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a b s t r a c t

Dunnett and Tamhane [Dunnett, C.W., Tamhane, A.C., 1992. A step-up multiple test
procedure. J. Amer. Statist. Assoc. 87, 162–170.] proposed a step-up procedure for
comparing k treatments with a control and showed that the step-up procedure is
more powerful than its counterpart single step and step-down procedures. Since then,
several modified step-up procedures have been suggested to deal with different testing
environments. In order to establish those step-up procedures, it is necessary to derive
approaches for evaluating the joint distribution of the order statistics. In some cases,
experimenters may have difficulty in applying those step-up procedures in multiple
hypothesis testing because of the computational limitation of existing algorithms in
evaluating the critical values for a large number of multiple comparisons. As a result,
most procedures are only workable when the design of the experiment is balanced with
k ≤ 20 or unbalanced with k ≤ 8. In this paper, new algorithms are proposed in
order to effectively compute the joint distribution of order statistics in various situations.
An extensive numerical study shows that the proposed algorithms can easily handle the
testing situations with a much larger k. Examples of applying the proposed algorithms to
evaluate the critical values of two existing step-up procedures are also presented.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The establishment of some statistical testing procedures depends on the evaluation of the joint cumulative distribution
of order statistics e.g. Dalal and Mallows (1992) stopping rules for testing software faults and the step-up multiple test
procedure proposed by Dunnett and Tamhane (1992), hereafter called DT. Recently, several modified step-up procedures
have been proposed to deal with different testing environments. For instance, Dunnett and Tamhane (1997), Kwong (2001a)
and Kwong et al. (2004) discussed the two-stage step-up multiple testing to establish superiority and equivalence of the
efficacy between several treatments and a control. Besides, Tamhane et al. (1998) proposed the combination of step-up and
step-downprocedures to a generalized step-up-downprocedure.Moreover, Kwong et al. (2007) proposed p-value consistent
step-up procedure in the direction-mixed familieswhich contain a combination of one- and two-sided inferences. Therefore,
the evaluation of the joint distribution of order statistics plays a critical role for the applications and development of those
stepwise testing procedures.

Several approaches for the evaluation of the joint distribution of order statistics in the independent and identically
distributed (iid) case have been proposed. For example, based on the multinomial argument, Ma (1997) suggested a saddle-
point approximation approach. Although the numerical study illustrates the great accuracy of the approximations in low
dimensional cases, some existing approaches are also available to get the exact values in those cases. Therefore, this
approximation approach is not desirable and will not be discussed any more in this paper. In order to evaluate the joint
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distribution exactly, DT proposed a recursive algorithm by successively conditioning the random variates. However, Kwong
(2001b) pointed out that the approach is not efficient in computation processes under the iid case. This paper focuses on two
exact approaches suggested by Finner and Roters (1994) and Kwong (2001b). Both approaches use the recursive equations
to evaluate the joint distribution in two different ways. Based on multinomial argument, a new exact approach will be
proposed. By applying these three approaches to evaluate the critical values of DT’s step-up procedure under balanced
design, their general performances can then be compared.

For the independent, but not identically distributed (ibnid) case, Dunnett and Tamhane (1995), Liu (1997), and Kwong
and Liu (2000) have proposed different evaluation procedures. Among all the existing procedures, Kwong and Liu’s (2000)
approach, which is a modified DT’s approach, is believed to be the most efficient and effective method to evaluate the joint
distribution of order statistics in this case. In this paper, their algorithm is furthermodified in order to reduce the complexity
in the computational process. In order to show the significant improvement of the modified algorithm compared with the
existing algorithm, themodified algorithm is applied to evaluate the critical p-values of p-value consistent step-upprocedure
suggested by Kwong et al. (2007) in the direction-mixed families with the unbalanced designs.

2. Independent and identically distributed

2.1. Existing algorithms

Let X1, . . . , Xn be iid random variables with a known cumulative distribution function G. Denote (a1, . . . , ak) <
(b1, . . . , bk) be a(i) < b(i) for i = 1, . . . , k, where a(1) ≤ · · · ≤ a(k) and b(1) ≤ · · · ≤ b(k) are the ordered values of ai’s
and bi’s, respectively. For any given constants bn = (b1, . . . , bn) where b1 ≤ b2 ≤ · · · ≤ bn, this paper discusses the
evaluation of the joint distribution of order statistics

Fn(bn) = Pr [(X1, . . . , Xn) ≤ (b1, . . . , bn)] .

By successive conditioning the values of Xi, DT proposed an algorithm to evaluate the Fn. But the algorithm is not so efficient
especially when n is large. Finner and Roters (1994) provided the following recursive formula for evaluating Fn:

Fn(bn) = 1 −

n−1∑
j=0

(
n
j

)
Fj(bj)[1 − G(bj+1)]

n−j (1)

where F0 = 1. Without being aware of their recursive formula, Kwong (2001b) proposed another similar recursive formula
as follows:

Fn(bn) =

n∑
j=1

(−1)j−1
(
n
j

)
Fn−j(bn−j)[G(bn−j+1)]

j. (2)

Note that under the formulas (1) and (2), the calculation of Fn must be carried out recursively, i.e. onemust obtain the values
of F1, . . . , Fj−1 in order to determine Fj for j = 2, . . . , n.

2.2. Proposed algorithm

Based on the multinomial argument, the other exact approach is now derived. Define Nj be the number of Xi’s having the
value between (bj−1, bj] and ej be G(bj) − G(bj−1) for j = 1, . . . , n, where b0 = −∞. Then, (N1, . . . ,Nn) is a multinomial
distribution with parameters (n, e1, . . . , en). Since the joint event of (X1, . . . , Xk) < (b1, . . . , bk) is equivalent to the other
joint event of

∑k
j=1 Nj ≥ k for k = 1, . . . , n − 1 and

∑n
j=1 Nj = n, the function Fn(bn) can be written as

Fn(bn) = Pr

[
n−1⋂
k=1

(
k∑

j=1

Nj ≥ k

)
,

n∑
j=1

Nj = n

]
. (3)

By conditioning N1, (3) is then modified to

Fn(bn) =

n∑
i1=1

Pr(N1 = i1) Pr[A1(s1)]

where the event

Ar(sr) =

[
n−1⋂

k=r+1

(
k∑

j=r+1

Nj ≥ j − sr

)
,

n∑
j=r+1

Nj = n − sr

∣∣∣∣∣ r∑
j=1

Nj = sr

]
and sr =

∑r
l=1 il for r = 1, . . . , n − 1. As the marginal distribution of N1 is binomial with parameters (n, e1), (3) is further

reduced to
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Fn(bn) =

n∑
i1=1

(
n
i1

)
(e1)i1H1(s1),

where

Hr(sr) =


1 for sr = n(
1 −

r∑
j=1

ej

)n−sr

Pr[Ar(sr)] for r ≤ sr < n

0 for sr < r.

It is well known that (Nr+1, . . . ,Nn|
∑r

j=1 Nj = sr) is also a multinomial distribution with parameters (n −

sr , e
(r)
r+1, . . . , e

(r)
n ), where e(r)

j = ej/(1−
∑r

i=1 ei) for j = r + 1, . . . , n and r = 1, . . . , n− 1. By conditioning N2 in Pr[A1(s1)],
the function H1(s1) becomes

H1(s1) = (1 − e1)n−s1
n−s1∑
i2=0

Pr(N2 = i2) Pr[A2(s2)]

= (1 − e1)n−s1
n−s1∑
i2=0

(
n − s1

i2

)
(e(2)

2 )i2(1 − e(2)
2 )n−s2 Pr[A2(s2)]

=

n−s1∑
i2=0

(
n − s1

i2

)
(e2)i2H2(s2)

for 1 ≤ s1 < n. After continuing to condition Nj in this way, the general recursive equation can be obtained

Hr(sr) =


1 for sr = n
n−sr∑

ir+1=0

(
n − sr
ir+1

)
(er+1)

ir+1Hr+1(sr+1) for r ≤ sr < n

0 for sr < r

and

Hn(sn) =

{
1 for sn = n
0 for sn < n.

As a result, the new approach establishes the function Fn in terms of e1, . . . , en through the functions Hn, . . . ,H1 while the
recursive formulas in (1) and (2) express function Fn through the functions F1, . . . , Fn−1.

An algorithm for computing Fn is then obtained as follows:

Step 0. Set Hi(n) = 1 and Hi(i − 1) = 0 for i = 1, . . . , n.
Step 1. Calculate Hn−1(i) =

∑n−i
j=0

(
n − i
j

)
(en)jHn(i + j) for i = n − 1.

...

Step r . Calculate Hn−r(i) =
∑n−i

j=0

(
n − i
j

)
(en−r+1)

jHn−r+1(i + j) for i = n − r, . . . , n − 1.
...

Step n − 1. Calculate H1(i) =
∑n−i

j=0

(
n − i
j

)
(e2)jH2(i + j) for i = 1, . . . , n − 1.

Step n. Calculate Fn(bn) =
∑n

j=1

(
n
j

)
(e1)jH1(j).

2.3. Practical application

Many studies involve a comparison of the efficacy of treatments with a specified treatment, called the control treatment,
in terms of certain response variables. Assume an experiment comparing k (k ≥ 2) treatments with one control treatment,
where the sample sizes of all k treatments and control treatment are equal to ni for i = 1, . . . , k and n0, respectively. Let the
subscripts 1, . . . , k denote the corresponding k treatments and subscript 0 denote the control treatment. Under the standard
one-way lay-out of the fixed effect model, the response variable Xij of j-th experimental unit under treatment i is always
assumed to be normally distributedwith an unknownmeanµi for j = 1, . . . , ni and i = 0, 1, . . . , k and a commonunknown
variance σ 2, denoted as Xij ∼ N(µi, σ

2). Thus the sample treatment means X̄i and X̄0 are mutually independent and have
distributions N(µi, σ

2/ni) and N(µ0, σ
2/n0), respectively. Assume that the variance σ 2 is estimated by the pooled sample

variance S2 which is independent to all the sample means and is distributed as σ 2χ2
ν /ν, where ν =

∑k
i=0 ni − (k + 1).
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Table 1
Critical values cm for the DT’s step-up procedure in one-sided tests with α = 0.05, ν = 60, ρ = 0.3

m cm m cm m cm m cm m cm m cm

1 1.671 11 2.623 21 2.839 31 2.963 41 3.049 51 3.115
2 1.988 12 2.653 22 2.854 32 2.973 42 3.057 52 3.121
3 2.148 13 2.680 23 2.869 33 2.983 43 3.064 53 3.127
4 2.258 14 2.705 24 2.882 34 3.992 44 3.071 54 3.133
5 2.341 15 2.729 25 2.895 35 3.001 45 3.078 55 3.138
6 2.408 16 2.750 26 2.908 36 3.010 46 3.084 56 3.143
7 2.464 17 2.770 27 2.920 37 3.018 47 3.091 57 3.149
8 2.512 18 2.789 28 2.931 38 3.026 48 3.097 58 3.154
9 2.554 19 2.807 29 2.942 39 3.034 49 3.103 59 3.159

10 2.590 20 2.823 30 2.953 40 3.042 50 3.109 60 3.164

Denote θj = µj − µ0 for j = 1, . . . , k to be the difference between the j-th treatment and the control treatment. Assume
that a larger value of θj means that the j-th treatment ismore effective. Consider the testing of the one-sided null hypotheses
Hi : θi = 0 against the alternatives H ′

i : θi > 0, for i = 1, 2, . . . , k. Then, under the null hypotheses the pivotal random
variables

Ti =
X̄i − X̄0

S
√
1/ni + 1/n0

for i = 1, 2, . . . , k have a joint k-variate t-distribution with ν degrees of freedom and the correlation matrix {ρ
(k)
ij = ρiρj}

which is denoted as a matrix with entry ρiρj in the i-th row and j-th column for i 6= j and entry 1 for i = j, where
ρi =

√
ni/(ni + n0) and 1 ≤ i, j ≤ k. Let ti be the observed values of the corresponding random variables Ti for i = 1, . . . , k.

The details of the step-up multiple test are described as follows:

(i) Denote t(1) ≤ · · · ≤ t(k) as the ordered values of the ti test statistics andH(1), . . . ,H(k) as the corresponding hypothesis.
(ii) A set of k critical values c1 ≤ · · · ≤ ck is determined such that the Type I familywise error (FWE) is strongly controlled
at a prespecified level α (see Hochberg and Tamhane (1987)).
(iii) Compare t(1) with c1. If t(1) ≥ c1, reject all the hypotheses and terminate the test; otherwise accept H(1) and go to
the next comparison of t(2) and c2. In general, the test continues until the first occurrence of t(i) ≥ ci, say i = m, then the
H(1) . . . ,H(m) hypotheses are accepted and H(m+1), . . . ,H(k) are rejected.

When ni = n for i = 1, . . . , k, the random variables T1, . . . , Tk have, under the null hypotheses, a joint k-variate t-
distribution with correlation matrix {ρ

(k)
ij = ρ} where ρ = n/(n + n0). In order to control the Type I FWE at α level,

DT showed that the ci for the step-up procedure is determined by solving c1, c2, . . . recursively from

P[(T1, . . . , Tm) < (c1, . . . , cm); {ρ
(m)
ij = ρ}] = 1 − α, m = 1, . . . , k. (4)

Note that c1 = tν(α), the upper α-percentage point of a t-distribution with ν degrees of freedom. Several studies show that
the critical values ci always satisfy the monotonicity c1 < · · · < ck, even though an analytical proof is not available.

Let Zi for i = 0, . . . , k be independent standard normal random variables with density φ and distribution function Φ . Let
U be a

√
χ2

ν /ν random variable independent of all the Zi. Then the probability in (4) for 2 ≤ m ≤ k is given by

P[(T1, . . . , Tm) < (c1, . . . , cm); {ρ
(m)
ij = ρ}] =

∫
∞

0

∫
∞

−∞

Jmφ(z0)dz0fν(u)du

where fν(u) is the density function of U , and Jm = P[(Z1, . . . , Zm) < (d1, . . . , dm)] with di = (ciu +
√

ρz0)/
√
1 − ρ for

i = 1, . . . ,m.
Based on one of recursive formulas (1), (2), and the proposed algorithm to compute Jm for anym ≥ 2, the critical values cm

can be determined. In order to compare the performances of the three approaches, three Fortran programswere constructed
using these three different approaches for evaluating Jm to determine cm in this case. All the programs are available from
the first author upon request. After extensive numerical study, all three approaches are found to produce same critical
values for the case k ≤ 20. Due to the significant accumulation of the rounding errors for large value of k, Kwong and Liu’s
(2000) and Finner and Roters (1994) approaches begin to break down when k reaches 21 and 38, respectively. However,
the proposed algorithm uniformly has a very stable performance even when k is as large as 60. Therefore, it is concluded
that the proposed algorithm provides amore effective and stable approach for evaluating the joint distribution under the iid
case when comparedwith the existing approaches. To illustrate the effectiveness and stability of the proposed algorithm, its
programwas used to calculate an example of the critical values ci for one-sided step-up testwithα = 0.05, ν = 60, ρ = 0.3
and k = 1, . . . , 60 and the result is presented in Table 1.
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3. Independent but not identically distributed

3.1. Existing algorithm

Let X1, . . . , Xk be ibnid random variables with known cumulative distribution functions G1, . . . ,Gk, respectively. For any
given constants d1, . . . , dk where d1 ≤ d2 ≤ · · · ≤ dk, the paper now focuses on determining

HX1,...,Xk(d1, . . . , dk) = P[(X1, . . . , Xk) < (d1, . . . , dk)].

Similar to Lemma 3.1 in DT, an approach proposed by Kwong and Liu (2000) evaluates the function HX1,...,Xk(d1, . . . , dk)
by successively conditioning each of Xi. After first conditioning Xk to fall in the intervals (−∞, d1), [d1, d2), . . . , [dk−1, dk],
HX1,...,Xk(d1, . . . , dk) can be obtained as

HX1,...,Xk(d1, . . . , dk) = HX1,...,Xk−1(d2, . . . , dk)Gk(d1) + HX1,...,Xk−1(d1, d3, . . . , dk)[Gk(d2) − Gk(d1)]

+ · · · + HX1,...,Xk−1(d1, . . . , dk−1)[Gk(dk) − Gk(dk−1)]. (5)

Then, by successively conditioning one by one from Xk−1 to X2 in (5), HX1,...,Xk(d1, . . . , dk) can be expressed in terms of Gi for
i = 1, . . . , k. Therefore, similar to the algorithm given in DT for the iid case, an algorithm for computingHX1,...,Xk(d1, . . . , dk)
is then obtained by Kwong and Liu (2000) as follows:

Step 1. Calculate HX1(dh) = G1(dh), for h = 1, . . . , k, a total of k terms.

Step 2. Calculate HX1,X2(dh, di) = HX1(di)G2(dh) + HX1(dh)[G2(di) − G2(dh)], for 1 ≤ h < i ≤ k, a total of
(
k
2

)
terms.

Step 3. Calculate HX1,X2,X3(dh, di, dj) = HX1,X2(di, dj)G3(dh) + HX1,X2(dh, dj)[G3(di) − G3(dh)] + HX1,X2(dh, di)[G3(dj) −

G3(di)], for 1 ≤ h < i < j ≤ k, a total of
(
k
3

)
terms.

...
Step k. Calculate HX1,...,Xk(d1, . . . , dk) = HX1,...,Xk−1(d2, . . . , dk)Gk(d1) + HX1,...,Xk−1(d1, d3, . . . , dk)[Gk(d2) − Gk(d1)] +

· · · + HX1,...,Xk−1(d1, . . . , dk−1)[Gk(dk) − Gk(dk−1)].

3.2. Modified algorithm

Themajor drawback of the existing algorithmdiscussed in Section 3.1 is themulti-dimensional array functionH obtained
in each step. For example, in step 6 of the algorithm with k = 8, the function H is a six-dimensional array with the total
number of elements 86

= 262,144. However, in step 7 of the algorithm, the function H is a seven-dimensional array and
the total number of elements increases to 87

= 2,097,152. Therefore, the storage spaces of all the elements in the function
H increases exponentially with k in each step of the algorithm. As a result, the algorithm is only workable for k ≤ 8.

In order to address this issue, the existing algorithm is modified by reducing the multi-dimensional array function H
to an one-dimensional array function. Define the subsets Lm = {l1, l2, . . . , lm} ⊂ {1, 2, . . . , k} with cardinality m for
m = 1, . . . , k, where 1 ≤ l1 < l2 < · · · < lm ≤ k. Note that there are nm =

(
k
m

)
distinct subsets, say S(m)

1 , S(m)
2 , . . . , S(m)

nm in

Lm, where S(m)
j = {l(j)1 , l(j)2 , . . . , l(j)m } for j = 1, . . . , nm. Let the function

I(S(m)
j ) =

m∑
i=1

2l(j)i −1 (6)

for m = 1, 2, . . . , k and j = 1, . . . , nm. It is straightforward to show that the function I is an one-to-one transformation of
subsets S(m)

j into a positive integer space {1, 2, . . . , 2k
− 1}.

As the result of (6), the multi-dimensional array function H can be uniquely transformed to the one-dimensional array
function F after setting

HX1,...,Xm(dl(j)i
, . . . , dl(j)m ) = F [I(S(m)

j )] = F

[
m∑
i=1

2l(j)i −1

]
for m = 1, 2, . . . , k and j = 1, . . . , nm. Note that the required probability HX1,...,Xk(d1, . . . , dk) is just equal to F [I(S(k)

1 )].
In order to determine all the subsets Lm, for m = 1, . . . , k, the inverse function of I is derived. For any given integer
N ∈ {1, 2, . . . , 2k

−1} expressed in the formof
∑m

i=1 2
li−1, the inverse function of I is defined as I−1(N) = I−1(

∑m
i=1 2

li−1) =

{l1, . . . , lm}, e.g. I−1(45) = I−1(20
+ 22

+ 23
+ 25) = {1, 3, 4, 6}.

After incorporating function I and its inverse function I−1 into Kwong and Liu’s (2000) algorithm, a modified algorithm
is now proposed as follows:

Step 0. Use the inverse function I−1 to identify all the subsets Li for i = 1, . . . , k.
Step 1. Calculate F [I(S(1)

j )] = G1(dl(j)1
) for all S(1)

j ∈ L1.
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Table 2
Values of functions HX1,...,Xk (d1, . . . , dk) where X1, . . . , Xk have independent normal distributions with µi = 0.01i and σi = 1 + 0.01i for i = 1, . . . k,
respectively and di = 1.6 + 0.05i for i = 1, . . . , k

k HX1,...,Xk (d1, . . . , dk) k HX1,...,Xk (d1, . . . , dk)

9 0.7697190 19 0.7695573
10 0.7637749 20 0.7736962
11 0.7597622 21 0.7781366
12 0.7573876 22 0.7828088
13 0.7564033 23 0.7876531
14 0.7565950 24 0.7926183
15 0.7577794 25 0.7976596
16 0.7597968 26 0.8027388
17 0.7625098 27 0.8078243
18 0.7657977 28 0.8128865

Step 2. Calculate F [I(S(2)
j )] = F [I(S(2)

j ) − 2l(j)1 −1
]G2(dl(j)1

) + F [I(S(2)
j ) − 2l(j)2 −1

][G2(dl(j)2
) − G2(dl(j)1

)] for all S(2)
j ∈ L2.

Step 3. Calculate F [I(S(3)
j )] = F [I(S(3)

j ) − 2l(j)1 −1
]G3(dl(j)1

) + F [I(S(3)
j ) − 2l(j)2 −1

][G3(dl(j)2
) − G3(dl(j)1

)] + F [I(S(3)
j ) −

2l(j)3 −1
][G3(dl(j)3

) − G3(dl(j)2
)] for all S(3)

j ∈ L3.

...

Step k. Calculate F [I(S(k)
1 )] = F [I(S(k)

1 ) − 1]Gk(d1) + F [I(S(k)
1 ) − 21

][Gk(d2) − Gk(d1)] + · · · + F [I(S(k)
1 ) − 2k−1

][Gk(dk) −

Gk(dk−1)].

In contrast to the existing program, a Fortran program constructed under the modified algorithm can easily evaluate the
joint distributions of the independent but not identically random variables with k ≤ 28. For the purpose of illustration, the
program is now used to evaluate functions H for k = 9, . . . , 28. Let X1, . . . , Xk be independent normal distributions with
means µi = 0.01i and standard deviations σi = 1 + 0.01i for i = 1, . . . k, respectively. Assume that di = 1.6 + 0.05i for
i = 1, . . . , k. The values of functions HX1,...,Xk(d1, . . . , dk) are determined by the program and the results are presented in
Table 2.

3.3. Practical application

Similar to the multiple hypothesis testing set-up stated in Section 2.3, the simultaneous tests of the k null hypotheses in
the direction-mixed family are:

Hi : θi = 0

for i = 1, . . . , k versus r one-sided alternative hypotheses

H ′

i : θi > 0

for i = 1, . . . , r and (k − r) two-sided alternative hypotheses

H ′

j : θj 6= 0

for j = r+1, . . . , k.With respect to the family of null hypotheses {H1, . . . ,Hk}, a subset {H1, . . . ,Hr} (r ≤ k) is tested against
one-sided alternatives, while the remaining null hypotheses {Hr+1, . . . ,Hk} are tested against two-sided alternatives.

To test the k null hypotheses simultaneously in the direction-mixed family, the test statistics are T1, . . . , Tr , |Tr+1|, . . . ,
|Tk|, respectively. As mentioned in Section 2.3, the variates T1, T2, . . . , Tk have a multivariate t-distribution with correlation
matrix {ρ

(k)
ij = ρiρj} in the unbalanced design. Let ti and |tj| be the observed test statistics of the corresponding random

variables Ti for i = 1, . . . , r and |Tj| for j = r + 1, . . . , k, respectively. Then, the observed p-values for ti and |tj| are
pi = P(Ti > ti) for i = 1, . . . , r and pj = P(|Tj| > |tj|) for j = r + 1, . . . , k, respectively. Assume that the set of ordered
observed p-values from the test statistics ti and |tj| are p(1) ≤ · · · ≤ p(k).

Similarly to DT’s step-up procedure, the p-value consistent step-up procedure proposed by Kwong et al. (2007)
determines k critical p-values, puk ≥ puk−1 ≥ · · · ≥ pu1, for comparisons with k ordered observed p-values. The algorithm to
conduct the procedure is as follows:

1. Obtain the set of ordered observed p-values, p(1) ≤ · · · ≤ p(k) with corresponding hypothesesH(1), . . . ,H(k), respectively.
2. Compare p(k) with puk . If p(k) < puk , then reject all hypotheses and terminate the procedure; otherwise accept H(k) and

proceed to the next step of comparing p(k−1) with puk−1.
3. The testing procedure continues until the first occurrence of p(i) < pui , say i = s ≤ k. Then, H(s+1), . . . ,H(k) are accepted

while the remaining hypotheses H(1), . . . ,H(s) are rejected. If p(i) ≥ pui for i = 1, . . . , k, then all the hypotheses are
accepted.
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Let θ = (θ1, . . . , θk) and θs ⊂ θ be a set of vectors that have elements θl = 0 for l ∈ S = {l1, . . . , ls}, where
{l1, . . . , ls} ⊆ {1, . . . , k} and θl > 0 for l 6∈ S. To control the FWE at α, the critical values of the step-up procedure must be
determined such that

Pθs

[
AcceptHl1 , . . . ,Hls

]
≥ 1 − α

for s = 1, . . . , k. According to the arguments given by Liu (1996) for establishing a step-up procedure, the least favorable
parameter vector of θs is θ∗

s which has elements θl = 0 for l ∈ S and θl → ∞ for l 6∈ S. Therefore, in order to control the FWE
at α, the critical p-values of the step-up procedure are determined by solving puk, p

u
k−1, . . . , p

u
1 recursively in this sequence

from the following equation:

min
1≤l1<···<ls≤k

Pθ∗
s

[
(Pl1 , . . . , Pls) > (puk−s+1, . . . , p

u
k)
]

= 1 − α (7)

for s = 1, . . . , k, where Pl1 , . . . , Pls are the p-values corresponding to true hypotheses Hl1 , . . . ,Hls , respectively, and the
minimum is over all subsets {l1, . . . , ls} ⊂ {1, . . . , k} with cardinality s. It is noted that puk = α.

Since directly inverting the p-values to the corresponding test statistics is not straightforward in (7), Kwong et al.
(2007) modify the event (Pl1 , . . . , Pls) > (puk−s+1, . . . , p

u
k) in (7) before applying the procedure of inversion. For ease of

exposition, only the computation of pus is illustrated after assuming that pus+1, . . . , p
u
k have already been obtained. Without

loss of generality, assume that Pl1 , . . . , Plw and Plw+1 , . . . , Pls are the p-values corresponding to true one-sided hypotheses
Hl1 , . . . ,Hlw and true two-sided hypotheses Hlw+1 , . . . ,Hls , respectively.

By applying the law of total probability to Pl1 which has to fall into one of the intervals (puk−s+1, p
u
k−s+2), (p

u
k−s+2, p

u
k−s+3),

. . . , (puk, ∞), the probability in (7) becomes

Pθ∗
s

[
(Pl1 , . . . , Pls) > (puk−s+1, . . . , p

u
k)
]

= Pθ∗
s

[
(Pl2 , . . . , Pls) > (puk−s+2, . . . , p

u
k)
⋂

(puk−s+1 < Pl1 < puk−s+2)
]

+ Pθ∗
s

[
(Pl2 , . . . , Pls) > (puk−s+1, p

u
k−s+3, . . . , p

u
k)
⋂

(puk−s+2 < Pl1 < puk−s+3)
]

+ · · ·

+ Pθ∗
s

[
(Pl2 , . . . , Pls) > (puk−s+1, . . . , p

u
k−1)

⋂
(puk < Pl1)

]
. (8)

After successively applying the law of total probability from Pl2 to Pls in (8), all the p-values can then be inverted to the
corresponding test statistics, i.e. the event {a < Pli < b} for i = 1, . . . , s becomes {F−1(1 − b) < Tli < F−1(1 − a)} for
i = 1, . . . , w and {F−1(1 − b/2) < Tli < F−1(1 − a/2)} for i = w + 1, . . . , s, respectively, where F−1 is the inverse
cumulative function of t-distribution with ν degrees of freedom. As the result, the probability in (7) can be evaluated with
application of modified algorithm given Section 3.2. The modified FORTRAN program to evaluate the critical p-values of
the p-value consistent step-up procedure is available from the first author upon request. For illustration, some examples of
critical p-values with k = 10, 11, 12, 13, 14 for the p-value consistent step-up procedure are calculated by the program and
the results are presented in Table 3. Contrast to the old program which only works for k ≤ 8, the modified program under
new algorithm can deal with the cases with k ≤ 14. Therefore, our modified algorithm can significantly extend the p-value
consistent step-up procedure to higher-dimensional multiple testing comparisons.

4. Final remarks

Existing algorithms, which have the dimensional restrictions of computing the joint distributions of k order statistics, are
only workable for relatively small values of k. In order to evaluate the cases with the larger value of k, this paper proposes
two new algorithms: one for the iid case and the other for ibnid case.

In the iid case, the new algorithm based on the multinomial approach provides a more stable procedure for evaluating
the joint distribution by reducing the impact of rounding errors generated due to recursion in those existing algorithms. For
the purpose of illustration, the discussed algorithms are applied to evaluate the critical values of the DT’s step-up procedure
under balanced designs. As stated in Section 2.3, the proposed algorithm is able to determine the critical values up to the
cases k = 60 while the existing algorithms break down for k > 38.

In the ibnid case, the existing algorithm has the shortcoming of requiring a multi-dimensional array function to store
information during the recursion procedure and is therefore constructed for k ≤ 8. The modified algorithm is exactly like
the existing algorithm except that the required information storage is significantly reduced during the evaluation process by
transforming the multi-dimensional array function to a one-dimensional array function. As the result, it can be constructed
to evaluate the caseswith k ≤ 28 as discussed in Section 3.2. For illustration, in Section 3.3, themodified algorithm is used to
calculate the critical p-values of the p-value consistent step-up procedure in the direction-mixed family under unbalanced
designs for k = 10, . . . , 14. In conclusion, the proposed algorithms are comparable with the existing algorithms for small k
in terms of computational time, and can effectively extend the applications of most step-up procedures to handle far higher
dimensions.
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Table 3
Critical p-values for the p-value consistent step-up procedure at α = 0.05

k r (n0, n1, . . . , nr , nr+1, . . . nk) pui
10 4 (12, 7, 9, 10, 12, 12, 14, 15, 16, 20, 22) pu1 = 0.006730

pu2 = 0.007238
pu3 = 0.007892
pu4 = 0.008791
pu5 = 0.009984
pu6 = 0.011625
pu7 = 0.014079
pu8 = 0.018028
pu9 = 0.025666
pu10 = 0.050000

11 5 (10, 6, 10, 11, 13, 10, 7, 10, 11, 19, 22, 24) pu1 = 0.006387
pu2 = 0.006778
pu3 = 0.007279
pu4 = 0.007958
pu5 = 0.008793
pu6 = 0.009946
pu7 = 0.011585
pu8 = 0.014007
pu9 = 0.017929
pu10 = 0.025557
pu11 = 0.050000

12 4 (16, 6, 8, 11, 11, 12, 15, 16, 17, 20, 22, 16, 14) pu1 = 0.005357
pu2 = 0.005712
pu3 = 0.006148
pu4 = 0.006703
pu5 = 0.007403
pu6 = 0.008303
pu7 = 0.009509
pu8 = 0.011165
pu9 = 0.013598
pu10 = 0.017602
pu11 = 0.025418
pu12 = 0.050000

13 9 (8, 8, 9, 10, 11, 12, 19, 15, 18, 20, 22, 9, 15, 23) pu1 = 0.006496
pu2 = 0.006785
pu3 = 0.007132
pu4 = 0.007555
pu5 = 0.008091
pu6 = 0.008750
pu7 = 0.009627
pu8 = 0.010769
pu9 = 0.012371
pu10 = 0.014786
pu11 = 0.018620
pu12 = 0.025997
pu13 = 0.050000

14 4 (10, 8, 10, 12, 14, 9, 11, 13, 15, 17, 19, 21, 22, 23, 24) pu1 = 0.005666
pu2 = 0.005910
pu3 = 0.006197
pu4 = 0.006540
pu5 = 0.006956
pu6 = 0.007483
pu7 = 0.008169
pu8 = 0.009049
pu9 = 0.010217
pu10 = 0.011848
pu11 = 0.014244
pu12 = 0.018215
pu13 = 0.025767
pu14 = 0.050000
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