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Abstract

Stable autoregressive models are considered with martingale differences errors scaled by an unknown nonparametric

time-varying function generating heterogeneity. An important special case involves structural change in the error variance,

but in most practical cases the pattern of variance change over time is unknown and may involve shifts at unknown

discrete points in time, continuous evolution or combinations of the two. This paper develops kernel-based estimators of

the residual variances and associated adaptive least squares (ALS) estimators of the autoregressive coefficients.

Simulations show that efficiency gains are achieved by the adaptive procedure.

r 2007 Elsevier B.V. All rights reserved.

JEL classification: C14; C22

Keywords: Adaptive estimation; Autoregression; Heterogeneity; Nonstationary volatility; Weighted regression

1. Introduction

The failure of the assumption of homogenous innovations in many time series models has been well
documented in the macroeconomics and empirical finance literatures. Ignoring this problem leads to
inefficient estimation and unreliable inference on the conditional mean function. To account for conditional
heteroskedasticity, it is common practice to assume that the innovations follow some parametric ARCH or
GARCH models based on those proposed by Engle (1982) and Bollerslev (1986). Efficient estimation of the
mean function in this case is achieved by quasi-maximum likelihood-based or other adaptive procedures, and
recent developments on this topic have been surveyed by Li et al. (2002).

Although the GARCH-type model is successful in capturing many important features in macroeconomic or
financial time series such as volatility clustering and persistent autocorrelation, a crucial weakness is its
nonrobustness to the stationarity assumption. In typical GARCH-type models, the time-varying volatility is
exclusively attributed to the conditional variance or covariance structure, while the unconditional variance is
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assumed to be constant over time. When this condition fails, ARCH or GARCH-based approaches may lead
to serious model mis-specification. For instance, artificial IGARCH effects may be observed due to
nonstationary changes in the unconditional volatility (Diebold, 1986; Mikosch and Stărică, 2004). This
problem is particularly relevant in view of the strong evidence against constancy of unconditional second
moments shown in the empirical literatures, e.g., in time series of exchange rates, interest rates, GDP and other
macroeconomic variables (inter alia, Loretan and Phillips, 1994; Watson, 1999; McConnell and Perez Quiros,
2000; van Dijk et al., 2002). Recently, more complicated GARCH-type models have been proposed to allow
for unconditional heteroskedasticity, e.g., varying coefficients GARCH models (Polzehl and Spokoiny, 2006)
and spline GARCH models (Engle and Rangel, 2004).

An alternative approach to modeling time-varying volatility is to use a smooth deterministic nonparametric
framework, assuming that the unconditional variance is the main time-changing feature to be captured (see,
e.g., Hsu et al., 1974; Officer, 1976; Merton, 1980; French et al., 1987). Compared to stochastic
heteroskedasticity modeling like GARCH-type models, this deterministic framework is technically easier to
handle and allows for nonstationarity. Recently, Drees and Stărică (2002) and Stărică (2003) used a
deterministic nonstationary framework to analyze time series of S&P 500 returns, and found that this
approach outperforms the GARCH-type models in both fitting the data and forecasting the next-day
volatility. However, in the typical setting of this framework, the volatility is specified as a smooth function of
time thereby ruling out important practical features like structural breaks in the underlying series. Meanwhile,
there are other contributions focusing particularly on modeling structural changes in volatility. For instance,
Wichern et al. (1976) investigated the AR(1) model when there are a finite number of step changes at unknown
time points in the error variance. These authors used iterative maximum likelihood methods to locate the
change points and then estimated the error variances in each block by averaging the squared least squares
residuals. The resulting feasible weighted least squares (WLS) estimator was shown to be efficient for the
specific model considered. Alternative methods to detect step changes in the variances of time series models
have been studied by Abraham and Wei (1984), Baufays and Rasson (1985); Tsay (1988); Park et al. (2000);
Lee and Park (2001); de Pooter and van Dijk (2004) and Galeano and Peña (2004).1

However, in practice the pattern of variance changes over time, which may be discrete or continuous, is
unknown to the econometrician and it seems desirable to use methods that can adapt for a wide range of
possibilities. Accordingly, this paper combines two strands of the literatures mentioned above by providing a
general framework to modeling nonparametric deterministic volatility in a stable linear AR(p) model, and
develops an efficient estimation procedure that adapts for the presence of different and unknown forms of
variance dynamics. Specifically, the model errors are assumed to be martingale differences multiplied by a
time-varying scale factor which is a continuous or discontinuous function of time, thereby permitting a
spectrum of variance dynamics that include step changes and smooth transitions.

Efficient estimation of linear models under heteroskedasticity with iid predictors was earlier investigated by
Carroll (1982) and Robinson (1987), and more recently by Kitamura et al. (2004) using empirical likelihood
methods in a general conditional moment restriction setting. In the time series context, Kuersteiner (2002)
developed efficient instrumental variables estimators for autoregressive models under conditional
heteroskedasticity but assuming constancy of the unconditional variances over time. Harvey and Robinson
(1988) focused on a regression model with deterministically trending regressors only, whose error is an AR(p)
process scaled by a continuous function of time, thereby allowing for both serial correlation and
nonstationarity but ruling out jump behavior in the innovations. In a closely related paper, Hansen (1995)
considered the linear regression model, nesting autoregressive models as special cases, when the conditional
variance of the model error is a function of a covariate that has the form of a nearly integrated stochastic
process with no deterministic drift. Using a kernel-weighted technique similar to ours, he also obtained the
adaptive estimation results. There are some important differences between Hansen’s paper and ours. The first
is model formulation. Instead of focusing on stochastic trends in volatility as in Hansen (1995), we consider
deterministic trends in volatility allowing particularly for single or multiple abrupt structural breaks. By doing
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so, a different scale parameter is employed to obtain sensible limit theory. Second, in constructing the adaptive
least squares (ALS) estimator, we consider two-sided kernel estimates of the residual variances, which are
more accurate than Hansen’s one-sided kernel estimates when variances are discontinuous over time. For this
reason his proof of adaptiveness cannot be extended here. Third, we allow for multiple covariates in the mean
function by studying pth order autoregressive processes. Fourth, we analyze how specific nonstationary
variance patterns, such as shifts and monotone trends in variance, affect the inefficiency of the ordinary least
squares (OLS) estimator relative to the generalized least squares (GLS) estimator. Finally, we also mention
that regression models in which the conditional variance of the error is an unscaled function of an integrated
time series were recently investigated by Chung and Park (2007) using Brownian local time limit methods
developed in Park and Phillips (1999, 2001).

The remainder of the paper proceeds as follows. Section 2 describes the autoregressive model with general
nonstationary deterministic volatility. Several assumptions are introduced and discussed. A limit theory is
developed in Section 3 for a class of WLS estimators, including efficient (infeasible) (GLS). A range of
examples show that OLS can be extremely inefficient asymptotically in some cases while nearly optimal in
others. Section 4 proposes a kernel-based estimator of the residual variance and shows the associated ALS
estimator to be asymptotically efficient, in the sense of having the same limit distribution as the infeasible GLS
estimator. Simulation experiments are conducted in Section 5 to assess the finite sample performance of the
adaptive estimator. Section 6 concludes. Proofs of the main results are collected in two appendices.

2. The model and assumptions

Suppose the sample fY�pþ1; . . . ;Y 0;Y 1; . . . ;Y T g from the following data generating process for the time
series Y t is observed:

AðLÞY t ¼ ut, (1)

ut ¼ stet, (2)

where L is the lag operator, AðLÞ ¼ 1� b1L� b2L
2 � � � � � bpLp, bpa0; is assumed to have all roots outside

the unit circle and the lag order p is finite and known. We assume fstg is a deterministic sequence and fetg is a
martingale difference sequence with respect to fFtg; whereFt ¼ sðes; sptÞ is the s-field generated by fes; sptg,
with unit conditional variance, i.e., Eðe2t jFt�1Þ ¼ 1; a.s., for all t: The conditional variance of futg is
characterized fully by the multiplicative factor st; i.e., Eðu2

t jFt�1Þ ¼ s2t ; a.s. This paper focuses on
unconditional heteroskedasticity and s2t is assumed to be modeled as a general deterministic function, which
rules out conditional dependence of st on the past events of Y t. The autoregressive coefficient vector b ¼
ðb1; b2; . . . ; bpÞ

0 is the parameter of interest. OLS estimation gives bb ¼ ðPT
t¼1X t�1X 0t�1Þ

�1
ð
PT

t¼1X t�1Y tÞ; where
X t�1 ¼ ðY t�1;Y t�2; . . . ;Y t�pÞ

0: Throughout the rest of the paper we impose the following conditions.

Assumption. (i) fstg satisfies st ¼ gðt=TÞ, where gð�Þ is a measurable and strictly positive function on the
interval ð0; 1� such that 0oinf r2ð0;1�gðrÞpsupr2ð0;1�gðrÞo1; and gðrÞ satisfies a Lipschitz condition except at a
finite number of points of discontinuity;

(ii) fetg satisfies EðetjFt�1Þ ¼ 0; Eðe2t jFt�1Þ ¼ 1, a.s., for all t:
(iii) supt Ejetj

4mo1 for some m41:

Under Assumption (i) the function g is integrable on the interval ð0; 1� to any finite order. For brevity, we
write

R 1
0 gmðrÞdr as

R
gm for any finite positive integer m: Formally, of course, the assumption induces a

triangular array structure to the processes ut and Y t, but we dispense with the additional affix T in the
arguments that follow. Assumption (ii) stipulates fetg is a martingale difference (m.d.) sequence and therefore
uncorrelated, but may be dependent via higher moments.

In contrast to modeling st in a setting with finitely many parameters, Assumption (i) is nonparametric and
st depends only on the relative position of the error in the sample. It allows for a wide range of nonstationary
variance dynamics including single or multiple step changes and smooth transitions (e.g., trending or periodic
variances. See Examples 1 and 2). Assumption (i) excludes the dependence of Eðu2

t jFt�1Þ on past events.
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A more flexible formulation is to assume st as a function of scaled (T�1) integrated time series with a time
trend (see the discussion in the next paragraph).

Our model of nonstationary volatility is related to that of Hansen (1995). In his paper, the volatility process is
specified as a function of a first-order nearly integrated process, viz. Eðu2

t jF t�1Þ ¼ g2ðc1 þ c2St=
ffiffiffiffi
T
p
Þ, where

St ¼ ð1� c3=TÞSt�1 þ zt with martingale differences zt and constants ci; i ¼ 1; 2; 3. Without accounting for
structural breaks explicitly, his model focuses on stochastic volatility, which asymptotically reduces to ours in
Assumption (i) by a simple extension. To illustrate, suppose a time trend (or drift) c4t is added to the nearly unit
root process St: Since a stochastic trend is dominated by a deterministic trend in the long run at least for a scalar
process, Hansen’s model in this case is no longer applicable and the normalization factor needs to be adjusted to
1=T rather than 1=

ffiffiffiffi
T
p

; as in Hansen’s formulation, to achieve a non-degenerate asymptotic theory.
Combining (1) with (2) is particularly useful in accounting for nonstationary volatility that may be present

in macroeconomic and financial data. Watson (1999) and McConnell and Perez Quiros (2000) found evidence
of monotone trending behavior in variability (corresponding to a monotone version of the function gð�Þ in
Assumption (i)) for US short and long term interest rates and GDP series over specified periods. The volatility
structure in (2) was also used by Stărică et al. (2005) in the analysis of the dynamics of stock indexes—see also
Stărică and Granger (2005).

We conclude this section by mentioning that much attention has recently been paid to potential structural
error variance changes in integrated process models. The effects of step breaks in the innovation variance on
unit root tests and stationarity tests were studied by Hamori and Tokihisa (1997); Kim et al. (2002); Busetti
and Taylor (2003) and Cavaliere (2004a). A general framework to analyze the effect of time-varying variances
on unit root tests was given in Cavaliere (2004b) and Cavaliere and Taylor (2004). By contrast, little work of
this general nature (as in Assumption (i), which is attributed to Cavaliere, 2004b) has been done on
autoregressions with coefficients satisfying the stable condition, most of the attention in the literature being
concerned with the case of step changes or smooth transitions in the error variance, as discussed above. The
present paper therefore contributes by focusing on efficient estimation of the AR(p) model with time-varying
variances of a general form that includes step changes as a special case.

3. Limit theory

Under the stated assumptions, the process Y t has the following representation:

Y t ¼
X1
i¼0

aiut�i, (3)

where the coefficients faig satisfyX1
i¼0

jaijo1. (4)

Under Assumptions (i)–(iii), bb is asymptotically normal with limit distribution (Phillips and Xu, 2006a):2ffiffiffiffi
T
p
ðbb� bÞ!

d
Nð0;LÞ, (5)

where

L ¼

R
g4

ð
R

g2Þ
2
G�1

and G is the p� p positive definite matrix with the ði; jÞth element gji�jj; and gk ¼
P1

i¼0aiaiþk with jgkjo1, for
0pkpp� 1: The matrix G�1 can be consistently estimated bybG�1 ¼ ðbgji�jjÞ

�1
i;j , (6)
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where bg0;bg1; . . . ; bgp�1 are the first p elements in the first column of the ðp2 � p2Þ matrix ½Ip2 � F � F ��1; where
� indicates the Kronecker product and

F ¼

bb1 bb2 � � � bbp

0

Ip�1
..
.

0

0BBBB@
1CCCCA.

Result (5) is a consequence of the following more general theorem. In what follows, let C40 be a generic
positive constant.

Theorem 1. Suppose o2
t is nonstochastic and satisfies (i) 0oo2

toCo1 for all t; (ii) there exists a function oð�Þ
on ð0; 1�; continuous except for a finite number of discontinuities, such that o2

½Tr� ! o2ðrÞ for any r 2 ð0; 1� at

which oð�Þ is continuous; (iii)
R
o240: Then, under Assumptions (i)–(iii), the WLS estimator

bbWLS ¼
XT

t¼1

o2
t X t�1X 0t�1

 !�1 XT

t¼1

o2
t X t�1Y t

 !
(7)

satisfies

ffiffiffiffi
T
p
ðbbWLS � bÞ!

d
N 0;

R
o4g4

ð
R
o2g2Þ

2
G�1

 !
, (8)

as T !1:

Naturally, the estimator with the smallest asymptotic variance matrix in the class (7) is achieved by GLS

b� ¼
XT

t¼1

X t�1X 0t�1s
�2
t

 !�1 XT

t¼1

X t�1Y ts�2t

 !
, (9)

with weights o2
t ¼ s�2t in which case3ffiffiffiffi

T
p
ðb� � bÞ!

d
Nð0;G�1Þ, (10)

as T !1:

Remarks. Clearly, the asymptotic variance matrix of bb differs from that of b� by the factor
R

g4=ð
R

g2Þ
2; and

since G�1 is invariant to the function gð�Þ the inefficiency of the OLS estimator bb depends crucially on this
factor. The following examples4 show that the factor can be large and OLS can be very inefficient in some
cases, whereas in others, the factor is close to unity and OLS is close to optimal.

Example 1 (A single abrupt shift in the innovation variance). Let t 2 ½0; 1� and gðrÞ be the step function

gðrÞ2 ¼ s20 þ ðs
2
1 � s20Þ1frXtg; r 2 ½0; 1�,

giving error variance s20 before the break point ½Tt�; and s21 afterwards. The steepness of the variance shift is
measured by the ratio d:¼s1=s0 of the post-break and pre-break standard deviation. By (5) the asymptotic
variance matrix of OLS is

L ¼
tþ ð1� tÞd4

ðtþ ð1� tÞd2Þ2
G�1:¼ f 2

1ðt; dÞG
�1,
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where f 2
1ðt; dÞ ¼ ðtþ ð1� tÞd2Þ�2ðtþ ð1� tÞd4Þ; which is a function of the break date t and the shift

magnitude d.

Fig. 1 plots the value of f 1ðt; dÞ across d 2 ½0:01; 100� for different values of t: The variance of the OLS
estimator largely depends on where the break in the innovation variance occurs. For the negative (do1) shift,
f 1ðt; dÞ increases steeply as d decreases when t ¼ 0:1; and is relatively steady and nearly unity when t ¼ 0:9:
The graph shows that OLS has large variance when the break occurs at the beginning (t ¼ 0:1) but much
smaller variance, and in fact close to that of infeasible GLS, when the break is at the end (t ¼ 0:9) of the
sample. This difference is explained by the fact that when the break in variance occurs early in the sample, the
large innovation variance in the early part of the sample affects all later observations via the autoregressive
mechanism. By contrast, when the break occurs near the end of the sample, only later observations are directly
affected, so the impact of a negative shift is small. This argument applies when there is a negative shift—a shift
to a smaller variance at the end of the sample—and a reverse argument applies in the case of a positive shift.

In fact, under a positive (d41) shift, OLS has large variance when the shift occurs late (t ¼ 0:9) but small
variance and more closely approximates infeasible GLS when it is early (t ¼ 0:1) in the sample. These
phenomena are confirmed in the simulation experiment of Gaussian AR(1) case, reported in Section 5.

Example 2 (Trending variances in the innovations). Let m be a positive integer and gðrÞ be

gðrÞ2 ¼ s20 þ ðs
2
1 � s20Þr

m; r 2 ½0; 1�,

giving error variance changing from s20 to s21 continuously according to an mth order power function. Then

L ¼
1þ 2ðd2 � 1Þ=ðmþ 1Þ þ ðd2 � 1Þ2=ð2mþ 1Þ

½1þ ðd2 � 1Þ=ðmþ 1Þ�2
G�1:¼ f 2

2ðm; dÞG
�1,

where f 2
2ðm; dÞ ¼ ð1þ ðd

2
� 1Þ=ðmþ 1ÞÞ�2ð1þ ð2ðd2 � 1Þ=ðmþ 1ÞÞ þ ððd2 � 1Þ2=2mþ 1ÞÞ and d ¼ s1=s0.
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Fig. 1. The values of f 1ðt; dÞ (y-axis) in Example 1 across d (x-axis) for different values of t: (a) t ¼ 0:1; (b) t ¼ 0:5; (c) t ¼ 0:9.
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Fig. 2. The values of f 2ðm; dÞ (y-axis) in Example 2 across d (x-axis) for different values of m: (a) m ¼ 1; (b) m ¼ 2; (c) m ¼ 6.
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Fig. 2 plots the value of f 2ðm; dÞ across d 2 ½0:01; 100� for different values of m; so that both positive (d41)
and negative (do1) trending heteroskedasticity is allowed. Compared with the case of a single abrupt shift in
the innovation variance (Example 1), the multiplicative factor f 2ðm; dÞ changes more steadily for a given value
of m, especially when m is small (say, m ¼ 1). In the case of large m (say, m ¼ 6), much inefficiency in OLS is
sustained when there is positive trending heteroskedasticity (d41).

4. Adaptive estimation

The GLS estimator b� in (9) is infeasible, since the true values of st are unknown. To produce a feasible
procedure, we propose a kernel-based estimator eb that have the same asymptotic distribution as b�: Letbut ¼ Y t � X 0t�1

bb be the OLS residuals and KðzÞ be a bounded nonnegative continuous kernel function defined
on the real line such that

R1
�1

KðzÞdz ¼ 1: Define

eb ¼ XT

t¼1

X t�1X 0t�1bs�2t

 !�1 XT

t¼1

X t�1Y tbs�2t

 !
, (11)

where

bs2t ¼XT

i¼1

wtibu2
i (12)

and wti ¼
PT

i¼1Kti

� ��1
Kti with

Kti ¼
K

t� i

Tb

� �
if tai;

0 if t ¼ i:

8<: (13)

Here b is a bandwidth parameter, dependent on T . eb is called the ALS estimator of b: The rationale for this is,
of course, that bs2t deputizes for s2t .5 For technical reasons in (12), we use the leave-one-out procedure and omit
the observation bu2

t .
The implementation of the estimator bs2t depends on the choice of kernel function K and the bandwidth b:

Commonly used kernels such as the uniform, Epanechnikov, biweight and Gaussian functions can be applied.
Bandwidth selection is more crucial. As usual, too small a bandwidth produces less bias for the true residual
variance but has higher variability. A simple data-driven method to choose the parameter b is cross-validation
(CV) on the average squared error—see Wong (1983). The cross-validatory choice of b is the value b� which
minimizes

dCV ðbÞ ¼
1

T

XT

t¼1

ðbut
2 � bs2t Þ2.

We use the following assumptions that modify and extend the earlier assumptions to facilitate the
development of an asymptotic theory for eb:
Assumption. ðiii0Þ suptEðe

8
t Þo1;

(iv) As T !1, bþ 1=Tb2
! 0:

We replace Assumption (iii) by the stronger Assumption ðiii0Þ, which requires the existence of eighth
moments of et for all t: This moment condition simplifies the proof of the main theorem and is, no doubt,
stronger than necessary. Assumption (iv) is a rate condition that requires b! 0 at a slower rate than T�1=2.

The main result is as follows.
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Theorem 2. Let g2ðr�Þ ¼ limr̄"r g2ðr̄Þ and g2ðrþÞ ¼ limr̄#r g2ðr̄Þ, for r 2 ð0; 1�: Under Assumptions (i)–(iv) with

ðiii0Þ instead of (iii), as T !1;

bs2½Tr� !
p

g2ðr�Þ

Z 0

�1

KðzÞdzþ g2ðrþÞ

Z 1
0

KðzÞdz, (14)

for r 2 ð0; 1Þ; and bs2T!p g2ð1�Þ
R 0
�1

KðzÞdz: Let b� and eb be defined in (9) and (11), respectively, thenffiffiffiffi
T
p
ðeb� bÞ ¼

ffiffiffiffi
T
p
ðb� � bÞ þ opð1Þ!

d
Nð0;G�1Þ, (15)

where G�1 is estimated by (6).

Result (14) shows that bs2½Tr� converges in probability to g2ðrÞ for interior points r when the function g is
continuous, but in general to a point between g2ðr�Þ and g2ðrþÞ depending on the shape of the kernel. The
inconsistency of the error variance function estimator at points of discontinuities has a diminishing effect on
the behavior of adaptive estimators of the autoregressive coefficients when the sample size is large, as is clear
from (15). A one-sided kernel estimator of the residual variance at time t, as proposed by Hansen (1995), can
be also constructed by using information up to time t� 1: But this estimator has larger bias in small samples at
discontinuous points since it always converges in probability to g2ðr�Þ; although the difference on adaptive
estimation diminishes as the sample size increases.

Another adaptive estimator is suggested by Harvey and Robinson (1988), who dealt with time series
regression in the presence of trending regressors. Rather than estimating each s2t separately, they split the data
into K blocks and estimated s2t in one block by the average of bu2

t in this block. So only K distinct estimators are
used. It can be shown under the regularity assumptions, the resulting WLS estimator of b also has the same
asymptotic distribution as eb if 1=T1 þ T=T2

1 þ T2=T ! 0; as T !1; where T1 and T2 are the minimum and
maximum lengths of the K blocks. Compared to our estimator, this estimator is faster to compute but it does
not integrate in an efficient way the information of bu2

s where s is close to t when estimating s2t , especially when t

is close to the boundary of the block.

5. Simulations

This section examines the finite sample performance of the ALS efficient procedure proposed in Section 4
using simulations of the heteroskedastic AR(1) model

Y t ¼ bY t�1 þ ut; ut ¼ stet,

where st ¼ gðt=TÞ. We use b 2 f0:1; 0:9g and et�iidNð0; 1Þ:
Our simulation design basically follows Cavaliere (2004a, b) and Cavaliere and Taylor (2004). The g

function generating heteroskedasticity is taken as the step function used in Example 1, viz.,

gðrÞ2 ¼ s20 þ ðs
2
1 � s20Þ1frXtg; r 2 ½0; 1�.

The break date is chosen from f0:1; 0:9g and the ratio of post-break and pre-break standard deviations
d ¼ s1=s0 is set to the values f0:2; 5g:Without loss of generality, we let s0 ¼ 1: The estimates of b are obtained
with sample size T ¼ 50 and 200, and the number of replications is set to 10,000. Other models (say the
trending variance in Example 2) are also considered in our experiments, although not reported here, and they
yield the results similar to those obtained below.

We report estimates for b obtained by OLS, infeasible GLS and ALS. For the ALS estimator (11), we use
the Gaussian kernel function, KðzÞ ¼ ð2pÞ�1=2 expð�z2=2Þ; for �1ozo1: When a different kernel (such as
Epanechnikov kernel) is used, the results do not change much. Five bandwidths are considered, i.e., four fixed
bandwidths hi ¼ ciT

�0:4; i ¼ 1; . . . ; 4; where fc1; c2; c3; c4g ¼ f0:25; 0:4; 0:6; 0:75g as well as a data-driven
bandwidth chosen by the CV procedure described in Section 4.

Table 1 reports the ratios of the root mean squared errors (RMSE) of estimators considered relative to the
RMSE of GLS. The levels (rather than the ratios) of RMSE are reported for GLS in brackets. Clearly, OLS is
inefficient and the ALS estimator works reasonably well in all cases considered. The largest inefficiency in OLS
is observed when an early shift in the innovation variance is negative, for instance, ðt; dÞ ¼ ð0:1; 0:2Þ; and when
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a late shift is positive, for instance, ðt; dÞ ¼ ð0:9; 5Þ: The former is explained by the fact that the large variance
early in the sample affects all later observations and the latter is explained by the fact that the large variance in
the last part of the sample means that the OLS estimator is more closely approximated by the terms involving
the last few observations, thereby effectively reducing the sample size. In both these cases, substantial
efficiency gains are achieved by the ALS estimator. In contrast, when there is a positive early shift or a
negative late shift in the innovation variance, for instance, ðt; dÞ ¼ ð0:1; 5Þ or ð0:9; 0:2Þ; OLS works nearly as
well as GLS, especially when the sample size is large. The ALS estimator performs comparably well with OLS
in those cases. When the sample size is increased from T ¼ 50 to 200, the ALS estimators have the smaller
ratio of RSME, while no improvement (or even larger inefficiency) is observed for OLS.

We also note that the CV procedure to choose the bandwidth of the ALS estimator works satisfactorily.
Sometime the ALS estimator with the cross-validated bandwidth is outperformed by certain specified fixed
bandwidth in certain cases (in most case by h2), but is not uniformly dominated by a single fixed bandwidth
from the four we considered. In practice we recommend using the cross-validated bandwidth or the fixed
bandwidth h2:

Simulations results, along with those not reported here, also show that, in both models the improvement of
the ALS procedure relative to OLS is insensitive to the location of the true value of the autoregressive
parameter b; as long as jbjo1:

We also check the homoskedastic case when d ¼ 1 and show results in Table 1. OLS is equivalent to GLS
when the errors are homoskedastic, so the ratio of RMSE of OLS relative to GLS is unity. We observe that in
this case the ALS estimator is also close to one, so that ALS may be used satisfactorily even when the errors
are homoskedastic.

Furthermore, to check the robustness of our ALS procedure to skewed or heavy-tailed error distributions,
we let et be subject to a w2ð5Þ or a tð5Þ distribution each with degree of freedom five, normalized so that it has
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Table 1

The ratios of the RMSEs of OLS estimator and ALS estimators using four fixed bandwidths and cross-validated bandwidth, relative to

that of GLS (the levels of RMSE are reported for GLS in brackets)

t d T OLS ALS

h1 h2 h3 h4 CV GLS

b ¼ 0:1
0.1 0.2 50 1.9749 1.5029 1.5278 1.6169 1.6865 1.5612 [.1236]

200 2.4751 1.1501 1.1501 1.1830 1.2182 1.1538 [.0636]

1 50 1.0000 1.1586 1.0745 1.0375 1.0241 1.0329 [.0885]

200 1.0000 1.0466 1.0280 1.0187 1.0151 1.0155 [.0374]

5 50 1.0333 1.1220 1.0754 1.0561 1.0498 1.0612 [.1471]

200 1.0351 1.0780 1.0676 1.0631 1.0600 1.0594 [.0667]

0.9 0.2 50 1.1801 1.3196 1.2625 1.2339 1.2199 1.2359 [.1170]

200 1.1100 1.1253 1.1172 1.1164 1.1151 1.1198 [.0691]

5 50 1.9576 1.1925 1.1958 1.2583 1.3177 1.2555 [.1433]

200 2.2333 1.0859 1.0784 1.0952 1.1208 1.0795 [.0701]

b ¼ 0:9
0.1 0.2 50 2.0748 1.4599 1.4968 1.5742 1.6417 1.5380 [.0633]

200 2.3822 1.1994 1.2020 1.2270 1.2450 1.1995 [.0283]

1 50 1.0000 1.0931 1.0374 1.0172 1.0110 1.0191 [.0851]

200 1.0000 1.0398 1.0213 1.0115 1.0080 1.0103 [.0346]

5 50 1.0427 1.1260 1.0749 1.0628 1.0592 1.0754 [.0885]

200 1.0225 1.0571 1.0425 1.0380 1.0354 1.0362 [.0374]

0.9 0.2 50 1.2853 1.2581 1.2763 1.2875 1.2904 1.2838 [.0664]

200 1.1856 1.1315 1.1540 1.1781 1.1866 1.1844 [.0291]

5 50 2.0607 1.2049 1.1773 1.2188 1.2769 1.2068 [.0887]

200 2.2663 1.0903 1.0748 1.0825 1.0983 1.0823 [.0346]

Error distribution: normal. Parameter values: b 2 f0:1; 0:9g; t 2 f0:1; 0:9g, d 2 f0:2; 5g and the sample size T ¼ f50; 200g.
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zero mean and unit variance. Apparently when et�tð5Þ; the technical Assumption ðiii0Þ is violated. This model
is incorporated to illustrate that the conclusion of Theorem 2 extends to more general error distributions. The
corresponding results are reported only for the case of a positive late shift (i.e., t ¼ 0:9, d ¼ 5) in Table 2.
Again, we can see that major efficiency gains are achieved by the ALS estimator compared to the OLS
procedure. Just as the cases with Gaussian errors we consider above, ALS is almost as efficient as the infeasible
GLS estimator when T is increased from 50 to 200.

In summary, our kernel-based ALS estimator and CV procedure both appear to perform reasonably well, at
least within the simulation design considered. The advantages are clear—they are convenient for practical use
and have uniformly good performance over the parameter space.

6. Further remarks

This paper considers efficient estimation of finite order autoregressive models under unconditional
heteroskedasticity of unknown form. Several extensions of the approach taken in the paper are possible. One
of these is to consider efficient estimation of unconditionally heteroskedastic stable autoregressions of possible
infinite order. The issue here is whether the nonparametric feasible GLS estimator considered here is still
asymptotically efficient when the order of autoregression, p; increases with the sample size, T : We leave this
and other extensions for future research.
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Table 2

The ratios of the RMSEs of OLS estimator and ALS estimators using four fixed bandwidths and cross-validated bandwidth, relative to

that of GLS (the levels of RMSE are reported for GLS in brackets)

Error dist. T OLS ALS

h1 h2 h3 h4 CV GLS

b ¼ 0:1

w2ð5Þ � 5ffiffiffiffiffi
10
p

50 2.0441 1.3597 1.3298 1.3983 1.4721 1.4277 [.1375]

200 2.1478 1.1170 1.1022 1.1148 1.1364 1.1157 [.0701]ffiffiffiffiffiffi
0:6
p

t5 50 1.9072 1.4207 1.3863 1.4259 1.4834 1.4405 [.1394]

200 2.1648 1.1687 1.1477 1.1583 1.1767 1.1545 [.0704]

b ¼ 0:9

w2ð5Þ � 5ffiffiffiffiffi
10
p

50 2.0241 1.3419 1.3424 1.3853 1.4286 1.4208 [.0902]

200 2.2665 1.1729 1.1345 1.1278 1.1364 1.1457 [.0327]ffiffiffiffiffiffi
0:6
p

t5 50 2.0371 1.3108 1.3060 1.3605 1.4243 1.3851 [.0850]

200 2.1579 1.1515 1.1233 1.1216 1.1337 1.1321 [.0364]

Error distribution: w2ð5Þ or t5. Parameter values: b 2 f0:1; 0:9g, t ¼ 0:9; d ¼ 5 and the sample size T ¼ f50; 200g.
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Appendix A. Proofs of the theorems

This section gives the proofs of Theorems 1 and 2. We use j � j to denote the Euclidean norm jX j ¼

ðX 2
1 þ � � � þ X 2

nÞ
1=2 for X ¼ ðX 1; . . . ;X nÞ

0; and k � k K to denote the LK -norm, so that kxkK ¼ ðEjxj
K Þ

1=K for a

random vector x.

Proof of Theorem 1. The WLS estimator bbWLS satisfies

ffiffiffiffi
T
p
ðbbWLS � bÞ ¼

1

T

XT

t¼1

o2
t X t�1X 0t�1

 !�1
1ffiffiffiffi
T
p

XT

t¼1

o2
t X t�1ut

 !
. (16)

Consider the first term of the right-hand side of (16) first. We want to show

An ¼
1

T

XT

t¼1

ðo2
t Y t�hY t�h�k � o2

tEðY t�hY t�h�kÞÞ!
p
0 (17)

for 1phpp; 0pkpp� h: Define Y t;m ¼
Pm

i¼0aiut�i and

Am
n ¼

1

T

XT

t¼1

ðo2
t Y t�h;mY t�h�k;m � o2

tEðY t�h;mY t�h�k;mÞÞ.

To prove (17), we need to show: (a) Am
n !

p
0; as n!1; for each fixed m; (b) limm!1lim supn!1PðjA

m
n �

AnjXdÞ ¼ 0 for all d40: Then (17) follows from Proposition 6.3.9 of Brockwell and Davis (1991) (see also
Billingsley, 1968, Theorem 4.2). It is straightforward to show that (a) follows from the LLN for uniformly
integrable L1-mixingales (Andrews, 1988) and (b) from the Markov inequality and Assumptions (i)–(iii).
Thus (17) holds. Lemma A(ii) of Phillips and Xu (2006a) shows that for every continuous point r of gð�Þ;
limT!1EY ½Tr��h � Y ½Tr��h�k ¼ g2ðrÞgk; where ½�� refers to the integer part. Let r1or2o � � �orQ be the
discontinuous points of gð�Þ and wð�Þ; where Q is a finite number (independent of T). So by (17), for sufficiently

large T ; T�1
PT

t¼1o
2
t Y t�hY t�h�k ¼ T�1

PT
t¼1o

2
tEðY t�hY t�h�kÞ þ opð1Þ ¼

PT
t¼1

R ðtþ1Þ=T

t=T
o2
½Tr�EY ½Tr��hY ½Tr��h�k

drþopð1Þ ¼
R r1
1=T

o2
½Tr�EY ½Tr��hY ½Tr��h�k drþ

PQ�1
j¼1

R rjþ1

rj
o2
½Tr� � EY ½Tr��hY ½Tr��h�k drþ

R ðTþ1Þ=T

rQ
o2
½Tr�EY ½Tr��hY

½Tr��h�k drþ opð1Þ!
p
ð
R
o2g2Þgk: So we have T�1

PT
t¼1o

2
t � X t�1X 0t�1!

p
ð
R
o2g2ÞG: Next we show

that T�1
PT

t¼1o
4
t �X t�1X

0
t�1u

2
t!

p
ð
R
o4g4ÞG; which holds if T�1

PT
t¼1o

4
t Y t�hY t�h�ku2

t !
p
gk for 1phpp;

0pkpp� h: Indeed, since fo4
t Y t�hY t�h�ku2

t � o4
ts

2
tEY t�hY t�h�k;Ftg are martingale differences, so

T�1
PT

t¼1o
4
t Y t�hY t�h�ku2

t ¼ T�1
PT

t¼1o
4
t � s

2
tEY t�hY t�h�k þ opð1Þ!

p
ð
R
o4g4Þgk by Andrews (1988)’s LLN

for uniformly integrable L1-mixingales. Furthermore, Ejo2
t X t�1utj

4o1 by Lemma A(b) with m ¼ 2: By the

central limit theorem for vector martingale differences, T�1=2
PT

t¼1o
2
t X t�1ut!

d
Nð0; ð

R
o4g4ÞGÞ. Then

Theorem 1 follows from (16). &

Proof of Theorem 2. First we prove (14). Recall that bui’s are the OLS residuals. Let s2t ¼
PT

i¼1wtis2i ; and it is
easy to see that

1

Tb

XT

i¼1

Kti

 !
ðbst

2 � s2t Þ

�����
�����p 1

Tb

XT

i¼1

Ktiðu
2
i � s2i Þ

�����
�����þ opð1Þ ¼ opð1Þ. (18)
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Actually, if we let ai ¼ u2
i � s2i ; then faig is an m.d. sequence and Eðð1=TbÞ

PT
i¼1KtiaiÞ

2
¼ ð1=ðTbÞ2Þ

PT
i¼1K2

tiEa2
i

pð1=TbÞðsupi KtiÞðsupi Ea2
i Þðð1=TbÞ

PT
i¼1KtiÞ ¼ Oð1=TbÞ ! 0; in view of Lemma A(c). On the other hand,

we have

1

Tb

XT

i¼1

K ½Tr�is2i ¼
1

b

Z ðTþ1Þ=T

1=T

K
½Ts� � ½Tr�

Tb

� �
g2 ½Ts�

T

� �
dsþ oð1Þ

¼
z¼ðs�rÞ=b

Z ðTþ1�TrÞ=Tb

ð1�TrÞ=Tb

K
½Tðrþ bzÞ� � ½Tr�

Tb

� �
g2 ½Tðrþ bzÞ�

T

� �
dzþ oð1Þ

! g2ðr�Þ

Z 0

�1

KðzÞdzþ g2ðrþÞ

Z 1
0

KðzÞdz, ð19Þ

for interior points r 2 ð0; 1Þ: Combining (18) and (19) gives bs2½Tr� ¼ ðð1=TbÞ
PT

i¼1K ½Tr�iÞs2½Tr� þ opð1Þ ¼

ð1=TbÞ
PT

i¼1K ½Tr�is2i þ opð1Þ!
p

g2ðr�Þ
R 0
�1

KðzÞdzþ g2ðrþÞ
R1
0 KðzÞdz as claimed. Similarly, for r ¼ 1;bs2T!p g2ð1�Þ

R 0
�1

KðzÞdz:
Now we prove (15). We follow closely the proof of the theorem in Robinson (1987) using some of his

notation. First, note that eb satisfies

ffiffiffiffi
T
p
ðeb� bÞ ¼

1

T

XT

t¼1

X t�1X 0t�1bs�2t

 !�1
1ffiffiffiffi
T
p

XT

t¼1

X t�1utbs�2t

 !
.

Define aðf Þ ¼ ð1=
ffiffiffiffi
T
p
Þ
PT

t¼1X t�1utf
�2
t and Aðf Þ ¼ ð1=TÞ

PT
t¼1X t�1X

0
t�1f

�2
t ; then we have

ffiffiffiffi
T
p
ðb� � bÞ ¼

AðsÞ�1aðsÞ and
ffiffiffiffi
T
p
ðeb� bÞ ¼ AðbsÞ�1aðbsÞ ¼AðsÞ�1aðsÞþAðbsÞ�1ðaðbsÞ�aðsÞÞ�AðsÞ�1ðAðbsÞ � AðsÞÞAðbsÞ�1aðsÞ:

We have AðsÞ!
p
G which is positive definite, and aðsÞ ¼ Opð1Þ; which follows from Markov’s inequality and

Eðð1=
ffiffiffiffi
T
p
Þ
PT

t¼1Y t�huts�2t Þ
2
¼ ð1=TÞ

PT
t¼1s

�4
t EY 2

t�hu2
t pCð1=TÞ

PT
t¼1EY 2

t�hu2
t o1; by Lemma A(b). Hence (15)

follows if we prove

AðbsÞ � AðsÞ!
p
0; aðbsÞ � aðsÞ!

p
0. (20)

Define es2t ¼PT
i¼1wtiu

2
i and s2t ¼

PT
i¼1wtis2i ; and (20) follows from the following six results as in Robinson (1987):

(a) aðbsÞ � aðesÞ!p 0; (b) aðesÞ � aðsÞ!
p
0; (c) aðsÞ � aðsÞ!p0; (d) AðbsÞ � AðesÞ!p 0; (e) AðesÞ � AðsÞ!

p
0; (f)

AðsÞ � AðsÞ!
p
0: These will be shown as follows:

(a) Since aðbsÞ � aðesÞ ¼ ð1= ffiffiffiffi
T
p
Þ
P

tX t�1utðes2t � bs2t Þ=bs2t es2t ; we have jaðbsÞ � aðesÞjpðmintest
2Þ
�1
ðmintbs2t Þ�1 �PT

t¼1
jX t�1utjffiffiffi

T
p jes2t � bs2t jpðmintes2t Þ�1ðmintbs2t Þ�1ðð1=TÞ

PT
t¼1jX t�1utj

2Þ
1=2
ð
PT

t¼1jes2t � bs2t j2Þ1=2 ¼ Opð1=TbÞ!
p
0; by

Lemma A (b, h, j, k).
(b) We write

aðesÞ � aðsÞ ¼
1ffiffiffiffi
T
p

XT

t¼1

X t�1utðes�2t � s�2t Þ

¼
1ffiffiffiffi
T
p

XT

t¼1

X t�1utðs2t � es2t Þs�4t þ
1ffiffiffiffi
T
p

XT

t¼1

X t�1utðs2t � es2t Þ2es�2t s�4t , ð21Þ

which holds since for two any nonzero real numbers p and q we have the following equality p�1 � q�1 ¼

ðq� pÞq�2 þ ðq� pÞ2p�1q�2:We will show the two terms of (21) vanishes in probability. For the first term, we
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note that fX t�1utðs2t � es2t Þs�4t ;Ftg is an m.d. sequence. Indeed, we have

EðX t�1utðs2t � es2t Þs�4t jFt�1Þ

¼ s�2t EðX t�1utjFt�1Þ � s�4t E X t�1ut

X
iot

wtiu
2
i jFt�1

 !

� s�4t E X t�1ut

X
i4t

wtiu
2
i jFt�1

 !
. ð22Þ

Both the last two terms are zero, since for the term i4t; EðX t�1utu
2
i jFt�1Þ ¼ X t�1Eðutu

2
i jFt�1Þ ¼

X t�1EðutEðu
2
i jFi�1ÞjFt�1Þ ¼ X t�1EðutjFt�1Þ ¼ 0; and for the term iot, EðX t�1utu

2
i jFt�1Þ ¼ X t�1u

2
i �

EðutjFt�1Þ ¼ 0: Thus, by (22) EðX t�1utðs2t � es2t Þs�4t jFt�1Þ ¼ 0. So the first term of (21) converges to zero in

probability by the Markov inequality and Ejð1=
ffiffiffiffi
T
p
Þ
PT

t¼1X t�1utðs2t � es2t Þs�4t j
2pðC=TÞ

PT
t¼1EjX t�1utj

2ðs2t �es2t Þ2pðC=TÞ
PT

t¼1ðEjX t�1utj
4Þ

1=2
� ðEðs2t �es2t Þ4Þ1=2pðmaxtEðs2t � es2t Þ4Þ1=2 � ðC=TÞ

PT
t¼1ðEjX t�1utj

4Þ
1=2
¼Opð1=TbÞ

!p0; by Lemma A(a,f). For the second term of (21), j
PT

t¼1ðX t�1ut=
ffiffiffiffi
T
p
Þðs2t � es2t Þ2es�2t s�4t ÞpCðð1=TÞPT

t¼1jX t�1utj
2Þ

1=2
ð
PT

t¼1ðs
2
t � es2t Þ4Þ1=2 ¼ Opð1=T1=2bÞ!

p
0; by Lemma A(a,f). This completes the proof of (b).

(c) First we note

s2t ðs
�2
t � s�2t Þ

2ps�4t s�2t js
2
t þ s2t j � js

2
t � s2t jpCjs2t � s2t j. (23)

Since fX t�1utg is an m.d. sequence, we get EjaðsÞ � aðsÞj2 ¼ ð1=TÞ
PT

t¼1EðjX t�1j
2u2

t Þðs
�2
t � s�2t Þ

2
¼

ð1=TÞ
PT

t¼1EðjX t�1j
2Eðu2

t jFt�1ÞÞðs�2t � s�2t Þ
2
¼ ð1=TÞ

PT
t¼1EjX t�1j

2s2t js
�2
t � s�2t j

2pðC=TÞ
PT

t¼1EjX t�1j
2 �

js2t � s2t jpC maxt EjX t�1j
2 � ð1=TÞ

PT
t¼1js

2
t � s2t j ¼ opð1Þ; by Lemma A(a, l).

(d) It follows from jAðbsÞ � AðesÞjpðmint es2t Þ�1ðmintbs2t Þ�1ð1=TÞ
PT

t¼1jX t�1j
2jes2t � bs2t jpC �maxtjes2t � bs2t j �

ð1=TÞ
PT

t¼1jX t�1j
2 ¼ Opð1=

ffiffiffiffiffiffi
Tb
p
Þ; by Lemma A(a, h, i, j).

(e) This can be proved in the same way as (d) by employing Lemma A(g).

(f) It follows from jAðsÞ � AðsÞjpðmint s2t Þ
�1
ðmint s2t Þ

�1
ð1=TÞ

PT
t¼1jX t�1j

2js2t � s2t jpðmint s2t Þ
�1
�

ðmint s2t Þ
�1
�maxtjX t�1j

2 � ð1=TÞ
PT

t¼1js
2
t � s2t j ¼ opð1Þ, by Lemma A(a, e, l). &

Appendix B. Supplementary results and proofs

This section states and proves some results (Lemma A) used in the proofs of the theorems.

Lemma A. (a) If sup1ptpTEjetj
2mo1; 1pmo1; then sup1ptpTEjY t�hj

2mo1 holds for 1phpp;

(b) if sup1ptpTEjetj
4mo1, 1pmo1; then sup1ptpTEjY t�hutj

2mo1 holds for 1phpp;

(c) let t ¼ ½Tr� for any fixed r 2 ð0; 1�; then ð1=TbÞ
PT

i¼1Kti !
R1
�1

KðzÞdz ¼ 1; where Kti is defined in (13);

(d) maxt;i wti ¼ Oð1=TbÞ;
(e) min1ptpT s2t XC40;
(f) max1ptpTEjes2t � s2t j

4 ¼ Oð1=ðTbÞ2Þ;
(g) maxtjes2t � s2t j

d ¼ OpðT
�d=4b�d=2Þ; for d ¼ 1; 2;

(h) ðmin1ptpTes2t Þ�1 ¼ Opð1Þ; as T !1;
(i) max1ptpT jbs2t � es2t j ¼ Opð1=

ffiffiffiffiffiffi
Tb
p
Þ;

(j) ðmin1ptpT bs2t Þ�1 ¼ Opð1Þ; as T !1;
(k)
PT

t¼1ðbs2t � es2t Þ2 ¼ Opð1=ðTbÞ2Þ;
(l) ð1=TÞ

PT
t¼1js

2
t � s2t j ¼ oð1Þ:
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Proof of Lemma A. (a) Note that Y 2
t�h ¼

P1
k¼0

P1
l¼0akalut�h�kut�h�l and Ejut�h�k � ut�h�lj

mpðEjut�h�kj

2mEjut�h�l j
2mÞ

1=2o1: So we have EjY t�hj
2m ¼ kY 2

t�hk
m
mpð

P1
k¼0

P1
l¼0jakalj � kut�h�kut�h�lkmÞ

mpCð
P1

k¼0

P1
l¼0j

akaljÞ
m
¼ Cð

P1
k¼0jakjÞ

2mo1:
(b) Since Y 2

t�hu2
t ¼

P1
k¼0

P1
l¼0akalut�h�kut�h�lu

2
t and Ejut�h�kut�h�lu

2
t j
mpðEjut�h�kj

4m � Ejut�h�lj
4mÞ

1=4
�

ðEjutj
4mÞ

1=2o1; so EjY t�hutj
2m ¼ kY 2

t�hu2
t k

m
mpð

P1
k¼0

P1
l¼0jakal j � kut�h�kut�h�lu

2
t kmÞ

mpC � ð
P1

k¼0

P1
l¼0jakal jÞ

m

o1.

(c) Let t� i¼ ½Tx�; where x is a real number, jxjo1: Then ð1=TbÞ
PT

i¼1Kti ¼ ð1=TbÞ
PT

i¼1Kððt� iÞ=TbÞ þ oð1Þ ¼PT
i¼1

R ðt�iþ1Þ=T

ðt�iÞ=T
Kð½Tx�=TbÞdðx=bÞþoð1Þ ¼

z¼x=bPT
i¼1

R ðt�iþ1Þ=Tb

ðt�iÞ=Tb
Kð½Tbz�=TbÞdzþoð1Þ¼

R t=Tb

ðt�TÞ=Tb
Kð½Tbz�=TbÞdzþ

oð1Þ !
R1
�1

KðzÞdz ¼ 1:

(d) It follows from wti ¼ ðð1=TbÞ
PT

i¼1KtiÞ
�1Kti=Tb and (c).

(e) It follows from min1ptpTs2tXmin1pipTs2i � ð
PT

i¼1wtiÞXinf s2½0;1�g
2ðsÞXC40:

(f) We make use of the Burkholder’s inequality (BI) (c.f. Shiryaev, 1995, p. 499): for the m.d. sequence
x1; . . . ; xT and p41; there exists constant Ap and Bp; such that

Ap

XT

t¼1

x2t

 !1=2
������

������
p

p
XT

t¼1

xt

�����
�����

p

pBp

XT

t¼1

x2t

 !1=2
������

������
p

.

Let ai ¼ u2
i � s2i ; then ai is a m.d. sequence and Ea4

i o1: Then Eðes2t � s2t Þ
4
¼ Eð

PT
i¼1wtiaiÞ

4 p
BIðp¼4Þ

Eð
P

i¼

1T w2
tia

2
i Þ

2 p
ðdÞ

ð1=ðTbÞ2ÞEð
PT

i¼1wtia
2
i Þ

2 p
Jensen

1=ðTbÞ2
PT

i¼1wtiEa4
i ¼ Oð1=ðTbÞ2Þ, where the last inequality is by

Jensen’s f ð
PT

i¼1wtia
2
i Þp

PT
i¼1wtif ða

2
i Þ with convex function f ðxÞ ¼ x2:

(g) It holds since for arbitrary C40; Pðmaxtjes2t � s2t j
d4CT�d=4b�d=2Þp

PT
t¼1Pðjes2t � s2t j

d4CT�d=4b�d=2Þ

p
Markov

C�4Tb2PT
t¼1

Ejes2t � s2t j
4 ¼
ðf Þ
OðC�4Þ; d ¼ 1;

C�2Tb2PT
t¼1

Ejes2t � s2t j
4 ¼
ðf Þ
OðC�2Þ; d ¼ 2:

8>>><>>>:
(h) It follows from 0oC p

ðeÞ

min1ptpT s2t pmin1ptpT es2t þmaxtjes2t � s2t j ¼ min1ptpT es2t þ opð1Þ:

(i) Note that bs2t � es2t ¼PT
i¼1wtiðbu2

i � u2
i Þ ¼

PT
i¼1wtiðð

bb� bÞ0X i�1X 0i�1ð
bb� bÞ � 2uiX

0
i�1ð
bb� bÞÞ; and

maxt;i
PT

i¼1w2
tipmaxt;iwti �

PT
i¼1wti ¼ Oð1=TbÞ: We also have bb� b ¼ OðT�1=2Þ by (5). Thus max1ptpT jbs2t �es2t jpmax1ptpT

PT
i¼1wtijð

bb� bÞ0X i�1X
0
i�1ð
bb� bÞ � 2uiX

0
i�1ð
bb� bÞj

p max
1ptpT

XT

i¼1

wtij
bb� bj2jX i�1j

2 þ 2 max
1ptpT

XT

i¼1

wtijuiX
0
i�1j � j

bb� bj

pmax
t;i

wti � j
bb� bj2

XT

i¼1

jX i�1j
2 þ 2jbb� bj � max

t;i

XT

i¼1

w2
ti

 !1=2

�
XT

i¼1

juiX
0
i�1j

 !1=2

¼ Op
1

Tb

� �
þOp

1ffiffiffiffiffiffi
Tb
p

� �
¼ Op

1ffiffiffiffiffiffi
Tb
p

� �
.

(j) It follows from 0oC p
ðhÞ

min1ptpT es2tpmin1ptpT bs2t þmaxtjbs2t � es2t k ¼ min1ptpT bs2t þ opð1Þ:
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(k) Since bs2t � es2t ¼PT
i¼1wtiðbu2

i � u2
i Þ ¼ ð

bb� bÞ0ð
PT

i¼1w2
tiX i�1X 0i�1Þð

bb� bÞ � 2ð
PT

i¼1w2
tiuiX

0
i�1Þ � ð

bb� bÞ;
then

PT
t¼1ðbs2t � es2t Þ2 is bounded by

XT

t¼1

C jbb� bj4
XT

i¼1

w2
tiX i�1X 0i�1

�����
�����
2

þ
XT

i¼1

w2
tiuiX

0
i�1

�����
�����
2

jbb� bj2

0@ 1A
pjbb� bj4

XT

t¼1

C
XT

i¼1

w2
tijX i�1j

2

 !2

þ jbb� bj2
XT

t¼1

C
XT

i¼1

w2
tijuiX

0
i�1j

 !2

. ð24Þ

The first term of (24) is bounded by

jbb� bj4
XT

t¼1

C sup
i
jX i�1j

2 �max
t;i

wti �
XT

i¼1

wti

 !2

¼ Op
1

T3b2

� �
,

by (a) and (d), and similarly the second term of (24) is Opð1=T2b2
Þ: So (k) follows.

(l) Let r1or2o � � �orD be the discontinuous points of gð�Þ; where D is finite. Then for sufficiently large T ;

ð1=TÞ
PT

t¼1js
2
t � s2t j ¼

PT
t¼1

R ðtþ1Þ=T

t=T
js2½nr� � s2½nr�jdr ¼

R r1
1=T
js2½nr� � s2½nr�jdr þ

PD�1
j¼1

R rjþ1

rj
js2½nr� � s2½nr�jdr þR ðTþ1Þ=T

rD
js2½nr� � s2½nr�jdr! 0; provided that

s2½nr� ! g2ðrÞ (25)

when g is continuous at r: Indeed, following the proof of (c) we can similarly have ð1=TbÞ
PT

i¼1Ktis2i ! g2ðrÞ

when g is continuous at r: Thus (25) holds by (c). &
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Stărică, C., Granger, C., 2005. Non-stationarities in stock returns. Review of Economics and Statistics 87, 503–522.
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