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Summary. Interim analysis is important in a large clinical trial for ethical and cost considerations.
Sometimes, an interim analysis needs to be performed at an earlier than planned time point.
In that case, methods using stochastic curtailment are useful in examining the data for early
stopping while controlling the inflation of type I and type II errors. We consider a three-arm ran-
domized study of treatments to reduce perioperative blood loss following major surgery. Owing
to slow accrual, an unplanned interim analysis was required by the study team to determine
whether the study should be continued. We distinguish two different cases: when all treatments
are under direct comparison and when one of the treatments is a control. We used simulations
to study the operating characteristics of five different stochastic curtailment methods. We also
considered the influence of timing of the interim analyses on the type I error and power of the
test.We found that the type I error and power between the different methods can be quite differ-
ent.The analysis for the perioperative blood loss trial was carried out at approximately a quarter
of the planned sample size. We found that there is little evidence that the active treatments are
better than a placebo and recommended closure of the trial.

Keywords: Bonferroni adjustment; Conditional power; Interim analysis; Predictive power;
Stochastic curtailment; Stopping time

1. Introduction

For ethical and practical reasons sequential designs are commonly used in clinical trials. In se-
quential trials, we have the option to stop the trial early if data accumulated in the trial strongly
suggest the conclusion in favour of one of the treatments. Early stopping in favour of hypothesis
H1 has been well studied (Jennison and Turnbull, 2000). But, sometimes, early stopping in view
of a negative result is also desirable (see, for example DeMets and Ware (1980, 1982) and Pepe
and Anderson (1992)). In this paper, we consider the opportunity of early stopping for both
hypothesis H0 and hypothesis H1 in a three-arm randomized double-blind study involving a
placebo and two active treatments.
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Major orthopaedic procedures can be associated with substantial perioperative blood loss
(PBL) requiring the transfusion ofmultiple units of red blood cells. Blood lossmay be associated
with an increased risk of infection post operatively and longer lengths of hospital stay.Currently,
a proven technique to minimize blood loss in this patient population is deliberate hypotension
(Thompson et al., 1978). The administration of antifibrinolytic agents has also shown promise
in further reducing perioperative bleeding (Vander Salm et al., 1988). To determine the ben-
efits of these antifibrinolytic agents better, a randomized double-blind study was initiated in
1999 at the Memorial Sloan–Kettering Cancer Center to compare two antifibrinolytic agents,
e-aminocaproic acid (EACA) and aprotinin with a placebo, in surgical patients at high risk of
a significant loss of blood. The study was designed with a maximum sample size of 105 per arm
to detect a difference of 30% of blood loss between the arms with a power of 80% and an overall
two-sided type I error of 5%.
When the study was designed, it was expected that the accrual rate of these patients would

be approximately 160 per year and, therefore, the trial could be completed in no more than
2 years. However, as the trial progressed, it became evident that the accrual could not meet
the expected rate—69 patients were accrued to the trial over a span of 18 months. This fact,
compounded with emerging data from smaller studies, prompted us to carry out an unplanned
interim analysis. With results available for 24, 24 and 22 patients in the placebo, aprotinin and
EACA treatment arms, the mean (with standard deviation in parentheses) operative blood loss
(on a natural logarithmic scale) results are 6.6217 (0.7886), 6.8167 (1.1929) and 6.7936 (0.8888)
respectively. These results indicate that, when considering stopping the trial, the possibility of
doing so not only in favour of hypothesis H1 but also of hypothesis H0 should be studied.
Many researchers have suggested designs that allow unplanned interim analyses. In partic-

ular, Lan et al. (1982) suggested a method of stochastic curtailment. In this method, early
stopping is based on calculating the conditional power, i.e. the chance that the results at the
end of the trial will be significant, given the current data. The method does not restrict the
time at which an interim analysis is to be carried out. It is therefore very attractive in practice
because interim analyses are often carried out at only approximately equal intervals.
Furthermore, unplanned interim analyses can also be accommodated under this paradigm.
Similar procedures have been considered by Jennison and Turnbull (1990), Pepe and Anderson
(1992) and Betensky (1997a, b).
Other stochastic curtailment methods have been reported. Some researchers considered a

predictive power approach that involves averaging the conditional power over the posterior of
the treatment effects parameter (Herson, 1979; Spiegelhalter et al., 1986). Others considered
procedures based on a conditional probability ratio (Jennison, 1992;Xiong, 1995). This approach
uses a likelihood ratio test of whether the test statistic at the end of the trial will be consistent
with the accumulated data, i.e. a test of whether the final analysis (at the maximum sample size)
will end in favour of hypothesis H0 or hypothesis H1, on the basis of the current data. Another
approach is to calculate a prediction limit of the test statistic at the end of the trial on the basis
of the current data. Finally, the conditional power evaluated at H0 can also be used. Using
this quantity, a small value indicates that the current data are in favour of the null hypothesis
whereas a high value supports the alternative.
In this paper, we consider using stochastic curtailment methods to analyse the results from

a three-arm randomized study that allows for early stopping in favour of hypothesis H0 or
hypothesis H1. Several problems in a multiarm study are not encountered in a two-arm study.
Specifically, the multiplicity of tests will influence the size and power, and hence complicate the
design issues. The question is ‘How are the size and power affected when stochastic curtailment
is applied?’. Furthermore, the definition of an alternative hypothesis is less clear in a multiarm
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study (see, for example, Siegmund (1993)). The question is ‘How is the power affected under
the various alternatives, when stochastic curtailment is used?’. Finally, we would like to find
out the relationship between timing of the curtailment and operating characteristics.

2. Sequential stopping by using stochastic curtailment

In this section, we consider a few stochastic curtailment methods for early stopping under the
scenario of a comparison between two treatments.We shall discuss how it extends to a three-arm
study in Section 3.
Without loss of generality, we write the two-sided hypothesis testing problem as

H0 : θ = 0 versus H1 : θ = θ1 �= 0,

where θ represents the treatment difference between the two arms. Suppose that we have a K-
stage sequential test. Let n1.k/ and n2.k/ denote respectively the sample size in the two arms
under comparison at the kth stage. This formulation suggests the possibility of different num-
bers of observations between interim analyses. Also let the means and standard deviations of
the treatment effects, after k stages, in the two arms be X̄1.k/, X̄2.k/, s1.k/ and s2.k/. Then the
hypotheses can be tested by using the normalized test statistic

Zn.k/ = X̄1.k/ − X̄2.k/√{s21.k/=n1.k/ + s22.k/=n2.k/} , .1/

where n.k/ = n1.k/ + n2.k/. It is essentially the recommendation of Lan and Wittes (1988) in
applying a one-arm set-up to the results of a two-arm study. Note that Zn.k/ can be considered
as a test statistic with information level n.k/. We use m = n.K/ to denote the information at
the last stage, stageK. We assume that Zn.k/ is normally distributed with unknown mean θ and
known variance. For ease of exposition, we assume that the variance is 1.
The method of stochastic curtailment uses a ‘reference test’, which can be a fixed sample or

a sequential test. For simplicity in the discussion in this section, we assume that the reference
test is a fixed sample test with type I error α and power 1− β to detect a value of θ = θ1. Let b

be the critical value for Zm, i.e. reject hypothesis H0 if |Zm| � bm−1=2 and accept H0 otherwise.
The value of m is determined to assure a power of 1− β in the reference test.
The conditional power is defined as CP.θÅ/ = Pr.|Zm| � bm−1=2|Zn.k/, θ = θÅ/. Lan et al.

(1982) suggested calculating CP.θ1/. If it is less than some threshold γ0, we should stop the
trial in favour of hypothesis H0. In contrast, for early stopping in favour of H1, they suggested
calculating CP.0/ and recommended accepting H1 if it is greater than some threshold 1 − γ1.
At time k � K, their suggestion leads to the following rule: accept H1 if

|Zn.k/| � b{m=n.k/}1=2 + z1−γ1 [{m − n.k/}=n.k/]1=2;
accept H0 if

|Zn.k/| � b{m=n.k/}1=2 − θ1{m − n.k/} n.k/−1=2 − z1−γ0 [{m − n.k/}=n.k/]1=2:

Here z1−γ0 is the 1 − γ0 normal deviate and z1−γ1 is the 1 − γ1 normal deviate. Therefore, for
fixed m the stopping boundaries can also be parameterized by the three parameters .b,γ0,γ1/.
Variations of the method of Lan et al. (1982) have been considered by Jennison and Turn-
bull (1990), who used CP.θ̂/, where θ̂ is an estimate of θ based on the current data. Pepe and
Anderson (1992) suggested a small CP{θ̂+se.θ̂/} as an indication in favour ofH0.An alternative
to the conditional power approach is the so-called predictive power (PP) approach (Jennison
and Turnbull, 1990). The PP is defined as the conditional power integrated over the posterior
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distribution π of the unknown θ, given the data. If a non-informative prior is used, then the PP
is independent of any parameters. For normal data with information level n.k/, the posterior of
θ is N{Zn.k/ n.k/−1=2, 1=n.k/}; therefore accept H1 if

|Zn.k/| � b{n.k/=m}1=2 + z1−γ1 [{m − n.k/}=m]1=2

but accept H0 if

|Zn.k/| � b{n.k/=m}1=2 − z1−γ0 [{m − n.k/}=m]1=2:

This family of stopping times may also be derived by using the conditional probability ratio
(Jennison, 1992; Xiong, 1995).
The conditional power approach has been criticized for its arbitrariness because it is evalu-

ated on the basis of the value of θ under hypothesisH1 (see, for example, Betensky (2000)). This
leads to suggestions such as those in Jennison and Turnbull (1990). Note that, using stochastic
curtailment, datamonitoring is based on the accumulated data. The projection of the behaviour
of future data is a way to assess the possible outcomes of the trial if it is to be continued. As such,
any reasonable assumption of the distribution for future observations may be appropriate in
establishing an index for the current state of the trial. Therefore, it is also possible to consider a
version of conditional power evaluated under H0. This will alleviate the arbitrariness concerns.
In other words, we use

c.Zn.k// = Pr.|Zm| � bm−1=2|Zn.k/, θ = 0/

as a curtailment tool. c.Zn.k// measures how far the current observations deviate from the null
hypothesis. At each time k, 1 � k � K, c.Zn.k// is a random variable ranging from 0 to 1 and
having a mean of α = 1− Φ.bm−1=2/ because

E{c.Zn.k//} = E[E{I.|Zm| � bm−1=2|Zn.k/, θ = 0/}]
= E{I.|Zm| � bm−1=2|θ = 0/} = α:

At the last stage andKth stage, c.Zm/ follows a Bernoulli distribution with probability 1−α at 0
and α at 1. In general, for 1 � k < K, the conditional error rate c.Zn.k// is a monotonic function
in Zn.k/ and it measures how far the current data are against H0. It is therefore reasonable to
argue that, if this error rate falls below some threshold value γ0, continuation of the trial is
unlikely to lead to termination in favour ofH1, whereas, if it rises above some threshold 1− γ1,
then the trial should stop to reject H0. This corresponds to stopping in favour of H1 if

Pr.|Zm| � bm−1=2|Zn.k/, θ = 0/ > 1− γ1

and stopping in favour of H0 if

Pr.|Zm| � bm−1=2|Zn.k/, θ = 0/ < γ0,

which leads to the following early stopping rules at time k � K: accept H1 if

|Zn.k/| � b{m=n.k/}1=2 + z1−γ1 [{m − n.k/}=n.k/]1=2;
accept H0 if

|Zn.k/| � b{m=n.k/}1=2 − z1−γ0 [{m − n.k/}=n.k/]1=2:

The type I error for the sequential test is Pr(stopping at K, |Zm| � bm−1=2|θ = 0), which is
always larger than α (when K � 2). Also, the upper boundary is identical with that of early
stopping using conditional power (Lan et al., 1982). This leads to the stopping boundaries for
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Zn.k/ with three design parameters .b,γ0,γ1/ for a fixedm. In practice, we may choose .b,γ0,γ1/
to control for the type I error and power (or the expected sample size).

3. Comparison of the methods in a multiarm study

The methods discussed in Section 2 have been used for decision-making in the PBL trial. One
of the first problems that we needed to solve before using these methods for decision-making
was to study their operating characteristics. Although these methods have been widely used for
decision-making in trials involving two treatments, little is known about their characteristics
when applied in a multiarm study. In this section, we present some results regarding their
operating characteristics in the context of a three-arm study.
Sequential monitoring of multiarm trials has been studied by Hughes (1993), Siegmund

(1993), Follmann et al. (1994) and Betensky (1996). Hughes (1993) considered the case where
all treatments are under direct comparison (pairwise comparison) and the case where one of the
treatments is a control. He suggested that, when one treatment is a control, the control should
be kept throughout the trial whereas active treatments can be dropped early. Siegmund (1993)
studied a two-stage approach whereby the trial proceeds until at least one treatment has been
eliminated; then a comparison between the remaining treatments will be made. As in Siegmund
(1993), Betensky (1996) also studied a two-stage approach. But, in addition to pairwise com-
parisons, she also considered the case of a control treatment. Follmann et al. (1994) considered
the possibility of early stopping in favour of hypothesis H0. Their method is based on pairwise
comparisons between the arms. The type I error adjustment is a generalization of Dunnett’s
or Tukey’s procedure for multiple comparisons. They showed that the adjustments that they
proposed produce stopping boundaries which are essentially identical with those by using a
simple Bonferroni adjustment in the type I error (Follmann et al. (1994), Tables 1 and 2). They
subsequently suggested using Bonferroni adjustment because it is simpler and more flexible, for
example, when the amount of information is different between each pair of arms. Furthermore,
it is a widely established method for effectively controlling the type I error when the number of
groups is not too large. Therefore, in this section, we consider a trial designed with a Bonferroni
adjustment to the type I error.
Unlike a trial with two arms, where the hypothesis to be tested is straightforward, namely

no difference versus some differences between the arms, in a three-arm study there are several
possible ways to formulate the problem.
In the PBL trial, two active treatments (aprotinin and EACA) have been compared with a

single control. In that situation, Hughes (1993) suggested that the control arm should not be
dropped in any of the interim analyses whereas other arms may be dropped if they are found to
be inferior to any other arms. Let T1 and T2 be the active treatments and C be the control: the
interesting situations are

(a) T1 = T2 = C (the null hypothesis)—the elimination of any treatment leads to a type I
error,

(b) T1 > T2 = C—a failure to eliminate T2 or C (at the last look) or the elimination of T1
both lead to errors,

(c) T1 = T2 > C—the elimination of T1 or T2 or a failure to eliminate C (at the last look)
both lead to errors—and

(d) T1 > T2 > C—a failure to choose T1 as the superior treatment results in an error.

There are also situations where all three arms are active.We consider these scenarios for com-
pleteness. Let T1, T2 and T3 denote the treatment effects of the treatments under study. Then
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Siegmund (1993) identified some situations that are interesting to study:

(a′) T1 = T2 = T3 (the null hypothesis)—the elimination of any treatment leads to a type I
error,

(b′) T1 > T2 = T3—a failure to eliminate T2 or T3 or the elimination of T1 both lead to errors,
(c′) T1 = T2 > T3—the elimination of T1 or T2 or a failure to eliminate T3 both lead to

errors—and
(d′) T1 > T2 > T3—a failure to choose T1 as the superior treatment results in an error.

We studied the behaviours of five stochastic curtailment methods when

(i) all arms are under direct comparison and
(ii) one of the arms is a control.

In each case, we assumed that the reference test is a fixed sample two-sided test for

HÅ
0 : Ti − Tj = 0 versus HÅ

1 : Ti − Tj = θ1 �= 0, i �= j,

with overall type I error of 5%, following a Bonferroni adjustment and an 80% power to detect
θ1. The five methods are CP1 (Lan et al., 1982), CP2 (Jennison and Turnbull, 1990), CP3 (Pepe
and Anderson, 1992), PP and CP4 (the conditional power function but evaluated at θ = 0,
i.e. c.Zm/). The CP3 method is a modification of Pepe and Anderson’s method (which only
considered early stopping in favour of hypothesis H0) to allow also early stopping in favour
of H1 if CP{θ̂ − se.θ̂/} > 1 − γ1. For each method, the value of b is that which is used by
the corresponding reference test. The value of γ0 is constrained to be the same as γ1 for each
method.
We first studied the effect of using stochastic curtailment methods on the overall type I error

and power. We considered sequential trials with K = 2 and K = 5 looks. For each method, we
used three values of γ0 = γ1 = γ that correspond to threshold values of 0.001, 0.05 and 0.2. We
constrained the maximum number of observations in the sequential trial to be the same as that
in the reference test. Furthermore, any test of the sample sizem can be standardized to a test of
sample size 1. For example, a test based on Zm can be considered to be a test with the sample
size of the reference test normalized to be the same as the number of looks, i.e. we considered
a reference test with sample sizes of 2 and 5.
We defined power as the complement of the error rate, i.e. 1 minus the error rate, where the

error is as defined under situations (b), (c) and (d) or under (b′), (c′) and (d′). Furthermore,
under situations (b), (c) and (d) and (b′), (c′) and (d′), differences between treatments are fixed
at θ1. For example, in case (c′), the power of the test is the probability of not rejecting hypoth-
esis H0 when T1 = T2 = T3 + θ1, but in case (d′) the power of the test is the probability of
not rejecting H0 when T1 = T2 + θ1; T2 = T3 + θ1. In this study, we fixed the value of θ1 at
2.28 and 1.44 respectively for the two- and five-looks situation. These values of θ1 were chosen
such that there is an 80% chance that they can be detected by using a fixed sample size test
(reference) with a sample size of 2 and 5 respectively. This set-up is completely general so, for
example, the PBL trial was planned for a maximum of 210 patients for comparison between
any two arms. In that case, the fixed sample size test is based on m = 210, instead of m = 2,
observations. The tabulated results then correspond to a test with an 80% chance of detecting
a value of θ1 = 2:28.m=2/−1=2 = 2:28.105/−1=2 = 0:222.
All the methods considered use b, which corresponds to the critical value for a fixed sample

size test based on m observations, i.e. reject hypothesis H0 if |Zm| � bm−1=2 and accept H0
otherwise. The value of b determines the type I error. In the simulations, the type I error of the
fixed sample test is limited to less than 5% after Bonferroni adjustment. So the value of b is zα=2
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where α = 0:05=(number of pairwise comparisons), and z1−α is the .1−α=2/% normal deviate.
For three arms, the number of comparisons is 3, so b = 2:39α=2.
For each situation that we studied, 200000 simulations were used to estimate the type I error

and power. The results when all the arms are under direct comparison are given in Table 1 and
when one arm is a control are given in Table 2. We also calculated the Monte Carlo average
sample number ASN under hypothesis H0 for each method.
Tables 1 and 2 record results based on K = 2 and K = 5 looks. The patterns of results

are very similar for each of these two scenarios. Therefore, in discussing the results in Tables 1
and 2, we concentrate on the two-looks case and refer the readers to Tables 1 and 2 for results
underK = 5. In Table 1, the behaviours of the various methods are very similar when the value
of γ is small, i.e., when early stopping in favour of hypothesis H0 or H1 is based on a very
stringent threshold, the behaviours of the methods are very similar. Overall, the type I error

Table 1. Type I error, power and average sample number ASN under hypothesis H0
by using five stochastic curtailment methods in a three-arm study (direct comparison)†

Number γ0 = γ1 Method Type I error Power‡ Power§ Power§§ ASN
of looks

2 0.001 CP1 0.044 0.69 0.79 0.80 1.99
CP2 0.046 0.69 0.79 0.80 1.98
CP3 0.044 0.69 0.79 0.80 1.99
PP 0.044 0.69 0.79 0.80 1.99
CP4 0.044 0.69 0.78 0.80 1.95

0.050 CP1 0.044 0.69 0.79 0.80 1.99
CP2 0.064 0.70 0.79 0.81 1.64
CP3 0.045 0.69 0.80 0.80 1.99
PP 0.051 0.69 0.79 0.80 1.85
CP4 0.029 0.64 0.60 0.80 1.19

0.200 CP1 0.044 0.69 0.78 0.80 1.96
CP2 0.106 0.72 0.75 0.83 1.37
CP3 0.052 0.69 0.79 0.81 1.81
PP 0.083 0.71 0.77 0.82 1.49
CP4 0.010 0.47 0.35 0.79 1.03

5 0.001 CP1 0.044 0.69 0.79 0.80 4.91
CP2 0.048 0.69 0.80 0.80 4.52
CP3 0.044 0.69 0.80 0.80 4.84
PP 0.044 0.69 0.80 0.80 4.72
CP4 0.043 0.69 0.77 0.80 4.28

0.050 CP1 0.044 0.69 0.79 0.80 4.48
CP2 0.233 0.71 0.68 0.84 2.89
CP3 0.045 0.69 0.80 0.80 4.33
PP 0.056 0.70 0.80 0.81 3.88
CP4 0.007 0.24 0.18 0.40 1.18

0.200 CP1 0.043 0.69 0.77 0.80 4.00
CP2 0.378 0.71 0.57 0.86 2.16
CP3 0.059 0.70 0.79 0.81 3.74
PP 0.223 0.71 0.68 0.85 2.76
CP4 <0.001 0.01 0.01 0.03 1.00

†Each method uses the same b-value as a fixed sample test with overall two-sided type I
error 0.05 and power 80%, with a Bonferroni adjustment. Entries were obtained by 200000
simulations.
‡T1 > T2 = T3.
§T1 = T2 > T3.
§§T1 > T2 > T3.
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Table 2. Type I error, power and average sample number ASN under hypothesis H0 by using
five stochastic curtailment methods in a three-arm study (treatments versus control)†

Number of looks γ0 = γ1 Method Type I error Power‡ Power§ Power§§ ASN

2 0.001 CP1 0.044 0.69 0.68 0.80 1.99
CP2 0.045 0.69 0.68 0.80 1.98
CP3 0.044 0.69 0.68 0.80 1.99
PP 0.044 0.69 0.68 0.80 1.99
CP4 0.044 0.69 0.68 0.80 1.94

0.050 CP1 0.044 0.69 0.68 0.80 1.99
CP2 0.056 0.69 0.67 0.81 1.58
CP3 0.045 0.69 0.68 0.80 1.99
PP 0.048 0.69 0.68 0.80 1.81
CP4 0.024 0.58 0.64 0.80 1.15

0.200 CP1 0.044 0.69 0.68 0.80 1.95
CP2 0.082 0.68 0.65 0.83 1.31
CP3 0.049 0.69 0.68 0.81 1.77
PP 0.067 0.68 0.67 0.82 1.42
CP4 0.007 0.35 0.47 0.79 1.02

5 0.001 CP1 0.044 0.69 0.68 0.80 4.88
CP2 0.046 0.69 0.68 0.80 4.41
CP3 0.044 0.69 0.68 0.80 4.79
PP 0.044 0.69 0.68 0.80 4.66
CP4 0.042 0.69 0.68 0.80 4.16

0.050 CP1 0.042 0.69 0.68 0.80 4.40
CP2 0.173 0.66 0.60 0.84 2.70
CP3 0.042 0.69 0.68 0.80 4.23
PP 0.048 0.69 0.68 0.81 3.71
CP4 0.005 0.21 0.31 0.66 1.13

0.200 CP1 0.038 0.68 0.68 0.80 3.88
CP2 0.281 0.64 0.51 0.87 2.11
CP3 0.049 0.68 0.68 0.81 3.59
PP 0.164 0.67 0.61 0.85 2.61
CP4 <0.001 0.01 0.02 0.19 1.00

†Each method uses the same b-value as a fixed sample test with overall two-sided type I error 0.05
and power 80%, with a Bonferroni adjustment. Entries were obtained by 200000 simulations.
‡T1 > T2 = C.
§T1 = T2 > C.
§§T1 > T2 > C.

is close to the desired 5% level and the power is uniformly high for each method. This is not
surprising because the chance of early stopping is small and therefore the behaviours should be
very similar to a fixed sample test applied to multiple comparisons. This also results in an ASN
that is close to the number of looks (for example, γ = 0:001 and ASN= 1.99 for CP1). As γ
increases, the chance of curtailment in either direction increases. However, it is seen that for the
CP1 and CP3 methods the overall type I error and power under all situations are very close to
the case when γ is small. In contrast, the type I errors of the PP and CP2 methods increase to
0.083 and 0.106 respectively for γ = 0:2, with corresponding drops in power. The power for the
CP4 method drops substantially for larger values of γ. These results are not surprising. CP4 is
a conditional probability under H0. Therefore, even a moderate value of γ leads to very liberal
stopping in favour of H0, giving a very small type I error but poor power. This, however, is
not an indication that CP2, CP4 or PP are poor methods. It only suggests that the values of
b,γ0 and γ1 must be carefully chosen for these methods. Note also that the power can exceed
80% because in situation (d) the underlying difference between the best treatment T1 and T3 is
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θ1 + θ1, which is bigger than the difference of θ1 assumed in the calculation of the fixed sample
reference test.
When one arm is a control (Table 2), the power is relatively stable for all the methods except

CP4 where the power drops precipitously as the value of γ increases. For example, CP4’s power
to detect T1 = T2 > C is 0.69 when γ = 0:001 is used. But its power for the same test drops to
0.58 and 0.35 when γ = 0:05 and γ = 0:2 respectively are used. This result once again under-
scores the fact that the interpretation of γ is different for the different methods. The sizes for the
PP and CP2 methods once again are inflated for larger values of γ (0.067 and 0.082 for γ = 0:2).
However, the size inflations for these methods are smaller than the case when all treatments are
under direct comparison. This can be explained by the fact that early dropping of the control is
not possible. Once again, method CP4 is anticonservative for larger values of γ.
So far, we have considered curtailments performed at one of the planned interim analyses.

However, one of the most attractive properties of curtailment is that the analysis can occur at

Table 3. Effect of timing of the interim analysis on the type I error, power and
average sample number ASN under hypothesis H0 in a three-arm study (direct
comparison)†

f γ0 = γ1 Method Type I error Power‡ Power§ Power§§ ASN

0.25 0.001 CP1 0.044 0.69 0.79 0.80 1.99
CP2 0.044 0.69 0.79 0.80 1.99
CP3 0.044 0.69 0.79 0.80 1.99
PP 0.044 0.69 0.79 0.80 1.99
CP4 0.044 0.69 0.79 0.80 1.99

0.050 CP1 0.044 0.69 0.79 0.80 1.99
CP2 0.164 0.71 0.74 0.83 1.81
CP3 0.044 0.69 0.79 0.80 1.99
PP 0.044 0.69 0.79 0.80 1.99
CP4 0.015 0.43 0.32 0.75 1.13

0.200 CP1 0.044 0.69 0.79 0.80 1.99
CP2 0.279 0.72 0.65 0.85 1.54
CP3 0.044 0.69 0.79 0.80 1.99
PP 0.160 0.71 0.74 0.83 1.82
CP4 0.001 0.07 0.04 0.41 1.01

0.75 0.001 CP1 0.045 0.69 0.79 0.80 1.99
CP2 0.045 0.69 0.80 0.80 1.74
CP3 0.045 0.69 0.79 0.80 1.96
PP 0.045 0.69 0.79 0.80 1.86
CP4 0.044 0.69 0.78 0.80 1.59

0.050 CP1 0.045 0.69 0.79 0.80 1.65
CP2 0.048 0.69 0.80 0.81 1.35
CP3 0.045 0.69 0.80 0.80 1.57
PP 0.046 0.69 0.80 0.80 1.42
CP4 0.038 0.68 0.71 0.80 1.17

0.200 CP1 0.044 0.69 0.78 0.80 1.37
CP2 0.060 0.71 0.79 0.82 1.18
CP3 0.048 0.69 0.80 0.81 1.33
PP 0.056 0.70 0.79 0.81 1.21
CP4 0.026 0.66 0.62 0.80 1.06

†Assuming a study withK = 2 looks at f = 0:25 and f = 0:75 of themaximumnumber
of observations. Entries were obtained by 200000 simulations.
‡T1 > T2 = T3.
§T1 = T2 > T3.
§§T1 > T2 > T3.
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any time over the course of the trial. This is the case in the PBL trial, for example, where an
interim analysis was performed on the basis of approximately a quarter of the planned maxi-
mum sample size. Here, we give results from a study of the influence of timing of the analysis
in a three-arm trial. We considered a trial with two looks and the interim analysis occurring
when 25% and 75% of the observations have been accrued. The results when all arms are under
direct comparison are given in Table 3, and the results when one arm is a control are given
in Table 4. For brevity the corresponding results for an analysis at 50% of the observations of
those in Tables 1 and 2 are not presented. Table 3 indicates that, for method CP1, the timing of
the interim analysis has little effect on the overall type I error or the power of the method. In
certain cases, however, there is some reduction in ASN if the interim analysis is carried out late
in the trial. For example, for γ = 0:05, ASN= 1.99 at f = 0:25 but ASN = 1.65 at f = 0:75.
This reduction is due to the fact that for the CP1 method stopping is not allowed at f = 0:25
but is possible at f = 0:75. Similar results are seen for the CP3 method. The type I error is

Table 4. Effect of timing of the interim analysis on the type I error, power and
average sample number ASN under hypothesis H0 in a three-arm study (treatments
versus control)†

f γ0 = γ1 Method Type I error Power‡ Power§ Power§§ ASN

0.25 0.001 CP1 0.044 0.69 0.68 0.80 1.99
CP2 0.044 0.69 0.68 0.80 1.99
CP3 0.044 0.69 0.68 0.80 1.99
PP 0.044 0.69 0.68 0.80 1.99
CP4 0.044 0.69 0.68 0.80 1.99

0.050 CP1 0.044 0.69 0.68 0.80 1.99
CP2 0.127 0.69 0.64 0.83 1.80
CP3 0.044 0.69 0.68 0.80 1.99
PP 0.044 0.69 0.68 0.80 1.99
CP4 0.011 0.33 0.42 0.74 1.10

0.200 CP1 0.044 0.69 0.68 0.80 1.99
CP2 0.210 0.66 0.57 0.84 1.52
CP3 0.044 0.69 0.68 0.80 1.99
PP 0.124 0.69 0.64 0.83 1.81
CP4 0.001 0.04 0.07 0.40 1.00

0.75 0.001 CP1 0.045 0.69 0.68 0.80 1.99
CP2 0.045 0.69 0.68 0.80 1.68
CP3 0.045 0.69 0.68 0.80 1.94
PP 0.045 0.69 0.68 0.80 1.82
CP4 0.044 0.69 0.68 0.80 1.51

0.050 CP1 0.044 0.69 0.68 0.80 1.58
CP2 0.043 0.69 0.68 0.81 1.29
CP3 0.044 0.69 0.68 0.80 1.50
PP 0.043 0.69 0.68 0.80 1.35
CP4 0.032 0.66 0.68 0.80 1.12

0.200 CP1 0.041 0.68 0.68 0.80 1.30
CP2 0.049 0.69 0.68 0.82 1.14
CP3 0.043 0.69 0.68 0.81 1.27
PP 0.047 0.69 0.68 0.81 1.16
CP4 0.020 0.61 0.65 0.80 1.04

†Assuming a study with K = 2 looks at first look f = 0:25 and f = 0:75 of the maxi-
mum number of observations. Entries were obtained by 200000 simulations.
‡T1 > T2 = C.
§T1 = T2 > C.
§§T1 > T2 > C.
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inflated for the PP (= 0:16) and CP2 (= 0:28) methods if the first interim analysis is performed
too early (f = 0:25 and γ = 0:2). CP4, in contrast, is conservative if the first interim analysis is
performed too early (f = 0:25 and γ � 0:05). When the first interim analysis is performed with
75% of the planned maximum sample size, all methods, except CP4, give the appropriate size;
the CP4 method is too conservative in that case.
The situation is similar when one of the arms is a control (Table 4), i.e. the CP1 and CP3

methods are little affected by the timing of the analysis; the PP, CP2 and CP4 methods are
affected if the first interim analysis is performed too early. Note that the type I errors of all
the methods are smaller than their corresponding entries in Table 3 because the control group
cannot be dropped early.

4. Results of the prophylactic trial

We now return to the three-arm PBL trial. With results available for 24, 24 and 22 patients
for the placebo, aprotinin and EACA arms, the mean (with standard deviation in parentheses)
of the operative blood loss (on a natural log-scale) results are 6.6217 (0.7886), 6.8167 (1.1929)
and 6.7936 (0.8888) respectively. Normal probability plots (which are not shown) show no ev-
idence of a departure from normality, in each of the three groups. The test statistic (1) is used
for comparison. The study was designed to have a maximum of K = 2 looks with a maxi-
mum sample of 105 per arm or 210 between two arms. So the comparison between the placebo
and EACA is based on 46/210 × 100%= 21.9% of the maximum sample size. Similarly, be-
tween the placebo and aprotinin, and between aprotinin and EACA, the percentages are both
22.9%.
The study in Section 3 shows that stopping early to accept hypothesis H0 on the basis of few

observations is not possible for a few of the methods (Table 4, f = 0:25). Indeed, when we
used γ = 0:2, only the CP2 and CP4 methods favour stopping to accept no difference between
the placebo and the two active treatments; for the other methods, stopping in favour of no
difference is not possible by design. However, we were concerned with the unpromising results
that were seen in the active treatments. We therefore calculated the probabilities that the active
treatments will be shown to be better than the placebo, if the trial were allowed to carry on.
These results are given in Table 5.
We shall first focus on the comparison between the control (placebo) arm and the treatment

arms. Note that all probabilities are directional. For example, comparing the placebo with
aprotinin, the conditional power (CP1 method) is 0.6843 for placebo better than aprotinin, but

Table 5. Results of the three-arm prophylactic trial: Z-values and powers by using different
stochastic curtailment methods

Comparison Zn.1/ Powers for the following methods:

PP CP1 CP2 CP3 CP4

Aprotinin better than placebo −0:6680 0.0195 0.4023 <0.0001 0.0066 0.0010
Placebo better than aprotinin 0.6680 0.2937 0.6843 0.1282 0.7588 0.0091
EACA better than placebo −0:6913 0.0202 0.4146 <0.0001 0.0063 0.0011
Placebo better than EACA 0.6913 0.3136 0.6972 0.1498 0.8025 0.0096
EACA better than aprotinin −0:0749 0.0881 0.5441 0.0019 0.1582 0.0030
Aprotinin better than EACA 0.0749 0.1184 0.5753 0.0057 0.2611 0.0038
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it is 0.4023 for aprotinin better than placebo. The primary focus here is whether there is suffi-
cient evidence that the two active treatments are better than the placebo to be worthy of further
accrual. Except for CP1, all the other methods show little evidence of this. For example, the
value of PP is only 0.0195 for aprotinin better than placebo and 0.0202 for EACA better than
placebo. These values suggest that, even if the trial were to continue, there will only be about a
2% chance that a significant result will be seen in favour of either active treatments. Ethically,
we would have great difficulty in continuing a trial on the basis of these numbers. Similar results
are seen for the comparison between EACA and the placebo; all the methods, except CP1, give
a low probability that the trial will eventually end in favour of EACA.
CP1 is the only method that gives support to continuing the trial. This is because, with only

a quarter of the observations accrued and with a hypothesized treatment effect of θ1 for future
observations, there is still a considerable chance that the trial will end in favour of one of the
arms. This study underscores how important the value of θ1 can be for decision-making when
method CP1 is used. The trial was designed with a hypothesized value of θ1 that is much larger
than the treatment effects that were seen at the interim analysis. If we assume that the hypothe-
sized value of θ1 is still plausible, muchmore data are needed to reject the alternative hypotheses
(that at least one of the active arms is better than the placebo). However, we must also balance
this assumption with benefits to patients. So the question that an investigator must ask is the
plausibility of the hypothesized value of θ1. It is not uncommon that θ1 represents the smallest
treatment effects of clinical significance that we wish to detect. In this regard, its value bears
little relationship to the true treatment effects. Therefore, it is a leap of faith to assume that such
treatment effects will be seen in future data, when the current data do not support such a value.
The results in Table 5 also illustrate the relationship between the different boundaries. That

for method CP3 is always higher than that for method CP2 because it is conditioned on a treat-
ment difference of θ̂+ se.θ̂/, instead of θ̂ (as in method CP2) for future observations. The PP is a
conditional power averaged over the posterior of θ. Since the posterior is N{θ̂, 1=n.k/}, the PP
tends to give less weight to the observed treatment effects in decision-making. For example, in
testing whether aprotinin is better than the placebo (Table 5, first row), the observed treatment
effects statistic is Zn.1/ = −0:668, a value that does not support the hypothesis that aprotinin
is better. In that case, the PP is higher than that for the CP2 or CP3 methods. So compared
with CP2 and CP3 the PP projects a higher chance of a significant result in favour of aprotinin.
However, when the observed treatment difference clearly favours the hypothesis (Table 5, sec-
ond row), the PP can be lower than the powers for the CP2 or CP3 methods. In either of these
cases, the observed treatment effects become diffused by the posterior.
The CP4 method gives the conditional power assuming that θ = 0. Its relationship to the

other conditional power approaches is therefore dependent on the relationships of θ1, θ̂ and
θ̂ + se.θ̂/ to 0. For example, in the comparison between aprotinin and placebo (Table 5, first
row), θ̂ = −0:195 and θ̂ + se.θ̂/ = −0:195+ 0:292 = 0:097, so the value for the CP4 method is
higher than that for CP2 but it is lower than for CP1 or CP3.
To date, only one other trial in which patients undergoing orthopaedic tumour surgery were

randomized toaprotinin (n = 13)orplacebo (n = 12)hasbeen reported.The trial results showed
a statistical difference in blood loss in favour of aprotinin. This has not been reproduced nor
accepted as a standard of care. In the PBL trial, we nearly doubled the sample size in each of
the three groups and yet most of the methods that we employed showed that there is no trend
that either active treatments will be shown to be significantly better than the placebo, even if the
trial is to continue. Aprotinin and EACA are not benign drugs since they may enhance clotting
after surgery and may cause a potentially fatal pulmonary embolism. Thus, it is safer to stop
the trial if the drugs are highly unlikely to benefit the patients and can potentially harm them.
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5. Discussion

In this paper, we considered stochastic curtailment for the early termination of a multiarm
study. We distinguished two scenarios:

(a) when all the treatments are under direct comparison and
(b) when one of the treatments is a control.

We assumed that the reference test is a two-sided reference test with a Bonferroni adjustment
to control the overall type I error due to multiple comparisons. All the methods that were con-
sidered here use a ‘power’ function that is evaluated on the basis of the observed data and a
hypothesized value of the treatment effects. We found that, when the stochastic curtailment
methods use a critical value b that is identical with that used by the reference test, the overall
type I error can be quite different depending on the choice of the threshold parameters (γ0 and
γ1) and the particular method. For small values of γ0 and γ1, the overall type I errors of the
methods are very close to the nominal level. For larger values of γ0 and γ1, the type I errors
of the methods are quite different. This highlights the fact that, although all the methods can
be used to stop in favour of or against hypothesis H0, the power function used by the methods
has very different interpretations. For example, conditional power (CP1) gives the probability
that the trial will end in favour of H1 when H1 is in fact true. Obviously a moderately small
value for the CP1 method would be sufficient to stop in favour of H0. In contrast, the CP4
method asks the chance that the trial will end in favour of H1 when H0 is true. Using this
pessimistic assumption, a much smaller value is needed to convince the investigators to stop
the trial. However, this does not preclude methods like CP4 from being used as a curtailment
tool. As long as the difference in the interpretation of the different powers is recognized, all the
methods can be used. In fact, in a trial with two looks, all the methods in this study can be made
equivalent.
We found that the time of the interim analysis can have a significant effect on the overall type

I error of the test. To be specific, when the b-value is unadjusted, then the type I error is inflated
for the PP and CP2 methods, if the interim analysis is performed on the basis of only a fraction
of the expected maximum sample size in a trial. However, as suggested above, an adjustment
of the b-value would give tests with the desired size.
In the PBL trial, we found that the CP3 and PP methods do not allow stopping (by design)

after an accrual of 25% of the expected maximum sample size, yet both methods indicate a low
power for concluding superiority of the active treatments if the trial is to carry on. These results
may compel us to stop the trial in favour of hypothesis H0 even though the inner boundaries
have not been breached, as it becomes ethically difficult to continue with treatments that have
little chance of benefits. (Indeed, combining these results with the evidence from methods CP2,
CP4 and slow accrual, we decided to stop the trial.) This kind of situation can be avoided if strict
rules of double blinding are adhered to. This is possible for certain trials if the observation of
results does not reveal the identity of the treatment. But, for some trials, this is not possible. As
an example, in a recent double-blind placebo-controlled trial to study arrythmias after surgery,
once the end point had been reached, the randomization code was broken to allow treatment
of the symptoms (Amar et al., 2000).
Finally, as suggested in Section 3, any of the stochastic curtailment methods trace out a set

of stopping boundaries and these can be used to design a trial with a specific size and power.
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