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1 Introduction and Motivation

Financial theory predicts that investors in publicly traded securities would assume more

risk if they are compensated with more returns. Naturally one has to presume that

entrepreneurs who assume more risk in venturing into privately held companies are lured

by the premium commanded by these inherently riskier assets. While there is substantial

evidence for the conventional wisdom of risk-return trade-o¤ in publicly traded assets

(Fama, 1970; Fama and French, 1992, 1999), recent literature on returns and performance

of private equity suggests that these assets, although riskier than their publicly traded

counterpart, do not have su¢ cient return to justify the excess risk (Moskowitz and

Vissing-Jorgensen, 2002; Kaplan and Schoar 2005; Gottschalg, Phalippou, Zollo, 2003).

Despite the sheer size of the private equity market (the market value of total private

equity ranges from $3.7 trillion in 1989 to $5.7 trillion in 1998; the corresponding �gures

for public equity are $1.6 trillion and $7.3 trillion, see Moskowitz and Vissing-Jorgensen,

2002), it has not received much academic attention till very recently, at least in terms

of the relative performances of private and public equity markets. In 2004 as much as

11.5% of households had some business equity with a median holding of 100,000 in 2004

dollars while nearly 47.4% households had some stocks in mutual funds or other pooled

accounts that accounted for 24,300 in 2004 dollars (see Bucks, Kennickell, and Moore,

2004, Tables 5 and 6). According to National Venture Capital Association (NVCA,

www.nvca.org), on Venture Capital�s contribution "According to a 2004 Global Insight

study, venture-backed companies accounted for 10.1 million jobs and $1.8 trillion in

revenue in the United States in 2003."

One of the continuing topics of interest is the apparent anomaly (referred to as

the "private equity premium puzzle" by Moskowitz and Vissing-Jorgensen, 2002) in the

risk-return tradeo¤ in private equity. In particular, one would like to answer, "What

drives the entrepreneurs to assume so much risk in relatively undiversi�ed and extremely

concentrated portfolios with very little commensurate return?" Economic theory tell us

that entrepreneurs assume the risk associated with a project driven by the prospect

of abnormal returns, and most often they have high appetite for risk. While this can

explain why entrepreneurs would start up companies or projects but it cannot explain

why ex-post they (and their �nancier or investors) will continue given that a diversi�ed

portfolio of publicly traded assets will give them as much return with lower risk exposure.

One possible answer that has been suggested is a large degree of non-pecuniary bene�ts

of being self-employed and an expectation of large pecuniary bene�ts (Hamilton 2000).

Others have pointed out that there is a high degree of heterogeneity in returns obtained
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by private equity investors and managers depending on their institution type and degree

of sophistication (Lerner, Schoar and Wongsunwai, 2007).

There are several important issues in private equity research. First, the dearth of

reliable data on returns and actual investment in private equity pose serious problems on

the inference based on the data. The quality of the data unlike readily available public

equity returns does indeed have an impact on the measure of the risk involved. The

data available through SDC Platinum Venture Economics and Thomson Banker One

databases from Thomson Reuters�is veri�ed in each round by both the Limited Partner

(or LP or the investor) and the General Partners (or GP or the manager). However,

it continues to su¤er from self-reporting biases of possibly badly performing projects or

funds (Kaplan, Sensoy, Stromberg, 2002; Ljungqvist and Richardson, 2003). Second, the

high volatility in returns and very high failure rates (Moskowitz and Vissing-Jorgensen,

2002, p. 746, notes "...survival rates of private �rms are only around 34 percent over

the �rst ten years of the �rm�s life...") make it very challenging to get a good estimate

of measures of central tendency like the mean return to investment. There is often

an upward bias of the measure owing mainly to survivorship and misperception of the

risk of failure involved by entrepreneurs (Moskowitz and Vissing-Jorgensen, 2002, see

public equity funds see Carhart, Carpenter, Lynch and Musto, 2002 ). Cochrane (2005)

incorporated selection problems using a maximum likelihood procedure to evaluate the

risk-return tradeo¤ of Venture Capital �rms more accurately, and �nd that there is a

signi�cant e¤ect of survivorship in both mean and volatility of returns. Hence, there

might be a need for a more robust measure, possibly based on ranks or quantiles of

the return or some covariates, to deal with this issue (see subsection 4.4). Third, the

downside risk associated with private equity is pro-cyclical with business cycles, and is

often positively correlated with public equity returns, and hence do not provide a good

hedge against public equity holdings (Phalippou and Zollo, 2005). Phalippou and Zollo

(2005) also �nd that private equity funds are also exposed to right tail-risks or those due

to higher order moments. This implies that tests based on standard measures like the

Sharpe Ratio would not accurately re�ect the risk-return tradeo¤. Finally, due to the

lack of availability of accurate data the most frequently used measure of fund performance

for private equity is the internal rate of return reported by Venture Economics, which

is de�ned as the rate of return that makes the discounted net cash�ow equal to zero for

the private equity investment. However, the drawbacks of the internal rate of return,

which independent of market timing, as a measure of performance has been pointed

out by many researchers and experts, Jesse Reyes, Vice President of Venture Economics

noted that "...private equity investment timing is totally under manager�s control, timing
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decisions should be part of the performance measure so he can be penalized or rewarded

for these timing decisions..."(LP corner reported by Lisa Bushrod, September 2004,

http://www.evcj.com).

All these evidence suggests that standard risk-return analysis do not satisfactorily

explain what motivates the entrepreneurs or investors of private equity (Moskowitz and

Vissing-Jorgensen, 2002). One of the factors that have been proposed as an explanation

lies in the higher moments of the return distribution (like right skewness and fatter

tails; see for example, Harvey and Siddique 2000). A¢ nity for right or positive skewness

implies that an entrepreneur might be willing to accept lower average returns if there is

a positive probability of getting a very high return. However, in our literature survey,

no formal test have been done to verify whether the return distribution of private equity

is more or less skewed or have fatter tails than the return to publicly traded equity with

the exception of very recent work in public equity on tests based Sharpe Ratio (Ledoit

and Wolf, 2008).

In this paper our objective is simple. We want to re-evaluate the evidence of the

dispersion between public and private equity returns. First, to make the public equity

return for mutual funds comparable to the internal rate of return available for private

equity funds available from Venture Economics, we only look at those mutual funds that

reports yearly return with no dividend yield. Second, to focus more on the systematic

di¤erences we use private equity fund and publicly traded mutual fund data, rather than

individual �rm equity. We also do not compare the private and public equity indices

as they are not in the choice set of individual investors. Third, to get a more accurate

cash-�ow information on private equity returns we restrict our attention to only mature

(not necessarily liquidated) private equity funds that had inception before 1996 so that

we have some actual return information rather than imputed ones. Finally, we picked

the public equity mutual funds after 1996 to 2003 to control for the e¤ect year of the

inception of private equity funds (Kaplan and Schoar, 2005). Although there is still

some degree of dependence left between the private and public equity funds, we reduce

the impact by using both year and fund speci�c �xed e¤ects (see subsection 4.3).

We compare the overall di¤erence between the two return distributions in the panel

data, and observe that incorporating both the year and fund speci�c �xed e¤ects explains

a substantial portion of the variation in private equity returns as well public equity. We

also incorporate variables like lagged returns to see if there is persistence in returns in

either public equity mutual funds or private equity ones, and include non-linear terms for

size of the fund to investigate any evidence of convexity (or concavity) in the relationship

between returns and fund size. We �nd persistence at least to two periods in private
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equity funds, however, public equity fund also shows some postive persistence, maybe

due to momentum strategies, but quickly reverses to negative with two year lagged return

maybe due to the size e¤ect (Berk and Green, 2004). We also explore whether returns

are indeed what entrepreneurs are after or is it just the size of the fund making "money

chasing deals" using ranks of size as a covariate to compare the returns (Gompers and

Lerner, 1998; Gompers and Lerner, 2000; Berk and Green, 2004; Jones and Rhodes-

Kropf, 2002)?

The paper is organized as follows. We discuss the possible shortcoming of a standard

measure of risk for mean-variance type analysis like the Sharpe Ratio in Section 2.

In Section 3 we introduce the basic motivation of the two sample version of Neyman

smooth test (Neyman, 1937, see also Bera and Ghosh, 2002). We also introduce the main

theorems driving the two sample test and the sample selection criteria function procedure

(discussed in details in Appendix A) proposed by Bera, Ghosh and Xiao (2007). The data

and analysis part is discussed in details in di¤erent subsections in Section 4. We discuss

the data and distributional comparison of the unadjusted private and public equity

returns under di¤erent restrictions in subsection 4.1. This is followed by subsection 4.2

with an introduction to the nonparametric rank based graphical method called Fractile

Graphical Analysis, and the ensuing bootstrap based hypothesis test using these methods

(Mahalanobis, 1961; Bera and Ghosh, 2006). In subsection 4.3 we introduce the standard

OLS regression analysis with �xed e¤ects for years and funds for both public and private

equity funds. We compare the private and public equity model residuals to test for

departures in �nite number of moment directions using the two sample version of smooth

test (Bera, Ghosh and Xiao, 2007). In the �nal subsection 4.4 of Section 4, we apply

rank (fractile) regression method to address possible non-linearity in a robust way and

hence compare the residuals of this semiparametric model speci�cation for private and

public equity returns. In Section 5 we apply all the above techniques to compare Venture

Capital and Buyout funds. We conclude with future directions in Section 6.

2 Measuring Risk in Return

One of the most common measures for risk adjusted average return is the Sharpe ratio

(�=�), and di¤erent performance tests based on it have already been proposed (Jobson

and Korkie, 1981; Memmel, 2003, Ledoit and Wolf, 2008). To test whether there is

signi�cant di¤erence between the performances of public and private equity the following
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hypothesis can be tested,

H0 :
�1
�1
=
�2
�2
against H1 :

�1
�1
6= �2
�2

where the subscripts �1� and �2� refers to these two types of equity. There are many

equivalent forms of this null hypothesis, such as, H0 : �1�1 =
�2
�2
, H0 : �1�2 = �2�1, H0 :

�1
�2
= �1

�2
etc. And if we follow the standard approaches, each form of the same hypothesis

could give di¤erent results. The tests that are standard among the practitioners were

crucially based on the normality assumptions (Jobson and Korkie, 1981; Memmel, 2003).

However, the standard tests are not valid when �nancial returns have tails heavier than

the normal distribution or for time series and panel datasets (see Ledoit and Wolf,

2008 and references therein). Private equity funds can be leptokurtic or have fatter

tails than normal distribution, hence standard tests based on Sharpe Ratios might be

misleading (see Figure 1). To address the problem, Ledoit and Wolf (2008) suggested

two di¤erent procedures. First, was to implement Heteroscedasticity and Autocorrelation

Consistent (or HAC ) standard errors for the di¤erence of two Sharpe Ratios. Second, to

apply Studentized time series bootstrap methods to construct con�dence intervals with

a corrected coverage probability from the actual data to do hypothesis testing. However,

there are signi�cant drawbacks of the procedure involving Sharpe ratios, and the jury

is still out on tests solely based on the Sharpe ratio, as Ledoit and Wolf (2008, p. 851)

themselves observe:

"...It has been argued that for certain applications the Sharpe ratio is not

the most appropriate performance measure; e.g., when the returns are far

from normally distributed or autocorrelated (which happens for many hedge

funds) or during bear markets. On the other hand, there is recent evidence

that the Sharpe ratio can result in almost identical fund ranking compared

to alternative performance measures..."

One �rst objective of this paper would be extend tests based on comparing Sharpe

ratios from private and public equity to those comparing entire distributions (to a �nite

set of moments) rather than just a function of the �rst two moments. Moreover, testing

individual factors like average risk, volatility measures, and higher moments like skewness

and kurtosis should be done jointly to remove the e¤ect of interrelationship among the

individual tests. Extending it further, we should really look at the di¤erence in the

entire return distributions of public and private equity returns in Sections 4.
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For example, we investigated the monthly return on private equity �rms (obtained

from Securities Data Corporation (SDC)-Platinum database on 370 new issues in the

US in 2001 of private equity that did not give out dividends) and the monthly return on

of a random sample of 1837 publicly traded companies from CRSP (December of 2001)

given in Figures 1A and 1B.
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Figures 1A and Figure 1B depict the di¤erences between monthly private and public

equity returns in 2001. While the average return seems to be similar, there could be

distinguishable di¤erences in terms of volatility, skewness, kurtosis or some higher order

moments.

Our second objective is to identify the sources for the departure between the two

return distributions. We can even select the exact number of moments we want to

compare depending on the data. The major part of the paper would be to device and

perform a statistical test that can compare the shapes of two return distribution and

identify the exact order of moments [�rst (average), second (volatility), third (skewness),

fourth (kurtosis or peakness) or even higher moments] where they might di¤er. Once

that is achieved we will move forward to explain the plausible causes of the departure.

3 Smooth Test for Comparing Distributions

For performing this test of comparison of distributions of we use the two sample version

of smooth test procedure as proposed in Bera, Ghosh and Xiao (2007). Neyman�s smooth

test for H0: F = F0. was for the one sample case with completely speci�ed distribution

under null hypothesis H0 : f (x) is the true PDF (for a review, see Bera and Ghosh,

2002). This is equivalent to testing H0 : y = F (x) =
xR

�1
f (u) du � U (0; 1) :Neyman

considered the following smooth alternative to the uniform density:

h (y) = C (�) exp

24 kX
j=1

�j�j (y)

35 (1)

�j (:) are orthogonal normalized Legendre polynomials. For H0 : �1 = �2 = � � � = �k = 0
has a test statistic

	2k =
kX
j=1

1

n

"
nX
i=1

�j (yi)

#2
� �2k (0) under H0:

If we take the problem of testing H0 : F = G: We need to modify the original

smooth test since both F and G are unknown. If F (:) were known, we can construct a

new random variable Zj = F (Yj) ; j = 1; 2; :::;m:
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The CDF of Z is given by

H (z) = Pr (Z � z) = Pr (F (Y ) � z)

= G
�
F�1 (z)

�
= G (Q (z))

where Q (z) = F�1 (z) is the quantile function of Z:

The PDF of Z is given by

h (z) =
d

dz
H (z) = g

�
F�1 (z)

� d
dz
F�1 (z)

= g
�
F�1 (z)

� 1

f (F�1 (z))

=
g (Q (z))

f (Q (z))
; 0 < z < 1: (2)

The main problem of comparing two distributions is to �nd a suitable measure of

distance or norm between two distribution functions, i.e. to say, for any x 2 (�1;1),

kG (x)� F (x)k

If a density function exists over the support of F and G; then for any t 2 (0; 1) this
problem to be equivalent to the distance

��G � F�1 (t)� t�� :
Under H0 : G = F; G � F�1 (t) = t: In fact, the h (z) in (2) is the corresponding PDF
for the distribution function G � F�1 de�ned over (0; 1) : The PDF h (z) is a ratio of
two densities; and itself is a valid density function. Therefore, we will call it the Ratio

Density Function (RDF) (Bera, Ghosh and Xiao, 2005).

When H0 : F = G is true (i.e. f = g) then from (2), h (z) = g(Q(x))
f(Q(x)) = 1; 0 < z < 1.

Z has the Uniform density in (0; 1) :That means irrespective of what F and G are, the

two-sample testing problems can be converted into testing only one kind of hypothesis;

namely, uniformity of a transformed random variable.

For the two sample case with unknown F and G the Smooth test statistic is

9



	2k =
kX
l=1

u2l ; ul =
1p
m

mX
j=1

�l (zj) ; l = 1; 2; :::; k

zj = F (yj) =

Z yj

�1
f (!) d!; j = 1; 2; :::;m.

Under H0 : F = G;	2k
D! �2k:

The test has k components. Each component provides information regarding speci�c

departures from H0 : F = G:

However, in practice F (:) is unknown. We use the Empirical Distribution Function

(EDF),

Fn (x) =
1

n

nX
i=1

I (Xi � x) ; ẑj = Fn (yj)

	̂2k =
kX
l=1

1

m

24 mX
j=1

�l (ẑj)

352

The following two theorems [for proof and details see Bera, Ghosh and Xiao (2004)] pro-

vide some restrictions on relative sample sizes for consistent asymptotic �2 distribution

of the test statistic, and also to minimize size distortion of the two sample smooth test

of comparing two distributions.

Theorem 1 If m log lognn ! 0 as m;n!1 then 	̂2k �	2k = op (1) :
Proof. See Bera, Ghosh, Xiao (2007)

Theorem 2 The optimal relative magnitude of m and n for minimum size distortion is

given by m = O (
p
n) :

Proof. See Bera, Ghosh, Xiao (2007)

4 Data and Analysis

4.1 Unadjusted Private and Public Equity Returns

The scarcity of reliable data on private equity investment and returns is further exacer-

bated by the bias that we only observe data on surviving �rms or survivorship present in

most private equity datasets (Kaplan, Sensoy, Stromberg, 2002; Ljungqvist and Richard-

son, 2003). We collect and re�ne the data on returns and investment in private equity
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available from several sources including SDC-Platinum, National Venture Capital Asso-

ciation (NVCA)* VentureExpert or Venture Economics database by Thomson Financial,

and publicly traded equity returns from the CRSP database. We compare the average

returns and risk, and measures like the Sharpe ratio of performance between the di¤erent

types of assets. However, to get a fuller picture of the types of deviations between the

two asset classes, we construct the distribution of returns of funds of private and publicly

traded assets. Hence, we can perform a joint test to see if there are signi�cant di¤er-

ences in moments like location (average return), scale or volatility (risk measures) and

higher-order moments like skewness and kurtosis. The summary statistics reported in

Tables 1A and 1B clearly shows that the distribution of the publicly traded and private

equity returns are di¤erent from each other.

We have also collected data on publicly traded open-ended US equity mutual fund

returns from Morningstar Principia database from January CDs 1997-2003 (data as of

December from 1996-2002) to reduce survivorship issues. This data is compared with

the private equity funds returns data from Venture Economics database of funds that

had inception after 1980. For comparing the two we have used non-intersecting time

points public equity funds from 1996 and private equity funds that started before 1996

particularly in light of recent research that private equity funds returns are in�uenced

by the public equity market conditions in the year of its inception (Kaplan and Schoar,

2005). We �nd overwhelmingly that the unconditional distributions of the private and

public equity fund returns are indeed distinctly di¤erent (see, Figure 2A) and the results

in Tables 1A and 1B. In fact, we also report the Empirical Distribution Function or

EDF for each of the two groups in Figure 3A.

To improve comparability we further �lter to only those public equity funds that o¤er

no dividend yield in that year for several reasons. First, it is more in line with private

equity funds that tend to have similar characteristics in intermediate years between

di¤erent rounds after inception. Second, it reduces the di¤erential tax implications on

the returns like capital gains and those on dividend that is treated almost like income in

US tax codes (see Poterba, 1989; Bergstresser and Poterba, 2002; Ghosh, 2007). Finally,

the internal rate of return that is reported as a standard for private equity funds can be

compared directly to the annual rates of return for publicly traded mutual funds that

reinvest in the stocks rather than giving out dividends. Even in this smaller group the

unadjusted returns are widely di¤erent across the years without any year speci�c �xed

e¤ects (see Figures 2B and 3B).

Finally, given that the data on private equity is self reported between rounds (al-

though it is veri�ed from both the Limited Partner or LP, the investor of the private
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equity �rm, and the General Partner or GP, the managing company of the private

equity fund), the cash�ow between di¤erent rounds might be a¤ected by misreporting

or underreporting of losses (or gains possibly for tax purposes) due to non-survival (or

merger) of some funds with others (Moskowitz and Vissing-Jorgensen, 2002; Cochrane,

2005). Hence, we can expect those funds that have been liquidated would be more stable

with more accurate report on the amount of the cash-�ow generated. This, of course,

among other things imply that our sample size gets reduced substantially (491 funds as

compared to 1714 in the full sample). Even in this smaller group of liquidated private

equity funds, we �nd that the distributions of public equity funds with no dividend yields

and the liquidated private funds are substantially di¤erent.

Unfortunately, standard tests of goodness-of-�t like Kolmogorov-Smirnov(K-S) and

Cramér-von Mises (C-vM) (reported in Table 1B) does not provide us with the exact

nature of such departures from the null hypothesis of equality of two distributions. The

data shows that not only is there a di¤erence in both the location and scale of the

distribution, but the shape parameters of the distribution might also be di¤erent. In

order for us to numerically compare the returns distribution of private equity funds with

public equity funds , we investigate the summary statistics of each of the groups. Table

1A provides a sample size of public equity fund to n = 10103 (full sample after 1996

till 2002) and n = 5635 for mutual funds with no yields. The size of the sample of

private equity funds are m = 1714 (full sample) and m = 491 (for liquidated funds),

respectively. As we apply the sample size selection methods for comparing distributions,

we have restricted our sample for private equity to only the ones that are more mature

or spent some time after inception. We restrict our attention to only those private

equity funds with fund inception year before 1996 (m = 840). Our working assumption

is that private funds that are mature will start to show some cash-�ow from 6 years after

inception (Kaplan and Schoar, 2005).
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We perform a smooth test (see Bera and Ghosh, 2001 for an introduction to smooth

tests) on the two return distributions from public equity funds and private equity funds.

We note that the sample size for publicly traded funds is much larger than the privately

traded funds. This di¤erential nature of sample size can be exploited by the two sample

version of the smooth test (Bera, Ghosh and Xiao, 2007, see Section 3). From the full

sample version reported in Table 2, it is evident that the overall test H0 : F = G of

equality of two distributions is overwhelmingly rejected (	̂26 = 842:03) which under the

null hypothesis has a central �2 distribution with 6 degrees of freedom, so chosen so

as to focus on the higher order moments of the distribution of private equity returns.

Further, under the null hypothesis each of the components should follow independent

central �21:

The overall two-sample smooth goodness of �t test shows that one or more of the

constituent elements must contribute to the directions of departure from the hypothe-

sized distribution. As expected from the Figures 2A and 3A, the estimated components

û21 through û
2
6 are all strongly statistically signi�cant, hence we can conclude that the

private and public equity distributions are di¤erent in the directions of the �rst six mo-

ments of the distribution of the probability integral transform (or the imputed ranks).

There are departures in the general directions of location, scale and shape parameters at

least up to order 6. Furthermore, we can also conclude that the private equity return dis-

tribution is also di¤erent from the public equity returns in the directions of higher order

moments, namely, the skewness and kurtosis related terms (û23 = 330:87 and û
2
4 = 210:79;

both are signi�cant at 1% level). This implies that when testing jointly, the public and

private equity returns di¤ers in the �rst four moment directions. Furthermore, û25 and

û26 are also both statistically signi�cant at 1% level, hence, some higher order terms

are di¤erent between the two distributions. Tests based on the Sharpe ratio might not

reveal these details although it could be a convenient test procedure (Ledoit and Wolf,

2008).

In the applied literature, size distortion in �nite sample is a common problem in

Score (or LM) type tests. One way of reducing the �nite sample size distortion is to

have the smaller sample size (m) increase at a much slower pace than the bigger sample

size (n) as discussed in the Section 3 (see also, Bera, Ghosh and Xiao, 2007). Hence,

we select a sample size as small as 9:21% of n and perform the smooth test again with

m = n2
n1
� n: instead of the original m (as per recommendation by the minimum criteria

function analysis in the Appendix A). The results are qualitatively similar although

results are less strongly signi�cant compared to the full sample across the board for the

smooth test. The �rst and third order terms are now marginally signi�cant at 1% level
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(û21 = 7:56 and û
2
3 = 9:36) while the second, fourth and �fth order term is more strongly

signi�cant (see line 3 in Table 2).

However, we should recognize that given the di¤erent covariates like size or year of

inception or sequence might have a role to play, there might be predictable components

explaining the internal rates of return from these funds. This is addressed in the following

subsections 4.2 through 4.4.

4.2 Fractile Graphical Analysis of Equity Returns

Although we do reject H0 : F = G that the return distributions for private and public

equity are the same with the BGX Smooth test but there is no indication of the nature

of departure from H0 using the traditional tests like Kolmogorov-Smirnov or Cramér-

von Mises type tests (see Table 1B). We use a modi�ed version of Fractile Graphical

Analysis method (Mahalanobis, 1960, also see Bera and Ghosh, 2006 for an overview)

to test the overall distribution of returns conditional on the size of the fund for private

and public equity. We include size as a possible covariate as several studies found an

impact of fund size on return distribution but not the sequence number (Gompers and

Lerner, 1999; Kaplan and Schoar, 2005; Phalipou and Zollo, 2005). Figures 3(i),3(ii)

and 3(iii) represent the fractile graphs with number of fractile groups g = 10; 20 and

50 and depicts the di¤erence between private and public equity mutual funds. In the

�gures, the blue (top) solid line represents the private equity funds returns for each size

fractile group. The shaded area around the line represents the estimation uncertainty

or dispersion, i.e., the bootstrapped standard error at each fractile group mean. As we

observe with higher number of fractile (or rank) groups of sizes, the separation area

between the two graphs is more fragmented. This also make it increasingly di¢ cult

to conclude whether the distributions are di¤erent overall. Hence we would need some

more tangible analytical or simulation based hypothesis testing methodology to test for

separation of the two fractile graphs.

17



F
ig
ur
e
3:
Fr
ac
ti
le
G
ra
ph
s
(M
ah
al
an
ob
is
,
19
60
)
fo
r
di
¤
er
en
t
nu
m
b
er
fr
ac
ti
le
gr
ou
ps
(g
)
fo
r
pu
bl
ic
an
d
pr
iv
at
e
eq
ui
ty

(i
)
�
(i
ii
)
an
d
b
et
w
ee
n
V
en
tu
re
ca
pi
ta
l
an
d
B
uy
ou
t
Fu
nd
re
tu
rn
s
(i
v
)
�
(v
i)
:

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

til
e 

G
ro

up
s

510152025

Fractile Means

Fr
ac

til
e 

G
ra

ph
s 

of
 F

un
d 

R
et

ur
ns

 w
ith

 F
un

d 
Si

ze

S
1­

po
p 

1
S

2­
po

p 
1

S1
 &

 2
­p

op
 1

S
1­

po
p 

2
S

2­
po

p 
2

S1
 &

 2
­p

op
 2

po
p 

1 
er

ro
r

po
p 

2 
er

ro
r

F
ig
ur
e
3
(i
):
g
=
10
Si
ze
Fr
ac
ti
le
s

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

til
e 

G
ro

up
s

0102030

Fractile Means

Fr
ac

til
e 

G
ra

ph
s 

of
 F

un
d 

R
et

ur
ns

 w
ith

 F
un

d 
Si

ze

S
1­

po
p 

1
S

2­
po

p 
1

S1
 &

 2
­p

op
 1

S
1­

po
p 

2
S

2­
po

p 
2

S1
 &

 2
­p

op
 2

po
p 

1 
er

ro
r

po
p 

2 
er

ro
r

F
ig
ur
e
3
(i
i)
:
g
=
2
0
Si
ze
Fr
ac
ti
le
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

til
e 

G
ro

up
s

0102030

Fractile Means

Fr
ac

til
e 

G
ra

ph
s 

of
 F

un
d 

R
et

ur
ns

 w
ith

 F
un

d 
Si

ze

S
1­

po
p 

1
S

2­
po

p 
1

S1
 &

 2
­p

op
 1

S
1­

po
p 

2
S

2­
po

p 
2

S1
 &

 2
­p

op
 2

po
p 

1 
er

ro
r

po
p 

2 
er

ro
r

F
ig
ur
e
3
(i
ii
):
g
=
5
0
Si
ze
Fr
ac
ti
le
s

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

til
e 

G
ro

up
s

51015202530

Fractile Means

Fr
ac

til
e 

G
ra

ph
s 

of
 F

un
d 

R
et

ur
ns

 w
ith

 F
un

d 
Si

ze

S
1­

po
p 

1
S

2­
po

p 
1

S1
 &

 2
­p

op
 1

S
1­

po
p 

2
S

2­
po

p 
2

S1
 &

 2
­p

op
 2

po
p 

1 
er

ro
r

po
p 

2 
er

ro
r

F
ig
ur
e
3
(i
v
):
g
=
10
Si
ze
Fr
ac
ti
le
s

(V
C
-B
O
).

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

til
e 

G
ro

up
s

010203040

Fractile Means

Fr
ac

til
e 

G
ra

ph
s 

of
 F

un
d 

R
et

ur
ns

 w
ith

 F
un

d 
Si

ze

S
1­

po
p 

1
S

2­
po

p 
1

S1
 &

 2
­p

op
 1

S
1­

po
p 

2
S

2­
po

p 
2

S1
 &

 2
­p

op
 2

po
p 

1 
er

ro
r

po
p 

2 
er

ro
r

F
ig
ur
e
3
(v
):
g
=
2
0
Si
ze
Fr
ac
ti
le
s

(V
C
-B
O
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

til
e 

G
ro

up
s

­40­2002040

Fractile Means

Fr
ac

til
e 

G
ra

ph
s 

of
 F

un
d 

R
et

ur
ns

 w
ith

 F
un

d 
Si

ze

S
1­

po
p 

1
S

2­
po

p 
1

S1
 &

 2
­p

op
 1

S
1­

po
p 

2
S

2­
po

p 
2

S1
 &

 2
­p

op
 2

po
p 

1 
er

ro
r

po
p 

2 
er

ro
r

F
ig
ur
e
3
(v
i)
:
g
=
5
0
si
ze
fr
ac
ti
le
s

(V
C
-B
O
)

18



Following the notation of Bera and Ghosh (2006), we divide the data into m groups

of size g each i.e. n = mg. The group means of the variables ranked with respect to X

are

ui =
1

m

imX
r=(i�1)m+1

x(r); i = 1; 2; :::; g (3)

vi =
1

m

imX
r=(i�1)m+1

y[r]; i = 1; 2; :::; g: (4)

Samples
�
x11; y

1
1

�
;
�
x12; y

1
2

�
; :::;

�
x1n; y

1
n

�
and

�
x21; y

2
1

�
;
�
x22; y

2
2

�
; :::;

�
x2n; y

2
n

�
; are inde-

pendently drawn from population P 12:

Let G1,G2 and G12 be the plots of the g group means
�
v11; v

1
2; :::; v

1
g

�
,
�
v21; v

2
2; :::; v

2
g

�
and

�
v121 ; v

12
2 ; :::; v

12
g

�
against the group ranks 1=g through 1: Also de�ne, for population

P 34; G3,G4 and G34 be the plots of the group means
�
v31; v

3
2; :::; v

3
g

�
,
�
v41; v

4
2; :::; v

4
g

�
and�

v341 ; v
34
2 ; :::; v

34
g

�
against the covariate group ranks. De�ne A12 be the error area bounded

by fractile graphs G1 and G2 between the rank points of the covariate x; 1 and g; A34 be

the error area bounded by graphs G3 and G4 between the rank points of the covariate

x; 1 and g; and A� be the separation area bounded between the combined graphs G12

and G34:

One way of addressing the problem of the di¤erence between two fractile graphs G1

and G2 is to look at a norm in a g�dimensional Euclidean space. The L2�norm can be

de�ned as one way of addressing the problem of the di¤erence between two fractile graphs

G1 and G2 is to look at a norm in a g�dimensional Euclidean space. The L2�norm can

be de�ned as

412 =


G1 �G2



=


�v11 � v21; v12 � v22; :::; v1g � v2g�



=
q
w21(12) + w

2
2(12) + :::+ w

2
g(12) (5)

Similarly, de�ne �34 =
q
w21(34) + w

2
2(34) + :::+ w

2
g(34) between G

3 and G4; and �nally,

�� between the combined graphs G12 and G34:

Suppose, B = ((bij)) is a positive de�nite matrix like the covariance matrix, then a
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more general class of distance measure is

�212 =

gX
i=1

gX
j=1

wi(12)wj(12)bij =W
T
(12)BW(12): (6)

Now, extending the result with size m fractile groups m�2in converges to a mixture of �
2

variates where �in is the error area of fractile graph i = 1; 2: If B is the inverse of the

covariance matrix of W , m�2in converges to �
2 with g degrees of freedom. Furthermore

if m�2in,i = 1; 2 and 2m�
2
�n are asymptotically independent,

2�2�n�
�21n +�

2
2n

� ! Ratio of mixture of �2:

Similarly, for a suitable normalization matrix B; like the inverse of the bootstrapped

variance covariance matrix,
2�2�n�

�21n + �
2
2n

� ! Fg;2g:

We report the results of the individual and group F-tests in Table 3A, if we want to test

all the conditional fractile means jointly. We observe from the results of the overall F-

tests and tests for Error Areas of the two fractile graphs gives similar results for di¤erent

values of g: Individually, after adjusting for the ranks of the fund size the adjusted Error

Areas of fractile graphs of both private and public returns are distributed as �2 with

g degrees of freedom. This signi�es that that the FGA model is indeed a good �t for both

public and private equity returns. The test for the Area of Separation though indicates

that at 5% level of signi�cance there is a di¤erence between the two fractile graphs.

The overall F-test for fractile graphs helps us to compare the conditional fractile means

jointly, and infer that the at 5% level at least one of the size fractile means of returns is

di¤erent between the groups. We can conclude that the public and private equity fund

distributions are di¤erent using the F-test, or adjusting for the fractile groups of rank,

private and public equity fund returns are di¤erent using 5% level of signi�cance. This

implies that there might be some abnormal returns at each size fractile, hence, size alone

or "money chasing deals" cannot explain the di¤erence of returns (Gompers and Lerner,

2000; Phalippou and Zollo, 2005).

However, although it adjusts for the fractiles of the covariate size, the overall F-test

do not give us any indication of the directions of departures from the null hypothesis

very much like the omnibus test (Kolmogorov-Smirnov and Cramer-von Mises tests). We

further note that tests based on fractile graphs provides a non-parametric alternative to
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tests based on functions of the �rst two moments (or Sharpe Ratio). Unlike the tests

based on moments we also adjust for the conditional fractile groups of the fund size

(Jobson and Korkie, 1981, Memmel, 2003, Ledoit and Wolf, 2008).

We also compare the actual size of the tests of hypothesis using bootstrap covariance

matrices to normalize the test statistic. We have simulated the test statistic by drawing

the same �rst and second samples of X and Y variable and repeated it r = 1000 times,

the bootstrap replication was B = 10000 to estimate the covariance matrix. We observe

that the test size of all the tests are pretty close to the 5% nominal level test (minimum

being 0:042 to maximum of 0:064), though there is some �nite sample size distortions.
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A problem with omnibus test methods like Kolmogorov-Smirnov and Cramér-von

Mises type tests that have power in all directions is that they have weak power against

more directional alternative. Hence, we might fail to reject a hypothesis that is indeed

false. In our case here we do reject the null hypothesis of equality of the distributions

of private and public equity returns. So we can believe beyond reasonable doubt the

two distributions are indeed di¤erent overall. However, the same thing cannot be said

about all parts of the distributions measured by subsets of fractile means or graphs (see

Figures 3(i)�3(iii) ). It appears that for g = 10 and g = 20 fractile groups, there is a
di¤erence between private and public equity returns after the 40th percentile of net asset

for public equity funds or total commitment size of private equity funds (or top 60% of

fund sizes). It is however more di¢ cult to separate out for the bottom 40% of the funds,

or when g = 50 due to the wide variation of the fractile means.

4.3 Fixed E¤ects Adjusted Equity Returns

In previous subsections 4.2 we noted that there could be other covariates and possible

�xed e¤ects due to year and/or speci�c �rms (or funds) that might have e¤ects on the

internal rates of return of private equity �rms or returns of public equity funds. We �rst

look at the e¤ects of di¤erent covariates like the sequence number of the private equity

�rm or the year of existence of the public equity fund. We allow for linear dependence

in both models shown in Tables 4-6. For the private equity funds we have used the

model similar in Kaplan and Schoar (2005 p. 1803) but used the internal rate of return

reported by Venture Economics,

IRRit = �t + �(FundSizeit) + �(Sequenceit) + 
V C + "it; (7)

where for the ith individual �rm or partnership and the tth period of time IRRit is

reported by Venture Economics, FundSizeit is the logarithm of the capital committed

to the fund, Sequenceit is the logarithm of the sequence number of the fund (later funds

of the same private equity partnership or �rm), and V C is a dummy equal to 1 if the

partnership is a venture capital �rm and 0 otherwise. We have included non-linear terms

of fund size and sequence number to account for the size of the fund to have some non-

linear relationship with the rate of return reported in Kaplan and Schoar (2005). This

in essence is similar to the �ndings of Ippolito (1992), Chevalier and Ellison (1997), Sirri

and Tufano (1998) for public mutual fund returns, and Berk and Green (2004). We have

further used �xed e¤ects for both year and �rm to �lter out predictable information

related to the investment environment in the year of inception and reputation of the

23



�rm. Lack of enough data points due to a short time dimension t could potentially be

a problem in models with several independent variables. The results of the regressions

are reported in the Table 4 in columns (1) � (8). In particular, from (1) we observe

that allowing for a �xed year-speci�c e¤ects and no non-linear (square) terms , both size

(�̂ = 3:38) as well as venture capital status (
̂ = 6:79) have signi�cant positive e¤ect

on the internal rate of return, using 1% level with a sample of size m = 840 private

equity returns with inception prior to 1996. If however, we include both year and �rm

speci�c e¤ects in column (4), there is a reversal both fund size and venture capital status

becomes statistically insigni�cant and economically negative. On the other hand, the

sequence of number of the fund is now statistically signi�cant at 5% level and negative,

implying that after accounting for year and �rm speci�c e¤ects the returns to private

equity reduces for follow-up funds. This has been mentioned in the literature, that one

of the reasons of this could be the lack of performance of follow-up funds that starts

in boom times besides follow-up funds might have a watering down of returns (Kaplan

and Schoar, 2005). Given the argument that the returns self-reported by GP and LP

might be misleading before the �rm is completely liquidated and most cash-�ows settled,

we look at the funds that were liquidated after starting before 1996 (Kaplan, Sensoy,

Stromberg, 2002; Ljungqvist and Richardson, 2003). With a smaller sample size of

m = 463, it was evident in column (2) that accommodating for yearly �xed e¤ect, size,

sequence and whether the �rm is a Venture Capital fund do not play any role in the

internal rate of return. In column (5) ;the results are similar even if we include both year

and fund speci�c �xed e¤ects.

RESET test (not reported) shows that there is a possible non-linearity that has not

been accounted for in the simple model, hence we include square terms for both size and

sequence related variables in model (7). Using year speci�c �xed e¤ects in column (3),

venture capital fund status seem to be important, as is the size of the fund that positively

a¤ects the dependent variable, but is however concave in the second order term for size

(�̂lin = 11:6 and �̂sq = �0:96) are both statistically signi�cant at 5% level. If on the

other hand, we compared to the results in the previous part with no non-linear terms,

allowing for �xed yearly and fund speci�c, size and venture capital fund status are not

signi�cant. The linear expression for the sequence number seems to play an important

negative role at 5% level (�1 = �22:53). From columns (7)� (8), for this full model with
both linear and non-linear terms, internal rates of return of liquidated private equity

�rms do not show any dependence on size, sequence number or venture capital status

of the funds unlike the �ndings in Kaplan and Schoar (2005) and Gompers and Lerner

(2000).
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We have also explored the Venture Capital only and Buyout only funds, and ran

similar regression reported in Table 5. If we focus only on Venture Capital Funds (with

m = 610 that outnumber Buyout funds which is m = 206) that had an inception prior

to 1996 in column (1), we �nd that accounting for �xed e¤ects for year and �rm spe-

ci�c components, sequence play an important and negative role marginally statistically

signi�cant at 10% level. If on the other hand we only restrict ourselves to liquidated

funds that started prior to 1996 with a reduced sample size of m = 364 in column (2) ;

the e¤ects are not statistically signi�cant. The full model with non-linear terms for

logarithms of size and sequences in column (3), the results remain qualitatively similar

for VC funds starting before 1996, as does the insigni�cant results for liquidated funds.

The LBO funds show an economically signi�cant negative e¤ects of size and sequence

numbers in column (4) and (7), however neither of them are statistically signi�cant after

adjusting for �xed e¤ect of years and �rms. Liquidated LBO funds regression output

reported in column (6) and (8) ; after adjusting for yearly �xed e¤ects, do not show any

statistically signi�cant in�uence of size and sequence number.

We further investigate the persistence results that are reported for private equity

fund returns based on internal rates of return of funds that are launched before or in

earlier rounds to see returns are persistent as reported by Kaplan and Schoar (2005).

The model

Performanceit = �t + �(Performanceit�1) + 
V C + "it (8)

based on IRRs reported by Venture Economics as a measure of performance for the ith

�rm in the tth period of time. The regression results are given in Table 4 in columns

(9)� (10) : We observe that venture capital fund or not plays an important statistically
signi�cant positive role in the returns with both one and two lagged dependent variable

using yearly �xed e¤ects. From column (9), past sequence returns does have a positive

impact on future returns
�
�̂1 = 0:59

�
, while past two sequence returns also seem to have

a signi�cant positive impact
�
�̂1 = 0:78; �̂2 = 0:1

�
: Similar results for Venture capital

only private equity funds are reported in Table 5 columns (9) � (10) ; we observe that
past one periods return has a signi�cant positive impact

�
�̂1 = 0:85

�
; and both of past

two sequence returns show a positive impact
�
�̂1 = 1:03; �̂1 = 0:1

�
: All results accom-

modated for clustering with the funds for public equity (or �rms for private equity).

We would like to compare similar models with public traded mutual funds reported

by Morningstar Principia Mutual Fund Database. Given that Principia database is

updated monthly and would potentially su¤er from survivorship bias we use several
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years January releases (1997-2003) of previous year�s data to mitigate the survivorship

(see Bergstresser and Poterba, 2002; Carhart, Carpenter, Lynch, and Musto, 2002). It

also enables us to use the panel data structure to take care of yearly �xed e¤ects and

in some cases fund speci�c �xed e¤ects as well. We further incorporate the size e¤ects

and the e¤ects of the total capitalization of the funds in terms of its net assets. Finally,

to accommodate for comparing with the data available for private equity return we only

look at open ended mutual funds that do not give out any dividend, this makes the

internal rate of return (IRRit) and the rate of return (returnit) of the fund the same.

The overall regression model

returnit = �t + �(FundSizeit) + �(Sequenceit) + "it; (9)

where for the ith individual fund and the tth period of time returnit is reported by

Morningstar, FundSizeit is the logarithm of the net assets and Sequenceit is the loga-

rithm of the year number of the fund (number of years of the same fund). As mentioned

before we also incorporate non-linear terms for variables to account for non-linear e¤ects

of fund size and vintage of funds. In particular we are interested to incorporate e¤ects

of size reported in several works like Fama and French (1992, 1997, 1999), and e¤ects of

size and vintage that are implied in Berk and Green (2004, p. 1271):

"...investments with active managers do not outperform passive benchmarks

because investors competitively supply funds to managers and there are de-

creasing returns for managers in deploying their superior ability. Managers

increase the size of their funds, and their own compensation, to the point at

which expected returns to investors are competitive going forward."

From model in Table 6 column (1) with all publicly traded open-ended US mutual

funds (n = 5635), we see that size has a positive impact on the returns
�
�̂ = 0:38

�
but a negative impact on sequence

�
�̂ = �2:26

�
incorporating yearly �xed e¤ects. In

column (2) ; we include square terms of log of size and see there is a signi�cant negative

impact
�
�̂1 = 1:29; �̂2 = �0:1

�
meaning there is a convex relationship between returns

and size, but not so much for returns and sequence for public equity
�
�̂1 = �3:59

�
.

However, if we accommodate for both year and fund speci�c �xed e¤ects as in column

(4), sequence is no longer statistically signi�cant. On the other hand size now has a

signi�cant negative impact on returns
�
�̂1 = �3:11

�
: The results are not statistically

signi�cant if non-linear terms are included possibly due to multicollinearity.
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To further illustrate the implications of the point we also use an alternate model to

verify or accommodate for persistence using past returns

returnit = �t + �1(returnit�1) + �2(returnit�2) + "it: (10)

As these are yearly returns and we accommodate for survivorship bias by including

several years of return, we do observe in column (8) some persistence of returns with

only yearly �xed e¤ects
�
�̂1 = 0:08; �̂2 = �0:28; n = 1930

�
. However, this becomes both

economically and statistically signi�cant, and negative with both year and fund speci�c

�xed e¤ects (�̂1 = �0:28; �̂2 = �0:6; n = 1930 see Table 6 columns (7)� (10)). The best
argument we can make is the one alluded to in the literature about the performance of

managers is related to the amount of in�ow and not necessarily the long term persistent

return of the fund which becomes competitive with new fund in�ow (Berk and Green,

2004). No such e¤ect can be seen the private equity fund returns in Table 4 and Table

5.

The main focus of this paper is however di¤erent from the previous works on the

determinants of persistence of returns or the e¤ect of fund size or in�ow on returns from

private and public equity. We focus on the relative distributional structure, and hence

risk-return structure of private and public equity markets in two panels. Kaplan and

Schoar (2005, p. 1797) used proprietary data to calculate the Public Market Equivalent

(PME) that:

"...compares an investment in a private equity fund to an investment in the

S&P 500. We implement the PME calculation by investing (or discounting)

all cash out�ows of the fund at the total return to the S&P 500 and comparing

the resulting value to the value of the cash in�ows (all net of fees) to the fund

invested (discounted) using the total return to the S&P 500. A fund with

a PME greater than 1 outperformed the S&P 500 (net of all fees).We (not

VE) perform the PME calculations using fund cash �ows."

We use the internal rates of return published by Venture Economics to evaluate the

true choice made by an investor between publicly traded mutual funds and placements

in funds holding private equity. Hence, we look at the distributional comparison using

pre-tax public mutual fund returns rather than benchmarks like S&P 500 index that

cannot be traded by individual investors. We have already applied a Neyman smooth

type test for the two sample context introduced by Bera, Ghosh and Xiao (2007) in the

unadjusted case. We would continue that on the residuals or abnormal returns under
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certain assumptions. First, the private and public equity returns independent. We have

used the public equity returns from 1996 to 2003, while the inception of the private equity

funds are set before 1996. Furthermore, we have used the year and fund speci�c �xed

e¤ects from both private and public equity returns to adjust for the market conditions

in those years and for those funds. We have also seen that the number of publicly

traded funds in the database are much larger than the number of privately traded funds

that satis�es the condition given in Section 3 (also see Bera, Ghosh and Xiao, 2007 and

simulation study in the Appendix and Figure 9). We also performed a Hausman-type

test (not reported here) to verify that the time series and the cross-sectional terms can

be pooled separately in both public and private equity funds.

The probability density function (PDF) estimates and the empirical distribution

functions (EDF) of the residuals are plotted in Figures 5-8. It is evident from the plots

of the PDFs of the residuals of private and public equity regression models (7) and (9),

respectively, in Figure 5A using a yearly �xed e¤ect that models have relatively few

intersections in the middle, and would suit the Smooth test framework. If however we

account for �xed e¤ect for both year and fund speci�c e¤ects as in Figure 5B, then

even that di¤erence is partially accounted for. Graphically, the EDF plots in Figure

6A or 6B also do not show distinct �rst order stochastic dominance i.e., either private

or public equity consistently outperforming the other for all returns. We further test

whether components of private equity funds like Venture capital funds (VC) or Buyout

funds (LBO) show some consistent behavior with respect to the publicly traded mutual

funds. We �nd that adjusting for both year and fund speci�c �xed e¤ects the regression

residuals are plotted in Figure 7A, and observe that the VC returns are similar in level to

publicly traded funds but there are some di¤erences possibly in higher order moments.

Figure 8A also con�rms the similarity of the EDFs, and no clear �rst order stochastic

dominance patterns. The LBO funds residuals PDF do show some deviation from the

PDF of the public equity residuals in Figure 7B, as does the EDF plot in Figure 8B.

However, we should bear in mind that the sample size for the LBO funds are substantially

smaller than the VC funds in the Venture Economics database. If we incorporate the

lagged dependent variables then distributions of residuals of private and public equity

models in (8) and (10), respectively, are indeed di¤erent as seen in Figure 5C, but there

is no pattern in the EDFs in Figure 6C. The di¤erence between the PDFs seem more

pronounced for the Venture Capital funds (Figures 7C and 8C). One obvious reason for

this is the introduction for lagged dependent terms in the model might make the model

misspeci�ed, and possibly autocorrelated. Having done the graphical analysis it is clear

that while there are some di¤erences in the distribution of residuals or abnormal returns,
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there could be di¤erences in higher order moments that was not accounted for in the

regression framework with essentially normally distributed residuals.

The results of the smooth test are reported in Tables 7 and 8. If we compare the

models for the residuals of a public equity mutual fund with no yield (n = 5635) using

a simple model with no non-linear terms (9) and private equity fund with a simple

model with similarly no non-linear term for size and sequence number in (7), accounting

for yearly �xed e¤ects, the distributions are statistically signi�cantly di¤erent overall

(with 	̂26 = 50:86, m = 840; see Table 7). The test also shows departures in the

�rst, fourth and sixth order terms (û21 = 13:18; û24 = 13:0 /1 and û26 = 20:75). The

third order term û23 = 3:53 is marginally insigni�cant at 5% level. However, if we

chose the recommended sample size of m = 518 in the Appendix A so as to minimize

�nite sample size distortion of the test, it was signi�cant overall (	̂26 = 37:23) and also

in the �rst and second order
�
û21 = 4:97 and û

2
2 = 4:32

�
with p-values of 3% and 4%,

respectively. To incorporate a second order term for �ndings of Kaplan and Schoar

(2005), we indeed �nd the results are qualitatively similar with an overall 	̂26 = 38:93,

with û21 = 12:13; û
2
4 = 12:91 and û

2
6 = 12:43 indicating deviations in the �rst, fourth and

sixth orthogonal moment directions. Selecting a sample of size n = 518 also preserved

the original results are 5% signi�cance level. If we select only the liquidated private

equity funds (n = 463) that had an inception year before 1996 (see Table 7 line 5),

there is a statistically stronger di¤erence between residuals for the public and private

equity returns ( 	̂26 = 55:78) with departures in the directions of the second, fourth,

�fth and sixth moments (û22 = 5:6; û
2
4 = 29:97; û

2
5 = 6:11 and û

2
6 = 8:49) allowing for 5%

probability of Type I Error. We have used the bigger data set of all private equity funds

that had an inception year before 1996 as qualitatively the results were similar with the

liquidated funds although the data was almost twice as large. We also reckoned that

funds that started before 1996 would begin to show some tangible returns by their sixth

year of existence.

Now however to account for the variability of the funds and incorporate di¤erences

across di¤erent fund types (for similar partnerships or funds) we can include both a year

and fund/�rm speci�c �xed e¤ects. The results change dramatically. For the simple

model there is still statistically signi�cant di¤erence between the private and public

residuals (	̂26 = 14:18) at 5% level but not at 1%: The almost the entire di¤erence is

accounted for by the fourth order term (û24 = 8:64) or departure in the direction of the

term related to excess kurtosis. The result is replicated if we take a sample, though at a

slightly higher signi�cance level. These results con�rm the �ndings in previous literature

that there is hardly any signi�cant di¤erence between private and public equity returns
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once you account for size and sequence, and reputation of the fund. If we use the full

model with non-linear terms we also �nd that the overall statistical signi�cance of the

model (	̂26 = 16:4) is coming from the fourth order or kurtosis related term (û24 = 8:98).

Even this di¤erence washes away if we take a smaller sample so as to reduce distortion

of the size of the test of signi�cance.

If we turn our attention to the components of private equity individually like Venture

Capital and Leveraged Buyout, the results are even more striking (see Table 8). Using

the panel structure of the model with yearly and individual fund speci�c �xed e¤ects,

comparing the residuals of the no yield publicly traded mutual funds models and the

residuals from the regression using only Venture Capital Funds that were started before

1996 there is no di¤erence between the distributions (	̂26 = 6:54; Table 8 line 1). If we

only include the Venture Capital Funds that were already liquidated, the results stay

the same (	̂26 = 11:64; Table 8 line 2).

If on the other hand we use LBO funds, for all funds (m = 206) there is substantial

di¤erence between the distributions of the residuals of the public equity funds with no

yield and the LBO funds (	̂26 = 64:97) that was mainly owing to di¤erences in the

second, fourth and sixth moment directions (û22 = 32:05; û24 = 13:35 and û26 = 18:99).

However, if we look at only the liquidated LBO funds (m = 85), there are no di¤erences

between the two residual distributions (	̂26 = 5:41). This anomaly might be due to

data reporting error before the liquidation of the fund or due to the small sample size

involved.

Kaplan and Schoar (2005) also pointed out that private equity funds show evidence of

persistence over di¤erent sequence numbers, unlike the public equity market where stock

picking ability to beat the market in the short run is often assumed to be fortuitous.

From regression results in Table 4 columns 9 and 10, we observe that indeed their is a

signi�cant positive relationship between both a single lagged return as well as two lags

of pre-tax returns, all as expected ( �R2 = 0:27). Returns for private equity show some

degree of persistence in the data though the sample size is relatively small m = 141:

Similar type of e¤ect is also seen in Venture Capital Funds, but lack of data prevent us

from corroborating that for LBO funds. If we turn to public equity with no yield and

�t a model for the pretax returns with one and two previous periods returns we can

�t a model similar to (10) without the dummy variable for VC funds. As compared to

the private equity case whether with all private equity funds or a speci�c class of funds

like the Venture Capital Funds, the estimation results are quite di¤erent. While we

�nd more mean reversion rather than persistence in the signi�cant negative coe¢ cients

of past returns using yearly �xed e¤ects. We have used the residuals to run the BGX
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test and found that there is signi�cant di¤erences between the residual distributions

both for one and two lags in the model. For one lagged term the overall statistics

is 	̂26 = 64:07 that is chie�y caused by departures in the second, fourth and sixth

orthogonal moment directions (û22 = 15:86; û
2
4 = 16:9 and û

2
6 = 29:25) with a sample of

size m = 275: However, with a much smaller sample size of m = 141 we established that

the overall 	̂26 = 75:94 and principal directions of departure are û
2
2 = 43:42; û

2
4 = 19:63

and û26 = 6:77, all statistically signi�cant at 5% level. One of the serious issues of using

the lagged dependent structure is that to exactly identify the number of lags, as we

might introduce impure heteroscedasticity or autocorrelation by not selecting the right

person. This might be introduced as an artifact if the lag structure is misspeci�ed (see

Figures 5C-6C).

For Venture Capital Funds alone we run a model with only two lagged dependent

variable and get an overall 	̂26 = 60:03 though with a small sample size of m = 106:.The

departures of the distributions of the residuals after adjusting for �xed e¤ects for the

year between public equity funds and venture capital funds are coming from the second,

fourth and sixth moment directions (û22 = 28:05, û
2
4 = 12:52 and û

2
6 = 16:61). However,

this result might be a¤ected by the small sample size of venture capital funds that has at

least two previous returns data. The PDF and the EDF plots of public equity residuals

and the private equity residuals in Figures 7C and 8C, respectively, also gives us an

impression that the distributions might be di¤erent. We should also mention the caveat

here, as before if the regression model is misspeci�ed then including a lagged dependent

variable might introduce dependence across the two groups as an artifact.

4.4 Robust Regression of Private and Public Equity Returns

The the use of OLS type residuals have several technical and methodological issues

that challenges the robustness of the results. First, it can be argued that presence of

sample selection issues like survivorship bias both for public and private equity makes

the inference based on unadjusted OLS residuals problematic (see Carhart et. al.2002,

Cochrane, 2005). Second, model selection to identify non-linear dependence of returns on

fund size and sequence might have issues with data-snooping and omitted variables bias

(Lo and MacKinlay, 1989). Third, self reporting in case of cash�ows for non-liquidated

funds and actual allocated (not committed) fund size for private equity throws into the

mix possible measurement error issues (Kaplan, Sensoy, Stromberg, 2002; Ljungqvist

and Richardson, 2003; Kaplan and Schoar, 2005). Fourth, the non-linear structure of

the model and unknown error distribution speci�cation for observational data makes
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it necessary to look for more robust alternative to ordinary least squares. Finally, as

investors and funds in private and public equity are inherently di¤erent hence not quite

comparable we use fractile or covariate-rank regression methods to make the two returns

comparable.

We use robust rank regression or fractile regression methods to address the above

problems for e¤ects of size of the fund in the regression models of returns is reported in

Table 9 (see Bera and Ghosh, 2006, Ghosh, 2006 and references therein). If we de�ne the

conditional expectation of the return distribution (Y ) given the fractile of the covariate

X as m (x) = E [Y jX = x] ; and we have the rank or the CDF F (:) of X and error term

"; our model is

yit = r (uit) + "it = E (Y jF (X) = uit) + "it (11)

= E
�
Y jX = F�1 (uit)

�
+ "it = m

�
F�1 (uit)

�
+ "it;

where F�1 (u) = infx fxjP (X � x) = ug is the quantile function. We can use the linear
function m (x) = m (x;�) = �0 + �1x or keep it in the general form. This method is

closely related to Quantile Regression method (see Koenker and Bassett, 1978).

For private equity funds the internal rate of return is a¤ected positively by the rank

of the fund size committed by the Limited Partner for funds that started before 1996

(here rank is the lowest for the smallest fund, column (1) m = 840) without any �xed

e¤ects. So bigger the fund size the higher is the internal rate of return, ceteris paribus. It

is also strongly in�uenced by the type of the fund, i.e. Venture Capital based funds have

a higher return. Even when yearly ��xed e¤ects were accounted for in model in (2), the

e¤ects of the rank of fund size and Venture Capital status remained strongly statistically

signi�cant and positive. However, both the e¤ects vanished when �xed e¤ects for �rms

were also introduced. In economic terms as seen before the coe¢ cient for the size of

the fund became negative but was not statistically insigni�cant for funds with inception

before 1996. If we looked at funds that were already liquidated by 2003 and started

before 1996, we have a slight positive signi�cance of the rank of fund size at 5%; and

statistically insigni�cant type of the private equity �rm in column (4). Though with

less strong signi�cance, the results for m = 463 liquidated �rms and those that started

before 1996 are in essence similar.

Venture capital fund internal rates of return by themselves also statistically depend

strongly positively on the rank of fund size (�̂1 = 0:0405) without any �xed e¤ects and

adjusted R2 = 0:03. With the yearly �xed e¤ects the results are essentially similar, both

with sample size m = 610 (columns (9) and (10)). The results are not the same for
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Buyouts funds that started before 1996, although the sample size m = 206 is smaller.

There is no statistically signi�cant e¤ect on the internal rate of return if the yearly �xed

e¤ects were not considered. There was a slight signi�cance at 10% level when yearly

�xed e¤ects are considered.

Public equity mutual fund returns when regressed on the rank of the size of the fund

is similar, as there is a strong positive coe¢ cient for larger funds without any �xed e¤ects

(Column (5)) with a sample size of n = 5635 and adjusted R2 = 0:004: This implies

that no matter whether yearly �xed e¤ects are included in the model the rank of fund

size does have an important role to play in determining the yearly returns (column (7) ;
�R2 = 0:5). If however, we included both year and fund speci�c �xed e¤ects, the return

is statistically signi�cantly but negatively related to rank of fund size
�
�̂1 = �0:0037

�
with 46% of the variation of returns explained by the variation of the rank of fund size

and other �xed e¤ect variables.

Our main emphasis in this paper has been to identify the moment directions of

departure between the two distributions of private and public equity returns. In par-

ticular, we are interested in investigating how private equity returns are di¤erent from

their public equity counterparts in a cross sectional sense (Table 10). We �nd with no

adjustment for �xed e¤ects overall smooth test indicates that the private and public

equity returns after adjusting for the fractiles or ranks of the size are widely di¤erent

for private and public equity
�
	̂26 = 567:35; row 1

�
: The main directions of departure

seems to be all moments except the �rst one
�
û21 = 3:16; pvalue = 0:08; m = 840

�
: The

overall e¤ect, however, reduces although still statistically signi�cant once we take into

account the �xed e¤ect due to years
�
	̂26 = 47:99, m = 840; row 2

�
: The main direc-

tions of departure of the residuals of the private equity model from the public equity

after incorporating yearly �xed e¤ects are towards the �rst, fourth and sixth moment di-

rections (û21 = 12:84; û
2
4 = 18:3 and û

2
6 = 13:79): Further, if we include both �xed e¤ects

for years and �rms (or funds), in the overall models the residuals from private and public

equity are marginally signi�cantly di¤erent at 5% level
�
	̂26 = 14:30, m = 840; row 3

�
;

that is almost entirely due to the fourth order term û24 = 8:38: The results are very

similar if we only look at the Venture Capital funds by themselves. After adjusting

for �xed e¤ects for years alone (due to the lack of enough data points), the Venture

Capital funds residuals are indeed di¤erent overall from public equity returns residuals

(	̂26 = 53:67, m = 610; row 4). The residuals are di¤erent in the directions of the �rst,

fourth and sixth moment directions (û21 = 5:33; û
2
4 = 25:49 and û

2
6 = 19:01) using a 5%

signi�cance level. As opposed to that, if we look at Buyout funds alone at 5% level of

signi�cance there is no di¤erence between the residuals of buyout funds and the pub-
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lic equity funds
�
	̂26 = 11:28, m = 206; row 5

�
. The small sample size of the buyout

funds in the sample period we looked at might have been one of the reasons for such a

statistically insigni�cant di¤erence.

5 Comparing Venture Capital and Buyout Funds

While it is evident that private and public equity returns might be di¤erent, LPs (or

investors) are often faced with a choice between di¤erent types of private equity. We

focus our attention on Venture Capital and Buyout Funds. Our sample of funds from

Thomson Reuters SDC Platinum database with inception before 1996 has 610 Venture

Capital Funds and 206 Buyout Funds. Figure 2C and 3C suggests that the distributions

of internal rates of return (that is now more comparable across di¤erent private equity

funds rather than between private and public equity funds) for the two unadjusted return

distributions are similar with few intersections. Hence we apply the BGX smooth test to

both the full sample with inception before 1996 and a recommended sample size selected

from the full sample of Buyout funds that has a smaller sample size (see Appendix

A). We observe that from Table 1, the mean returns of both VC and Buyout funds

are numerically similar (15:27) but the medians are distinctly di¤erent (18:7 and 12:17

respectively), there is a substantial di¤erence in dispersion between the absolute terms

(standard deviation of 41:59 and 22:32; respectively) and relative terms (Sharpe Ratio

of 0:38 and 0:68, respectively). These suggests that there might be some di¤erences

in the higher order moments of the return distributions. Furthermore, from Table 1B,

traditional tests like the Kolmogorov-Smirnov and Cramer-von Mises type tests also

show that the two distributions are statistically marginally di¤erent at 0:1% level.

We run a smooth test on the unconditional return distribution of Venture Capital

Funds and Buyout Funds and �nd that in the full sample the two are di¤erent statistically

at 5% level
�
	̂26 = 25:2

�
: The main sources of departure are in the direction of the �rst,

third and �fth order terms (û21 = 11:86, û
2
3 = 5:66 and û

2
6 = 5:1) that are all signi�cant at

5% level. If under the recommendation of the BGX test to minimize size distortion of the

asymptotic test we select a sample of size m = 137 (m = 22:5% of n = 610) of Buyout

Funds, we get essentially a similar result with the directions of departure reducing to

�rst and �fth moment directions
�
û21 = 8:26; û

2
5 = 6:49

�
. We can infer from our results

that the unadjusted returns from Venture Capital and Buyout funds are indeed di¤erent,

and the main source of departure is coming from direction of location (and marginally,

in the �fth order related terms).

Public and private equity are inherently di¤erent asset classes, hence the investors in
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the two groups might also be di¤erent with varying appetite for and tolerance of risk. So

it is often worthwhile to look at di¤erent types of private equity funds like venture capital

and buyout type funds to see how they compare with each other. While this was already

addressed in subsection 4.1, we would like to extend the discussion when we take into

account the size of the total commitment by the Limited Partner or investor. However,

since we have seen that on an average Buyouts are larger than Venture Capital funds,

we want to account for the size e¤ect nonparametrically (or account for size without

imposing any linear parametric structure). We observe from Fractile Graphs Figure 3

(iv)� (vi) that for g = 10; 20 and 50 there doesn�t seem to be clear evidence graphically

to see that the two are di¤erent based on the fractiles of fund size. We performed

the overall F-test of comparing g fractile means obtained using FGA techniques and the

results are given in column 6 in Table FGA. We see that after accounting for size the two

fractile graphs are indistinguishable for g = 10 and g = 20: Hence we can conclude that

the returns of Venture Capital and Buyout funds are similar across all fractile groups.

Hence, inherently investors of private equity are similar in their risk pro�le for average

return conditional on the fractiles of the fund size. However, if we look at g = 50; we

�nd that the VC and Buyout funds are distinctly di¤erent at 5% level. The main caveat

of the conclusion is that the sample size of the buyout funds is not big enough to allow

for 50 fractile groups, so the results in case with g = 50 might be misleading.

As we are looking at the internal rates of return of private equity �rms that are partly

based on self reported cash-�ow data, it is probably more comparable with similarly

reported internal rates of return rather than veri�able public equity returns. So to give

a fair assessment within a similar asset class, we also compare returns to VC and Buyout

funds using the residuals obtained from OLS with models similar to Kaplan and Schoar

(2005). The results are reported in Table 8 rows 6-10. We �rst compare residuals from

the estimation of model (7 without the dummy variable for VC) Venture Capital and

Buyout funds separately. The residuals in the simple model with no non-linear terms in

log of size or sequence, we see that the two residuals are marginally statistically di¤erent

at 5% level (	̂26 = 15:51; p-value=0:02). The main sources of departure are towards

the �rst and �fth moment directions (û21 = 7:56 and û
2
5 = 7:17). We observe that with

�xed e¤ects for years, the residuals from the returns regression with Venture Capital

funds and those with Buyout funds using model (7) are statistically indistinguishable

using the smooth test (	̂26 = 10:24; pvalue = 0:11). Using the Kolmogorov-Smirnov

(KS=0:08;p-value=0:16) the same result holds at 5% level of signi�cance. Further, if we

use the model with quadratic terms of log of size and sequence, there is no di¤erence

between the results with the simple model. However, if both �xed e¤ects for year and
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�rms are used the two residual distributions are di¤erent (	̂26 = 76:27) overall owing to

the second, fourth and sixth moment directions (û22 = 41:88; û
2
4 = 14:26 and û

2
6 = 18:74).

Given the small sample size of buyout funds, �xed e¤ects for both year and �rms might

reduce the degrees of freedom substantially and could lead to misleading results.

The size of the fund seems to play a crucial role in the internal rate of return of the

fund. If we estimate a simple regression model with the fund size as the only explanatory

variable, we see that the residuals from the Venture Capital Funds and Buyout Funds are

very similar and marginally signi�cant at 5% level (	̂26 = 14:18; see row 6 in Table 8) with

only signi�cant departures in the direction of the �rst moment directions (û21 = 7:97). If

we look at a more robust alternative regression using the rank of size as a covariate in

Table 10, with no �xed e¤ects we see that the two residual distributions from regression

on the rank of the size of the fund are marginally signi�cant using 5% level (	̂26 =

12:97; see Table 10 row 6). The main departure in the direction of location
�
û21 = 7:67

�
.

Using �xed e¤ects for years once again we �nd that the distributions of residuals for

Venture Capital and Buyout fund residuals are statistically not distinguishable at 5%

level (	̂26 = 8:65; p-value= 0:19). This implies that essentially the Buyout and Venture

Capital funds residuals mainly di¤er in the �rst moment direction if size is not taken

into account. The results imply that the size does play an important role in determining

the returns on venture capital and buyout funds unlike what has been suggested in the

literature (Metrick and Yasuda, 2007). In fact, after adjusting for the e¤ects of fund

size in a robust procedure, Buyout and Venture Capital fund return distributions are

statistically similar using the smooth test.

6 Summary and Directions

Our �ndings help us explain how the return distributions are indeed di¤erent between

private and public equity funds. However, the deviations between the two distributions

reduces substantially when we take into account the size of the fund, and to a lesser

extent the sequence. One of the major �ndings of this paper is that once year speci�c

�xed e¤ects are incorporated private and public equity returns are quite similar. This

bolsters the argument in the literature that private equity returns are pro-cyclical with

the business cycle and are positively correlated with public equity returns (Phalippou

and Zollo, 2005). We also did �nd some non-linearity in fund size and return relationship,

however, the sign of second order term was not as stable or statistically signi�cant when

�xed e¤ect for year was included.

There is also strong evidence that private equity return is more persistent up to two
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previous sequences. However, the surprising result was for public equity as well there is

a positive association with last year�s returns for surviving funds that might be related

to momentum based strategies. However, there is a strong negative relationship with

second lagged term of returns. This could be due to the e¤ect of in�ow into the fund

that waters down the return margin (Berk and Green, 2004).

We found evidence that Venture Capital Funds and Buyout (LBO) funds are inher-

ently similar investment vehicles with a main source of departure in the �rst order or

location term without any �xed e¤ects. However, this also vanished when �xed e¤ect

for year was included. When we applied fractile (or rank) regression with and without

�xed e¤ects the same results were replicated. Hence the relationship between VC and

LBO funds about their risk characteristic is pretty robust. The overall F-test with boot-

strapped standard errors for the non-parametric FGA test also con�rms that Venture

Capital funds and LBO funds have similar risk exposure after adjusting for size.

Tests based on Fractile Graphs and bootstrapped standard errors provides an exciting

non-parametric version of a distributional comparison test after adjusting for ranks of a

conditioning variable like fund size. However, the power and size properties of such test

hasn�t been extensively tested for dependent or panel data, so this is a possible direction

of future research.

With this evidence in the data we can suggest what motivates an entrepreneur or a

general partner in a private equity �rm or a venture capitalist or owner of private equity

to hold assets with higher risk is not just an increased probability of higher returns but

an a¢ nity to some function of higher order moments in the return distribution. From the

perspective of a Limited Parner, such a measure re�ects the true risk-return tradeo¤ that

often determined by the peculiarities of the di¤erent types of private equity investment

instruments and institutions and their risk appetite (Lerner, Schoar and Wongsunwai,

2007).
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2 1

� ~�2 1
� û
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2 6

� ~�2 1
�

N
o
Y
ie
ld
-P
re
96
re
si
du
al
s,
N
o
F
E

56
7.
35
��
�

3.
16
�

25
4.
44
��
�

79
.7
9�
��

16
9.
6�
��

53
.8
7�
��

6.
49
��

(5
)
�
(1
)
(n
=
56
35
;m

=
84
0)

(0
:0
0
)

(0
:0
8
)

(0
:0
0
)

(0
:0
0)

(0
:0
0
)

(0
:0
0
)

(0
:0
1)

N
o-
yi
el
d
-
P
re
96
,
F
E
(Y
r)

47
.9
9�
��

12
.8
4�
��

0.
01

2.
73

18
.3
��
�

0.
32

13
.7
9�
��

(7
)
�
(2
)
(n
=
56
35
;m

=
84
0)

(0
:0
0
)

(0
:0
0
)

(0
:9
1
)

(0
:1
)

(0
:0
0
)

(0
:5
7
)

(0
:0
0)

N
o
Y
ie
ld
-P
re
96
,
F
E
(y
r.
,
fu
nd
s)

14
.3
0�
�

0.
19
8

2.
15

0.
22

8.
38
��
�

0.
00

3.
34
9�

(8
)
�
(3
)
(n
=
56
35
;m

=
84
0)

(0
:0
3
)

(0
:6
6
)

(0
:1
4
)

(0
:6
4)

(0
:0
0
)

(0
:9
7
)

(0
:0
7)

N
o
Y
ie
ld
-P
re
96
,
V
C
F
E
(y
r.
)

53
.6
7�
��

5.
33
��

0.
05

3.
75
�

25
.4
9�
��

0.
04

19
.0
1�
��

(7
)
�
(1
0)
(n
=
56
35
;m

=
61
0)

(0
:0
0
)

(0
:0
2
)

(0
:8
1
)

(0
:0
5)

(0
:0
0
)

(0
:8
4
)

(0
:0
0)

N
o
Y
ie
ld
-P
re
96
,
L
B
O
F
E
(y
r.
)

11
.2
8�

0.
00

1.
63

0.
11

0.
47

0.
00

9.
07
��
�

(7
)
�
(1
2)
(n
=
56
35
;m

=
20
6)

(0
:0
8
)

(0
:9
6
)

(0
:2
)

(0
:7
4)

(0
:4
9
)

(0
:9
8
)

(0
:0
0)

V
en
tu
re
C
ap
it
al
-B
uy
ou
t
Fu
nd
s
no
F
E

12
.9
7�
�

7.
67
��

0.
44

1.
28

0.
08

3.
43
�

0.
07

(1
0)
�
(1
2)
(n
=
61
0;
m
=
20
6)

(0
:0
4
)

(0
:0
1
)

(0
:5
1
)

(0
:2
6
)

(0
:7
8
)

(0
:0
6
)

(0
:7
9)

V
en
tu
re
C
ap
it
al
-B
uy
ou
t
Fu
nd
s
F
E
(y
r)

8.
65

2.
07

0.
55

1.
22

2.
2

0.
97

1.
63

(1
0)
�
(1
2)
(n
=
61
0;
m
=
20
6)

(0
:1
9
)

(0
:1
5
)

(0
:4
6
)

(0
:2
7
)

(0
:1
4
)

(0
:3
2
)

(0
:2
)

44



F
ig
ur
e
5-
6:
K
er
ne
ld
en
si
ty
fu
nc
ti
on
s
(5
A
-5
C
)
an
d
E
m
pi
ri
ca
lD
is
tr
ib
ut
io
n
Fu
nc
ti
on
s(
6A
-6
C
)
of
an
nu
al
pu
bl
ic
eq
ui
ty
fu
nd
s

re
tu
rn
s
re
si
du
al
s
(1
99
6-
20
02
)
an
d
pr
iv
at
e
eq
ui
ty
in
te
rn
al
ra
te
s
of
re
tu
rn
s
re
si
du
al
s
(i
nc
ep
ti
on
b
ef
or
e
19
96
).

­5
0

0
50

10
0

R
et

ur
ns

%

0.000.010.020.030.04

Density Estimate

S
m

oo
th

ed
 D

en
si

ty
 E

st
im

at
es

Pu
bl

ic
 E

qu
ity

Pr
iv

at
e 

Eq
ui

ty

F
ig
ur
e
5A
:
R
es
id
ua
ls
(F
E
yr
)

­5
0

0
50

10
0

R
et

ur
ns

%

0.000.020.040.060.080.10

Density Estimate

S
m

oo
th

ed
 D

en
si

ty
 E

st
im

at
es

Pu
bl

ic
 E

qu
ity

Pr
iv

at
e 

Eq
ui

ty

F
ig
ur
e
5B
:
R
es
id
ua
ls
(F
E
yr
,
fn
ds
)

­5
0

0
50

10
0

R
et

ur
ns

%

0.000.010.020.030.04

Density Estimate

S
m

oo
th

ed
 D

en
si

ty
 E

st
im

at
es

Pu
bl

ic
 E

qu
ity

Pr
iv

at
e 

Eq
ui

ty

F
gu
re
5C
:
L
ag
ge
d
rt
ns
re
si
du
al
s.

­5
0

0
50

10
0

Va
ria

bl
e

0.00.20.40.60.81.0

EDF

E
m

pi
ric

al
 D

is
tri

bu
tio

n 
Fu

nc
tio

ns ED
F 

Pu
bl

ic
 E

qu
ity

ED
F 

Pr
iv

at
e 

Eq
ui

ty

F
ig
ur
e
6A
:
R
es
id
ua
ls
,
F
E
(y
r)

­5
0

0
50

10
0

Va
ria

bl
e

0.00.20.40.60.81.0

EDF

E
m

pi
ric

al
 D

is
tri

bu
tio

n 
Fu

nc
tio

ns ED
F 

Pu
bl

ic
 E

qu
ity

ED
F 

Pr
iv

at
e 

Eq
ui

ty

F
ig
ur
e
6B
:
R
es
id
ua
ls
,
F
E
(y
r,
fn
ds
).

­5
0

0
50

10
0

Va
ria

bl
e

0.00.20.40.60.81.0

EDF

E
m

pi
ric

al
 D

is
tri

bu
tio

n 
Fu

nc
tio

ns ED
F 

Pu
bl

ic
 E

qu
ity

ED
F 

Pr
iv

at
e 

Eq
ui

ty

F
ig
ur
e
6C
:
L
ag
ge
d
rt
ns
re
si
du
al
s.

45



F
ig
ur
e
7-
8:
K
er
ne
ld
en
si
ty
fu
nc
ti
on
s(
7A
-7
C
)
an
d
E
m
pi
ri
ca
lD
is
tr
ib
ut
io
n
Fu
nc
ti
on
s
(8
A
-8
C
)
of
an
nu
al
pu
bl
ic
eq
ui
ty
fu
nd
s

re
tu
rn
s
re
si
du
al
s
(1
99
6-
20
02
)
an
d
di
¤
er
en
t
pr
iv
at
e
eq
ui
ty
in
te
rn
al
ra
te
s
of
re
tu
rn
s
re
si
du
al
s
(i
nc
ep
ti
on
b
ef
or
e
19
96
).
A
ll
w
it
h

�x
ed
e¤
ec
t
fo
r
ye
ar
s.

­5
0

0
50

10
0

R
et

ur
ns

%

0.000.010.020.030.04

Density Estimate
S

m
oo

th
ed

 D
en

si
ty

 E
st

im
at

es

Pu
bl

ic
 E

qu
ity

Pr
iv

at
e 

Eq
ui

ty

F
ig
ur
e
7A
:
V
C
R
es
id
ua
ls
.

­5
0

0
50

10
0

R
et

ur
ns

%

0.000.010.020.030.04

Density Estimate

S
m

oo
th

ed
 D

en
si

ty
 E

st
im

at
es

Pu
bl

ic
 E

qu
ity

Pr
iv

at
e 

Eq
ui

ty

F
ig
ur
e
7B
:
L
B
O
re
si
du
al
s.

­5
0

0
50

10
0

R
et

ur
ns

%

0.000.010.020.030.04

Density Estimate

S
m

oo
th

ed
 D

en
si

ty
 E

st
im

at
es

Pu
bl

ic
 E

qu
ity

Pr
iv

at
e 

Eq
ui

ty

F
ig
ur
e
7C
:
L
ag
ge
d
V
C
re
si
du
al
s.

­5
0

0
50

10
0

Va
ria

bl
e

0.00.20.40.60.81.0

EDF

E
m

pi
ric

al
 D

is
tri

bu
tio

n 
Fu

nc
tio

ns ED
F 

Pu
bl

ic
 E

qu
ity

ED
F 

Pr
iv

at
e 

Eq
ui

ty

F
ig
ur
e
8A
:
E
D
F
of
V
C
re
si
du
al
s

­5
0

0
50

10
0

Va
ria

bl
e

0.00.20.40.60.81.0

EDF
E

m
pi

ric
al

 D
is

tri
bu

tio
n 

Fu
nc

tio
ns ED

F 
Pu

bl
ic

 E
qu

ity
ED

F 
Pr

iv
at

e 
Eq

ui
ty

F
ig
ur
e
8B
:
L
B
O
re
si
du
al
s
(l
iq
.)

­5
0

0
50

10
0

Va
ria

bl
e

0.00.20.40.60.81.0

EDF

E
m

pi
ric

al
 D

is
tri

bu
tio

n 
Fu

nc
tio

ns ED
F 

Pu
bl

ic
 E

qu
ity

ED
F 

Pr
iv

at
e 

Eq
ui

ty

F
ig
ur
e
8C
:
V
C
la
gg
ed
re
si
du
al
s

46



7 Appendix A (Sample Size Selection)

This appendix is following the method described in Bera, Ghosh and Xiao (2007). For

�nite sample, for each �xed n2, we may divide the index set N = f1; : : : ; ng into two
mutually exclusive and exhaustive (large) sets N1 and N2 with cardinalities n1 and n2;
where n1 + n2 = n; and de�ne the training set

Z1 = f(Xj); j 2 N1g

and the testing set

Z2 = f(Xj); j 2 N2g:

Then we can estimate F (�) using data Z1 and construct

Fn1 (Xi) =
1

n1

X
j2N1

I (Xj � Xi) , for i 2 N2:

Z1 and Z2 are from the same distribution F , F (Xi) (i 2 N2) are uniformly distrib-
uted and Fn1 (Xi) provides an estimator for the uniform distribution, we may compare

it with the CDF of standard uniform, say, using some criterion function

1

n2

X
i2N2

d(Fn1 (Xi) ; U [0; 1])

and take average over R replications

1

R

RX
r=1

24 1
n2

X
i2N2

d(F rn1 (Xi) ; U [0; 1])

35
For each value of n2, we can calculate the above criterion function. We may choose n2

that minimizes the above criterion based on an Anderson-Darling type distance measure
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Figure 9: Plot of criterion function to choose �nite sample size

Finally, we choose

m =
n2
n1
� n:

The above method may have applications in more general settings. This is a cross-

validation type procedure to select sample size. In the above problem the criterion

function is showed in Figure 9, n2n1 = 9:21%: In the data range, the sample size of public

equity funds is 10090; we chose about 10% of the smallest sample size. We also note from

the plot of criteria function and its values, a sample size of 2250 or one-fourth (22:3%) the

size of the estimation sample also gives a reasonably small value of the criteria function.

Any sample size of the range between 9:21% and 22:3% provides a reasonable maximal

sample size for the correct nominal size of the test. Since our sample size for the private

equity return is smaller than this range we would select the entire sample size of private

equity return.
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