymptotic approximations derive from the asymptotic
vanishing rate of the diffusion’s finite variation component and the penultimate line follows
from integration by parts. The term qvif has a variation which could be expressed as

2
[qvn,f]r

. 2 )
G+1)4 = [r]—1 G+D4 =
n n,T P 5 n,T b
<= max or(X,)ds wi(Xi4 )4 o5(X,)ds
T <l§j<[nr]l /jA - 0( S) ) Z ( jAn,T) </j 0( S) >

J=1 T

nT
1 [nr]-1 G+04, 7
=0, (n) Z WZ(XjAn,TM (/ g o-(z)(Xs) ds n_—r}oo 0.
Jj4 =

Jj=1 An,T



(As earlier in the proof of Theorem 4 we abuse notation slightly by squaring the
vector weight w.) Hence, qvij =op(1). As for gvl,, this term is trivially op(1)
since ZEZ]fl»v(X /A,1,7) _j(jz;)A"’T 00(X,)dBy is bounded in probability and +/(n/T) fj(jz;)A"’T
a%(X s)ds = op(1) uniformly in j. Finally, the covariation process between ,/(1/ Anj)an
and ﬁnj is zero since X is independent of the Brownian path and the Brownian increments
are independent of each other. This proves the stated result. [

Appendix B. Notation

as almost sure convergence
2 convergence in probability
=, KN weak convergence
=, = convergence, weak convergence with T fixed and T — oo
nn,T—o00 nn,T— o0
-, convergence, weak convergence with T = T fixed
n—o0 n—0o0
= weak convergence with T = T — oo
n,T—o0
= definitional equality
op (1) tends to zero in probability
O, (1) bounded in probability
0,5, (1) tends to zero almost surely
0.5 (1) bounded almost surely
d distributional equivalence
MN(O, V) mixed normal distribution with variance V'
Cv, k=12,... constants
[X], quadratic variation of X at ¢
References

Ait-Sahalia, Y., 1996. Testing continuous-time models of the spot interest rate. Review of Financial Studies 2,
385-426.

Ait-Sahalia, Y., 2002. Maximum likelihood estimation of discretely sampled diffusions: a closed-form
approximation approach. Econometrica 70, 223-262.

Altissimo, F., Mele, A., 2003. Simulated nonparametric estimation of continuous-time models of asset prices and
returns. Working paper.

Andrews, D.W K., 1989. Asymptotics for semiparametric econometric models: III. Testing and examples. Cowles
Foundation working paper No. 910, Yale University.

Bandi, F.M., Moloche G., 2001. On the functional estimation of multivariate diffusions. Working paper.

Bandi, F.M., Nguyen T., 1999. Fully nonparametric estimators for diffusions: a small sample analysis. Working
paper.

Bandi, F.M., Nguyen, T., 2003. On the functional estimation of jump-diffusion processes. Journal of
Econometrics 116, 293-328.



Bandi, F.M., Phillips, P.C.B., 2002. Nonstationary continuous-time models. in: Ait-Sahalia Y., Hansen, L.P.
(Eds.), Handbook of Financial Econometrics, forthcoming.

Bandi, F.M., Phillips, P.C.B., 2003. Fully nonparametric estimation of scalar diffusion models. Econometrica 71,
241-283.

Bandi, F.M., Russell, J.R., 2005. Volatility. In: Birge J.R., Linetsky V. (Eds.), Handbook of Financial
Engineering, forthcoming.

Bickel, P.J., Rosenblatt, M., 1973. On some global measures of the deviations of density function estimates.
Annals of Statistics 1, 1071-1095.

Bosq, D., 1998. Nonparametric Statistic for Stochastic Processes. Springer, New York.

Brandt, M.W., Santa-Clara, P., 2002. Simulated likelihood estimation of diffusions with an application to
exchange rate dynamics in incomplete markets. Journal of Financial Economics 63, 161-210.

Carrasco, M., Chernov, M., Florens J.P., Ghysels, E., 2002. Estimation of jump-diffusions with a continuum of
moment conditions. Working paper.

Chacko, G., Viceira, L., 2003. Spectral GMM estimation of continuous-time processes. Journal of Econometrics
116, 259-292.

Chiang, G.L., 1956. On regular best asymptotically normal estimates. Annals of Mathematical Statistics 27,
336-351.

Chung, K.L., Williams, R.J., 1990. Introduction to Stochastic Integration. Birkhduser, Boston.

Conley, T., Hansen, L.P., Luttmer, E., Scheinkman, J., 1997. Short-term interest rates as subordinated diffusions.
Review of Financial Studies 10, 525-577.

Corradi, V., Swanson, N.R., 2005. Bootstrap specification tests for diffusion processes. Journal of Econometrics
124, 117-148.

Corradi, V., White, H., 1999. Specification tests for the variance of a diffusion. Journal of Time Series Analysis 20,
253-270.

Darling, D.A., Kac, M., 1957. On occupation times for Markoff processes. Transactions of the American
Mathematical Society 84, 444-458.

Davidson, R., MacKinnon, J.G., 1993. Estimation and Inference in Econometrics. Oxford University Press,
New York.

Duffie, D., Glynn, P., 2004. Estimation of continuous-time Markov processes sampled at random time intervals.
Econometrica 72, 1773-1808.

Durham, G., Gallant, R., 2002. Numerical techniques for maximum likelihood estimation of continuous-time
diffusion processes. Journal of Business and Economic Statistics 20, 279-316.

Elerian, O., Chib, S., Shephard, N., 2001. Likelihood inference for discretely observed nonlinear diffusions.
Econometrica 69, 959-1012.

Eraker, B., 2001. MCMC analysis of diffusion models with application to finance. Journal of Business and
Economic Statistics 19, 177-191.

Fan, Y., 1994. Testing the goodness of fit of a parametric density function by kernel methods. Econometric
Theory 10, 316-356.

Ferguson, T.S., 1958. A method of generating best asymptotically normal estimates with application to the
estimation of bacterial densities. Annals of Mathematical Statistics 29, 1046-1062.

Florens-Zmirou, D., 1993. On estimating the diffusion coefficient from discrete observations. Journal of Applied
Probability 30, 790-804.

Gallant, A.R., Tauchen, G., 1996. Which moments to match? Econometric Theory 12, 657-681.

Gouriéroux, C., Monfort, A., Renault, E., 1993. Indirect inference. Journal of Applied Econometrics 8S,
85-118.

Hansen, L.P., Scheinkman, J., 1995. Back to the future: generating moment implications for continuous-time
Markov processes. Econometrica 63, 767-804.

Hong, Y., Li, H., 2003. Nonparametric specification testing for continuous-time models with application to spot
interest rates. Review of Financial Studies 18, 37-84.

Jiang, G.J., Knight, J., 1999. Finite sample comparison of alternative estimators of Itd diffusion processes: a
Monte-Carlo study. Journal of Computational Finance 2, 5-38.

Jiang, G.J., Knight, J., 2002. Estimation of continuous-time processes via the empirical characteristic function.
Journal of Business and Economic Statistics, 198-212.

Karatzas, 1., Shreve, S.E., 1991. Brownian Motion and Stochastic Calculus. Springer, New York.

Karlin, S., Taylor, H.M., 1981. A Second Course in Stochastic Processes. Academic Press, New York.

Koul, H.L., 1992. Weighted Empiricals and Linear Models. Institute of Mathematical Statistics, Hayward, CA.



Lo, A.W., 1988. Maximum likelihood estimation of generalized Ito processes with discretely sampled data.
Econometric Theory 4, 231-247.

Maddala, G.S., Rao, C.R. (Eds.), 1997. Handbook of Statistics 15: Robust Inference. North-Holland,
Amsterdam.

Meyn, S.P., Tweedie, R.L., 1993. Markov Chains and Stochastic Stability. Springer, London.

Park, J., Phillips, P.C.B., 1999. Asymptotics for nonlinear transformations of integrated time series. Econometric
Theory 15, 269-298.

Park, J., Phillips, P.C.B., 2001. Nonlinear regressions with integrated time series. Econometrica 69, 117-161.

Pritsker, M., 1998. Nonparametric density estimation and tests of continuous-time interest rate models. Review of
Financial Studies 11, 449-487.

Protter, P., 1995. Stochastic Integration and Differential Equations: A New Approach. Springer, Berlin.

Revuz, D., Yor, M., 1994. Continuous Martingales and Brownian Motion. Springer, Berlin.

Rosenblatt, M., 1975. Quadratic measure of deviation of two-dimensional density estimates and a test of
independence. Annals of Statistics 3, 1-14.

Singleton, K., 2001. Estimation of affine pricing models using the empirical characteristic function. Journal of
Econometrics 102, 111-141.



	Singapore Management University
	Institutional Knowledge at Singapore Management University
	4-2007

	A Simple Approach to the Parametric Estimation of Potentially Nonstationary Diffusions
	Federico BANDI
	Peter C. B. PHILLIPS
	Citation


	Microsoft Word - CFP_COVER_1205.doc

