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 A Bayesian Decision Approach for Sample

 Size Determination in Phase LI Trials

 Denis Heng-Yan Leung

 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center,

 1275 York Avenue, New York, New York 10021, U.S.A.

 email: leungabiost.mskcc.org

 and

 You-Gan Wang

 Department of Biostatistics, Harvard School of Public Health,

 655 Huntington Avenue, Boston, Massachusetts 02115, U.S.A.

 SUMMARY. Stallard (1998, Biometrics 54, 279-294) recently used Bayesian decision theory for sample-
 size determination in phase II trials. His design maximizes the expected financial gains in the development
 of a new treatment. However, it results in a very high probability (0.65) of recommending an ineffective
 treatment for phase III testing. On the other hand, the expected gain using his design is more than 10
 times that of a design that tightly controls the false positive error (Thall and Simon, 1994, Biometrics 50,
 337-349). Stallard's design maximizes the expected gain per phase II trial, but it does not maximize the
 rate of gain or total gain for a fixed length of time because the rate of gain depends on the proportion of
 treatments forwarding to the phase III study. We suggest maximizing the rate of gain, and the resulting
 optimal one-stage design becomes twice as efficient as Stallard's one-stage design. Furthermore, the new
 design has a probability of only 0.12 of passing an ineffective treatment to phase III study.

 KEY WORDS: Bayesian; Decision theory; Gain function; Gittins Index; Sample size; Sequential design.

 1. Introduction

 Recently, Stallard (1998) considered sample size determina-
 tion in phase II trials. The problem was developed in the con-

 text of developing a new treatment and so, if the treatment

 is accepted in the phase II trial, a phase III trial will be car-

 ried out to compare the new treatment with a standard. He

 assumed that there are costs of conducting the phase II and

 phase III trials and there are potential gains should the treat-

 ment be proven to be superior to the standard in the phase

 III trial. The costs and benefits were incorporated in a gain

 function. The treatment was to be tested on patients, and the

 response of each patient was Bernoulli depending on the un-

 derlying success probability, p, of the treatment. The success

 probability was unknown but assumed to follow a prior distri-

 bution 7ro at the beginning of the phase II trial. Based on this

 set-up, Stallard obtained optimal one-stage, two-stage, and

 fully sequential designs that maximize the overall expected

 gains. He found in his example (Stallard, 1998, Section 3) that

 the overall expected gains from the three optimal designs were

 very similar.

 Stallard (1998) assumed that a treatment that passes phase

 II testing will be marketed only if its success probability, p,

 can be shown to be superior to the success probability po,

 of a standard in a phase III trial. However, he showed that

 the probability of passing a treatment with p = po to phase
 III testing was 0.65 for his optimal fully sequential design

 and that this probability was 0.71 for his optimal one-stage

 design. Since any reasonable phase III design would reject a

 treatment with p = po with high probability, why would an
 optimal phase II design choose to pass such a treatment to

 phase III testing with such a high probability?

 The second unusual result from Stallard's (1998) article is

 in its evaluation of other existing designs. In particular, Stal-

 lard evaluated another Bayesian design suggested earlier by

 Thall and Simon (1994). Thall and Simon's design does not di-

 rectly optimize gains but rather aims to control the posterior

 probabilities of accepting promising and rejecting nonpromis-

 ing treatments. In his example, Thall and Simon's design had

 a much lower probability of passing a treatment with p = po

 to phase III. But in terms of overall expected gain, Thall and
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 Simon's design was far inferior to any of Stallard's optimal

 designs. In fact, Stallard showed that Thall and Simon's de-

 sign had even smaller expected gain than not carrying out a

 phase II trial altogether!

 The goal of this article is to study and explain these re-

 sults. We believe that the time to carry out the study to be

 an important component in a trial design, an issue that is

 not considered in Stallard's (1998) gain function. We suggest

 a design that maximizes the rate of gain, and we show that,

 when using this new gain function, the peculiarities described

 above disappear. The optimal design based on our new gain

 function will have only a small probability of passing an inef-

 fective treatment for further study.

 2. Maximizing the Rate of Gain

 For ease of illustration, in this article, we only consider one-

 stage designs. We first briefly discuss Stallard's (1998) design.

 Suppose the phase II study consists of n patients. Let Sn be
 a random variable denoting the number of successes in the n

 patients and let s* be the cut-off value to pass a treatment

 to phase III testing. Stallard's design is to find (n, s*) by
 maximizing the following expected gain before the trial:

 n

 GStallard =-nk + a, {-m + l(n)E(t,(p) I s, n)}Pr(Sn = s),
 s=s*

 where k denotes the cost of testing each patient in the phase

 II study, m denotes the fixed set-up cost of the phase III

 study, r,(p) denotes the probability that the phase III study

 will indicate the treatment to be effective when its success

 probability is p, and l(n) denotes the potential gain from the
 phase III study,

 1n) lo -Ain, n <no )
 l (lo-Aino) exp{-A2(n-no)}, n > no. ()

 Stallard's (1998) design makes two implicit assumptions.
 First, the gain from a potentially successful phase III trial is

 immediately available upon completion of the phase II study.

 Second, each successful phase III trial is expected to have a

 constant profit. Because of these, the more phase III trials

 being conducted, as long as the expected gain in each is pos-

 itive, the better. This explains why Stallard's design is much

 more profitable than Thall and Simon's (1994) design, which
 has a low overall probability of passing treatments.

 We believe that Stallard's (1998) framework is reasonable
 but that his gain function is inappropriate. In this article, we
 suggest an alternative design. The design takes into consider-

 ation information that has been ignored, but that is readily

 available, in Stallard's set-up. This information is the time to

 carry out the phase III study.

 We consider the general situation where a series of phase

 II trials, up to M, can be studied and one can stop at any-

 time before M and pass a promising treatment to a phase
 III study. The general set-up would make the optimal design

 appropriate to situations where drug companies may want

 to only pass promising treatments to phase III testing (e.g.,
 Wang and Leung, 1998).

 Assume that each phase II trial requires n patients and a

 phase III trial requires N patients. We will show later that

 N can be readily obtained from Stallard's (1998) set-up. We
 also assume that the time to carry out a trial is proportional

 to the number of patients required, so the time to carry out
 a phase II trial is n and that for a phase III trial is N. If a

 treatment passes the phase II study (with Sn = s > s*), the
 potential gain from a phase II trial (with a possible successful
 phase III study) is

 n

 GIII = E {-m + l(n)E(ti(p) I s, n)}Pr(Sn = s I Sn > s*)
 s=s*

 1(n) En s* E(r,(p) I s, n)Pr(Sn = s)
 1 -Pr(A)

 where Pr(A) denotes the probability of abandoning a phase II
 study. Pr(A) is a function of (n, s*) and may be different for
 different designs. If a phase II study accepts a treatment for a

 phase III study after r phase II studies (each with n patients),
 the total gain up to completion of the phase III study is

 g, =_-nkr + GIII. (2)

 Consider the truncated stopping time TM = min(r, M),
 i.e., the study is stopped at r or M if none of the M phase

 II trials is accepted for a phase III study. The probability of
 carrying out the jth phase II trial is Pr(r > j) = pi-1(A),
 and the expected total gain becomes

 g9mM =-nkE(irM) + {1 - PrM (A)} GIII.

 Particularly, when M = 1, we have Tr = 1 (one-step-look-
 ahead) and

 n

 E(g,,) =-nk + Z {-m + l(n)E(I,(p) | s, n)}Pr(Sn = s).
 s=s*

 (3)
 This is in fact the objective function Stallard (1998) used, i.e.,

 E(grl) = Gstallard-
 Although the expected gain from a phase III study is taken

 into account, the time and effort is not properly taken into
 account in (3). Based on (3), any treatment with a potential
 profit from marketing that can cover the set-up cost (m) will
 be passed to a phase III study. This is not desirable because
 phase II studies are to screen and recommend treatments with

 maximum gain (not treatments with a small positive gain).
 If we consider the time, N, to carry out the phase III study,

 the average time for Stallard's (1998) design is

 n + N{1 - Pr(A)}. (4)

 We now go back to the general case where M is any integer.
 The expected gain per unit time (gain rate) is

 E(gTM)
 nE(TM ) + { 1-PrM (A) } N

 -nk1jPr(()) + {1 - Pr (A)} GIII

 n1_ Prm() )+ {1 - PrM (A) } N

 -nk + {1 - Pr(A)}GIII
 n + {1-Pr(A)}N

 This gain rate is very similar to the Gittins index for com-

 pleting different projects (Gittins, 1989, p. 25). It is more
 reasonable to maximize this index R. Note also that R, is

 independent of M.
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 In maximizing R,, we need to know the value of N, which
 is readily available from Stallard's (1998) set-up. In his set-up,

 he assumed that the phase III trial is to detect a difference

 from po of a standard treatment to po + 6 with a two-tailed

 significance test at a-level with a power of 1 -i3. Given po, 6, a,
 i3, the sample size N can be obtained using a formula origi-
 nally by Whitehead (1993), as suggested by Stallard.

 We now compare our design to Stallard's (1998) design as

 well as to Thall and Simon's (1994) design using the exam-

 ple from Stallard's Section 3. In that example, the following

 parameters were used: k = 0.5 (million dollars), m = 200 (mil-

 lion dollars), lo = 7400 (million dollars), Al = 5 (million dol-
 lars), A2 = 0.00173, po = 0.2, 6 = 0.15, a = 0.05, and p = 0.1.

 The prior 7ro(p) is beta(a, b) distributed with a 0.845,b =

 10 - a. Given this information, we find that N 350. The

 optimal design by maximizing R, gives (n, s*) = (10, 4). Stal-
 lard's design gives (n, s*) = (29, 5).

 Our optimal design gives a value of R, = $4.37 million,
 which is the maximum expected gain per unit time (patient)
 in the trial under the assumptions of the example. Using this

 design, the value of Pr(A) is 0.955, which means that over 95%
 of the treatments will not be passed to a phase III study. The

 passing criteria seem to be in line with the prior assumption

 that only 10% of the treatments have success probability p >

 Po (and fewer still with p = po + 6). More important, the
 probability of passing a treatment with p = po is now 0.12,
 compared with 0.71 using Stallard's (1998) one-stage design.
 The expected gain per unit of time (patient) from Stallard's
 design can be calculated from (3), (4), and Pr(A) = 0.8, based
 on (n,s*) = (29,5), as

 GStallard/(n + N(1 - Pr(A))) = 222.3/(29 + 350(1 - 0.8))
 = $2.2 million.

 So our expected gain per unit time is twice as that of Stal-
 lard's. The reason for this improvement can be seen by consid-

 ering the following. A treatment is marketable if p > po + 6 =
 0.35. The number of patients that needs to be tested before a
 marketable treatment can be found is N, = (n/(l - P(A)) +

 N)/p++, where p++ is the probability of passing a treatment
 that is eventually marketable. For Stallard's (1998) design,
 N, = (29/0.2 + 350)/0.072 6875 patients; for our design,
 NT = (10/0.045 + 350)/0.21 2725 patients. Therefore, our
 design requires only 40% of the number of patients used in
 Stallard's design, and consequently, our design has a higher
 rate of gain.

 Using our design, we found that the probability of passing
 a borderline effective treatment (one with p = po + 6) is only
 0.49-quite a bit smaller than one would conventionally wish
 and much smaller than Stallard's (1998) value of 0.99. But a
 moment's reflection would help to explain this behavior. In

 the current example, the prior suggests that there are many
 more ineffective treatments than effective ones. Therefore, if

 one wants to have a high probability of passing an effective
 treatment, one must also be prepared to pass many other in-
 effective ones, none of which will yield any gains. So a good
 design can only pass a treatment when there is sufficient evi-
 dence that it is effective. To illustrate this last point, we see
 that the probability of acceptance using our design rises to
 0.83 for a treatment with p = 0.5.

 We note that our optimal design recommends a much
 smaller n (10) than that recommended by Stallard (1998)

 Table 1

 Value of Stallard's (1998) design, Thall and

 Simon's (1994) design, and the new design

 proposed in this article under different objectives

 Objectivesa

 Design (n, S*) GStallard Rr NX , /3

 Stallard (29, 5) 222.2 2.2 6875 0.71, 0.01
 New design (10, 4) 112.4 4.4 2725 0.12, 0.51

 New designb (29, 8) 180.2 3.4 3889 0.21, 0.15
 Thall and

 Simon (100, 28) 138.3 1.2 8247 0.03, 0.06

 a GStallard, overall gain based on Stallard; R,, rate of gain based
 on this article; NT, number of patients required before a marketable

 treatment is found; a, Pr(passing a treatment with efficacy po to
 phase III); /, Pr(abandoning a treatment with efficacy p = po +d)

 b New design with same value of n as Stallard's design.

 (n = 29) in this example. This is because the prior suggests

 that only few treatments will have p > po + 6. Therefore, a

 large phase II trial would mean a large number of patients

 will be wasted on nonpromising treatments. If we had used

 n = 29 for our design in this example, then the optimal s*

 would be eight with the rate of gain decreased to $3.4 million,

 but still an improvement of 50% over Stallard's design (Table
 1).

 Thall and Simon's (1994) design gives (n, s*) = (100,28)

 when the parameters pu and PL in their method are set to
 0.95 and 0.05, respectively. In comparison, the expected gain

 per unit time for Thall and Simon's design is $1.3 million and
 NT = 8247. These unfavorable results are due to the fact that

 Thall and Simon's method is not designed to optimize gain.

 Moreover, we must acknowledge that Table 1 is not suggesting

 that one should recommend a phase II trial with n = 100.

 3. Conclusion

 The purpose of this article is to gain a better understand-

 ing of Stallard's (1998) optimal design, which calls for a high
 probability of passing ineffective treatments for further study.

 In the case of a one-stage design, we showed that, by taking

 into consideration the time to carry out the phase III trial

 and by maximizing the gain per patient, the optimal design

 has a much smaller chance of passing a treatment with little

 possibility of being successful beyond a phase II study. Using
 our optimal one-stage design, it is shown that the expected

 gain per unit time (patient) is twice as much as that using
 Stallard's one-stage design.

 Our work is based on the consideration that a number of

 candidate treatments are available for development, such as

 the case in a drug development program in a company or for a

 particular disease. As such, the conclusions drawn are limited

 to these situations. There are other issues related to this type

 of study. We refer the readers to the review in Stallard's (1998)
 paper.
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 REPSUMEP

 Dans une recent livraison de Biometrics (1998, Biometrics
 54, 279-294), Stallard a utilise l'approche bayesienne de la
 theorie de la decision pour le calcul d'effectif dans le cadre
 d'essais cliniques de Phase II. Sa methode maximise 1'espe-
 rance du gain financier lors du developpement d'un nouveau
 traitement. Cependant, elle entraine aussi une tries forte prob-
 abilite (0.65) de recommender le passage en Phase III d'un
 traitement non efficace. D'un autre c6te, elle correspond a
 une esperance de gain de plus de 10 fois celle associee a
 une methode qui contr6le etroitement le risque d'erreur de
 premiere espece (Thall et Simon, 1994, Biometrics 50, 337-
 349). La methode de Stallard maximise l'esperance du gain
 par essai de Phase II mais elle ne maximise pas le gain to-
 talise sur une period de temps donnee car le gain total depend
 de la proportion de traitements passant en Phase III. Nous
 suggerons plut6t de maximiser le gain total, dans le cas d'un
 essai en une seule tape (essai non sequential) la methode op-
 timale correspondante est deux fois plus efficace en terme de
 gain total que la methode de Stallard. De plus, notre methode

 a une probability de seulement 0.12 de faire passer un traite-
 ment non efficacy en Phase III.
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