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ABSTRACT 

 
 

 This paper studies collective decision making in the context of a project selection 

model.  We derive the optimal decision architecture when marginal decision costs 

are present, and investigate the circumstances under which the hierarchy and 

polyarchy exist as optimal sequential architectures.  Our analysis extends previous 

results on optimal committee decision-making to a sequential setting, and further 

demonstrates the fragility of the hierarchy and polyarchy as optimal architectures. 
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1. Introduction 

In many economic organizations, matters of strategic importance are often decided 

collectively by a team of fallible decision-makers, either in a committee setting where a pre-

determined majority rule applies, or sequentially in a hierarchy where full consensus is required 

for a decision to be implemented.  In some cases, a proposal or project is accepted as soon as it 

receives the support of one decision-maker.  Such a decision architecture is sometimes referred 

to as a polyarchy.  Even when decision-makers are well-intentioned and share the same 

objectives, mistakes are made if they are limited by the information they have access to, or if 

they are limited in their ability to process and evaluate information (Stiglitz, 2002). 

Over the past two decades, a large literature has studied various aspects of collective 

decision-making in a large variety of contexts; these studies include Klevorick and Rothschild 

(1979), Nitzan and Paroush (1980, 1982, 1984, 1985), Klevorick, Rothschild and Winship 

(1984), Sah and Stiglitz (1985, 1986, 1988), Gradstein, Nitzan and Paroush (1990), Sah (1990, 

1991), Koh (1992a, 1992b, 1993, 1994a, 1994b), Pete, Pattipati, Kleinman (1993), Austen-

Smith and Banks (1996), Berg and Paroush (1998), Ben-Yashar and Nitzan (1997, 1998, 2001) 

and Ben-Yashar and Paroush (2001).  Recently, the strategic aspects of collective decision-

making in the committee setting have been studied by Feddersen and Pesedorfer (1998), Dekel 

and Piccione (2000), Li, Rosen and Suen (2001),  Persico (2002), and others.  

In this paper, I study the collective-decision problem in the context of a project 

selection model, where a team of decision-makers have to decide whether to accept or reject 

projects.  My objective is two-fold. First, I solve for the optimal decision architecture when 

marginal decision costs are present and decision-makers are homogeneous in their expertise.  I 

show that the optimal sequential architecture is a pair of sequential majority rules, which 

demarcates the ranges within which projects are accepted, rejected, or where an additional 

evaluation is called for.  The analysis, presented in Section 3, extends the main result of Ben-

Yashar and Nitzan (1997) –  on the optimal majority rule in committee decision making – to a 

sequential setting where marginal decision costs are positive.  
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 With positive marginal decision costs, there are many possible decision architectures, 

besides the hierarchy and polyarchy.  These two architectures have attracted considerable 

attention in the literature  (see Sah and Stiglitz (1985, 1986, 1988), Sah (1991), Koh (1992a, 

1992b, 1994) and Ben-Yashar and Nitzan (2001)).  My second objective in this paper is to 

investigate the circumstances under which the hierarchy and the polyarchy emerge as optimal 

sequential architectures.   In a hierarchy, a project is rejected and evaluation ends if one 

decision-maker rejects the project. A project is only accepted if every decision-maker approves 

of the project. Decision-making authority is thus centralized in a hierarchy.  By contrast, in a 

polyarchy, a team of decision-makers can undertake projects independently of each other.  A 

project will be given further chances within the organization if it is turned down, and will be 

accepted as soon as it receives the support of one decision-maker.  In this sense, decision-

making authority is more decentralized in a polyarchy. 

Although the hierarchy and the polyarchy are optimal sequential architectures for 

specific configurations of the quality of the investment environment and expertise of the 

decision makers, we show that the robustness of these two specific architectures is sensitive to 

perturbations in the environment.  Furthermore, in the context of the optimal sequential 

decision architecture, the feasible optimal size of the hierarchy and polyarchy also turns out to 

be the minimum size of the organization.  Therefore, under the general setting investigated in 

this paper, the application of either the hierarchical and polyarchical architecture to 

organizational decision-making will usually be sub-optimal.  Our results, presented in Section 

4, complement the analysis in Ben-Yashar and Nitzan (2001), which also examined the 

robustness of these two architectures.   

The focus on marginal decision costs in this paper is motivated by the observation that 

most organizations operate at full managerial capacity, in the sense all the available managerial 

resources are fully deployed in making production and investment decisions at each point in 

time. With a fixed pool of managerial expertise within an organization, managerial tasks often 

have to be prioritized and for each task taken up by a group of decision-makers, another task 
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will only be attended to later.  In order to utilize managerial time and expertise optimally, the 

allocation of managerial expertise at each point in time should recognize the marginal benefit of 

further deliberation on a decision versus the opportunity costs to the organization of doing so.  

Besides the additional resources that would be deployed to continue the evaluation before a 

decision is made on acceptance or rejection, the opportunity costs also include the impact of 

potential delay in managerial attention on other projects, as well as potential monetary loss to 

the organization, as in the case when first-mover advantage matters in making investment 

decisions (if the project under review is also being considered for adoption by competitors).  

Other papers that have also considered marginal decision costs in collective decision-making 

include Nitzan and Paroush (1985) and Gradstein, Nitzan and Paroush (1990).  Clearly, if 

marginal decision costs are absent, there is no necessity to engage in sequential review.  The 

optimal decision architecture is simply a committee where all decision-makers evaluate a 

project simultaneously.  The decision to accept or reject a project will be based on a super-

majority rule, as shown in Sah (1990), and generalized in Ben-Yashar and Nitzan (1997).    

The rest of the paper is organized as follows. Section 2 introduces the project selection 

model.  The analysis of the optimal sequential architecture is presented in Section 3. Next, in 

Section 4, we examine the robustness of the hierarchy and polyarchy as optimal sequential 

architectures.  Section 5 concludes the paper.  

 

2.   The Model 

Consider an economic organization of n members whose objective is to maximize a 

common utility function associated with the selection of projects for investment.  There are two 

types of projects; good (1) projects and bad (0) projects. Let s denote the state of a project; s= 1 

and s = 0 are the two possible states of nature.  For each project, there are two possibilities of 

making a correct decision: (1|1) invest in a good project, and (0|0) reject a bad project.  There 

are also two possibilities of making an incorrect decision: (1|0) invest in a bad project, and (0|1) 

reject a good project.   
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The expected payoff associated with the approval (1) of a good project is B(1|1)  while 

the expected payoff associated with the rejection (0) of a bad project is B(0|0).  Similarly, the 

expected payoff associated with the rejection of a good project is B(0|1), while the expected 

payoff of accepting a bad project is B(1|0). 1   We require B(1|1) > B(0|0), B(1|1) > B(1|0) and 

B(0|0) ≥  B(0|1), so that there is an optimal action associated with each type of project.   Let    

B(1) = B(1|1) – B(0|1) be the net expected payoff when si = 1, and B(0) = B(0|0) – B(1|0) be the 

net expected payoff when si = 0.  For simplicity, suppose that the a priori probability that a 

project is good  is known and is fixed at α, where 0 < α < 1.  The expected project payoffs are 

summarized in Tables 1 below.  

  
                        Table 1:  The Expected Payoffs of Projects 

  Project Quality 

  Good   Bad   

Accept    B(1|1)   B(1|0)   
Action  

Reject B(0|1)   B(0|0)   

 

The decision-makers can discriminate between good projects and bad ones, but only 

imperfectly.  They vote independently to approve or reject projects, and are homogeneous in 

their decision-making expertise.2  Specifically, the expertise of decision makers are represented 

as follows: p1 is the probability that he will approve a good project, and p0 that he will reject a 

bad project.  Therefore, the probabilities (1 – p1) and (1 – p0) are the Type-I (reject a good 

project) and Type-II (accept a bad project) errors committed in the decision process.  Decision-

making expertise is imperfect in the sense that p1 < 1,  p0 > 0 and p1 > (1 – p0), i.e. a manager is 

                                                 
1   In this formulation of the decision problem, the actual utility payoff from a project is still uncertain, 

although the expected payoffs are known, contingent on the nature of the project (good or bad) and the 

action taken by the organization (accept or reject).   
2   In a more general setting, we could allow for decision-makers to differ in their decision-making 

expertise. This is studied in Koh (2003). 
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more likely to accept a good project than a mediocre project.  The expertise of the decision 

makers are summarized in Table 2 below.  

 

                      Table 2:  The Expertise of Decision-Makers  

  Project Quality 

  Good   Bad  

Accept  p1 (1 – p0) 
Action   

Reject (1 – p1) p0 

  

 

Project evaluation takes place sequentially and each evaluation incurs a constant 

marginal decision cost of C.  When marginal decision costs are absent, as may be the case when 

managerial expertise are not fully deployed within the organization or when the organization 

can access additional resources at no cost, it is easy to see that the optimal decision rule takes 

the form of a super-majority rule with participation by all the decision-makers.  When marginal 

decision costs are positive, the optimal sequential architecture includes the option to make the 

decision earlier, as the expected benefits of further deliberation may be out-weighed by the 

costs of doing so. 

 

3. The Optimal Sequential Decision Architecture 

The objective of the economic organization is to determine the optimal sequential 

decision architecture. Let  ( )≤k n denote the number of evaluations that the project has 

undergone. Denote zi = 0 (rejection) or 1 (acceptance) as the recommendation of the ith 

decision-maker.  We say that the decision process is in state Xk  at stage k if there are Xk  votes 

to accept the project (and k − Xk  votes to reject).  The decision at stage k to accept the project, 

reject the project, or to proceed for another review, depends on Xk.  The optimal decision rule is 
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to end the evaluation process if the expected gain in payoff from another evaluation is less than 

the cost of doing so.   

Let ( )k kP X denote the posterior probability that a project under review is a good project 

after k evaluations with Xk, favorable reviews, where 
1=

= ∑ k
k ii

X z .  Therefore, zi is a Bernoulli 

random variable, where p1 is the probability that iz  = 1 when the project is good, and p0 is the 

probability that  iz  = 0 when the project is bad.  The Bayesian updating of ( )k kP X  is given by: 
  

[ ]
1

1
1 0

( )( 1)
( ) 1 ( ) (1 )

k k
k k

k k k k

P X pP X
P X p P X p+ + =

+ − −
                      (1) 

[ ]
1

1
1 0

( )(1 )( )
( )(1 ) 1 ( )

k k
k k

k k k k

P X pP X
P X p P X p+

−
=

− + −
 

so that through recursion, we obtain 

1 1

1 1 0 0

(1 )( )
(1 ) (1 )(1 )

X k Xk k

k k k X k Xk kX Xk k

p pP X
p p p p

α

α α

−

− −

−
=

− + − −
                  (2) 

Let ( ( ))a k kR P X , ( ( ))r k kR P X  and ( ( ))c k kR P X  denote, respectively, the conditional expected 

project payoff if, after k evaluations with kX  positive reviews, the organization’s decision is to 

accept the project, reject the project, or proceed for another review.  We have: 

[ ]( ( )) ( ) (1|1) 1 ( ) (1| 0)a k k k k k kR P X P X B P X B= + −                                (3) 

[ ]( ( )) ( ) (0 |1) 1 ( ) (0 | 0)r k k k k k kR P X P X B P X B= + −  

Define the value function ( ( ), )k kV P X k  where 

{ }( ( ), ) Max ( ( )), ( ( )), ( ( ), )k k a k k r k k c k kV P X k R P X R P X R P X k≡
 
 
 
            (4) 

The value function ( ( ), )k kV P X k  describes the maximum conditional expected project payoff 

of the project after k evaluations with kX  positive reviews.  There are two possible events at the 

( 1)th+k  review; namely, manager (k+1) disapproves of the project (so that 1+kz = 0) or 

approves the project (so that 1+kz = 1).  Since ( )k kP X provides the Bayesian-updated probability 

that the project under consideration is a good project, for a given history of reviews up to stage 
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k, the conditional probabilities of observing 1+kz = 0 or 1 at the ( 1)th+k  review are given by, 

respectively,                                                                                                                               

[ ]1 0(1| ( )) ( ) 1 ( ) (1 )k k k k k kH P X P X p P X p= + − −                         (5)                                  

[ ]1 0(0 | ( )) ( )(1 ) 1 ( )k k k k k kH P X P X p P X p= − + −   

We can obtain a sequence of recursive equations for ( ( ), )k kV P X k  as follows:    (6) 

          1 1( ( ), ) ( ( 1), 1) (1| ( )) ( ( ), 1) (0 | ( ))c k k k k k k k k k kR P X k V P X k H P X V P X k H P X C+ +≡ + + + + −  

We first prove the following results on the optimal decision rule for k ≤  n−1.  The optimal 

decision rule for k = n  is a supermajority rule, and will be discussed in the next section. 

 
Proposition 13:  The optimal evaluation policy consists of a pair of probability thresholds 

{ },L U
k kq q , k = 1, 2 …, n, where L

kq  is increasing in k, and  U
kq  is decreasing in k.  

[a] If L
kq  < )( kk XP < U

kq ; the evaluation process continues; 

[b] If )( kk XP < L
kq , the project should be rejected and evaluation ends; 

[c] If )( kk XP > U
kq , the project should be accepted and evaluation ends.  

 

Corresponding to the optimal evaluation policy in Proposition 1 is an equivalent optimal 

decision architecture.  

 

Proposition 2:  The optimal decision architecture consists of a pair of sequential majority rules 

{ },L U
k kX X , k = 1, 2 …, n–1.  

[a] If L
kX  < kX < U

kX ; an additional evaluation is requested; 

[b] if kX < L
kX , the project should be rejected and evaluation ends; 

[c] If kX > U
kX , the project should be accepted and evaluation ends. 

                                                 
3  The proofs are provided in the Appendix.   
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The optimal evaluation policy and the optimal decision architecture are related as follows. 

Since ( )L L
k k kP X q≅  and ( )U U

k k kP X q≅  (the approximation is due to the integer nature of L
kX  

and U
kX ), it is straightforward to derive, for k ≤  n−1, 

1Min ln ,  
1

U
U k
k U

k

qX k k
q

δ µ
γ δ

  
= − +  + −          

(7)
        

     
 

1Max ln ,  0
1

L
L k
k L

k

qX k
q

δ µ
γ δ

  
= − +  + −   

                                                                  

where  

        ln
1

αµ
α

≡
−

,
  

1

0
ln

1
p

p
γ ≡

−  
and  0

1
ln

1
p

p
δ ≡

−                          
(8)

 

4

  

From (7), it is straightforward to show that there exists 
Uk  and Lk  such that U

kX  =  k  for k  ≤  

Uk , and L
kX  =  0 for k ≤  Lk :    

 1 ln
1

U
UU k

U
Uk

q
k

q
µ

γ

 
 = − +

−  
,   1 ln

1

L
LL k

L
Lk

q
k

q
µ

δ

 
 = −

−  
     (9)

        
      

Hence, for k < Uk , the decision choices for the project under evaluation are either to proceed 

for further evaluation or to reject the project.  Similarly, for k < Lk , the decision choices are to 

proceed for further evaluation or accept the project.  Thus, for an organization of size n, 

{ }* Min ,  L Uk k k≡ denotes the minimum number of evaluations that must be undertaken.  Since 

no decision on acceptance or rejection should be made when k  < *k , the first *k  evaluations 

forms an initial review of the project, and it does not matter if the first *k evaluations are 

carried out simultaneously or sequentially.  In fact, if delay in selecting a project is costly, so 

that marginal decision costs is increasing with time taken to evaluate a project, it would be 

preferable for the first-stage of the evaluation process to be structured as a committee review by 

                                                 
4   Note that γ  > 0, δ  > 0, and µ  > ( < ) 0 depending on whether α  >  ( < ) 0.5. 
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*k  decision-makers (simultaneously).   From the second stage of the evaluation onwards, the 

evaluation of the project will be conducted sequentially. 

Although closed-form solutions are generally not available for the sequential majority 

rules { },L U
k kX X , they can derived numerically by applying the following set of recursive rules. 

 
Proposition 3: [a]   For k > Lk ,   1 1L L L

k k kX X Xβ ++ < < + ;  

                         [b]   For k > Uk ,   β+<< +
U
k

U
k

U
k XXX 1    where β ≡

δ
δ γ+

< 1.     

 

Figure 1 below provides an illustration of the optimal sequential decision architecture. 
 

 

----------------------------------------- 

INSERT FIGURE 1     

----------------------------------------- 

 

The magnitude of the marginal decision cost has an important impact on the set of 

probability thresholds { },L U
k kq q .  Firstly, if the marginal decision cost C becomes larger, the 

probability range, given by ( )U L
k kq q− , will become narrower.  In other words, the scope for 

continuing with further project evaluation, as measured by the difference ( )U L
k kX X− , will be 

smaller, so that fewer evaluations will be undertaken for each project, on average.  In the limit, 

when marginal decision costs are prohibitive, no evaluations will be undertaken.  Conversely, if 

the marginal decision cost falls, the scope for further project evaluation is increased.  In the 

limit, when marginal decision cost is zero, the optimal decision rule is to for the project to 

undergo n reviews, and then apply a super-majority rule to consider acceptance or rejection.   In 

fact, in this case, the decision-makers should evaluate the project simultaneously, as there is no 

advantage to sequentially reviewing the project.  Of course, even if there is no marginal 

decision cost, there are still fixed costs involved in engaging a team of n decision-makers.  
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Thus, the optimal size of the decision team will still be finite and it should be selected to 

maximize expected net payoff per project.  

When marginal decision costs are positive, Proposition 2 indicates that the optimal 

decision architectures is a pair of sequential majority rules, which defines the range where 

projects are accepted, rejected or where an additional evaluation is called for.  These results are 

related to the analysis in Nitzan and Paroush (1985), which also discusses the optimality of 

similar sequential decision rules in a different setting.  

The analysis here also extends the main result of Ben-Yashar and Nitzan (1997) to a 

sequential setting for the case of homogenous decision-makers possessing identical expertise.  

In Ben-Yashar and Nitzan (1997), decisions are made in a fixed-size committee, and since there 

are no marginal decision costs, all the decision-makers participate in reviewing the project and 

voting simultaneously.  By contrast, in the analysis presented in this paper, project evaluation is 

carried out sequentially, and it is only in the case when all the n managers have reviewed the 

project, that our results converge to those of Ben-Yashar and Nitzan (1997).   

 

4. The Optimality of Hierarchy and Polyarchy Architectures 

In this section, we investigate the conditions under which the optimal sequential 

decision architecture is either a hierarchy (where all decision-makers must approve the project 

before it is accepted) or a polyarchy (where a project is accepted as soon as one decision-maker 

approves it, and is only rejected if all the decision-makers turn it down).   

First, let us derive the optimal decision rule when a project has reached the maximum 

number of evaluations, i.e. when all the n decision-makers have reviewed the project.  The 

decision to accept or reject the project is based on whether ( , )a nR X n  > ( < ) ( , )r nR X n , which 

translates into the equivalent condition that ( )n nP X  >  ( < )  (0)
(0) (1)

B
B B

φ ≡
+

.  Let *
nX  solve 

*( )n nP X  = φ , so that if nX  >  ( < ) *
nX , the optimal decision rule is to accept (reject) the 

project.  Using the definition of ( )k kP X in (2),  
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*
n

nX δ θ µ
γ δ
− −

=
+  

,   (1)ln
(0)

B
B

θ ≡                                                                       (10)  

In order that the sequential decision architecture is not trivial, we require that  0  < *
nX  < n.   It 

is then straightforward to prove the following result:
  

 

Proposition 4: [a]  When  0θ µ+ > , the minimum size of the organization is Pn θ µ
δ
+

≡  

with *
nX  = 0; otherwise, it is preferable to always accept projects. [b] When 0θ µ+ < , the 

minimum size of the  organization is Hn θ µ
γ
+

≡ −   with *
nX  = Hn ;  otherwise, it is preferable 

to always reject projects. 

 

  In the model, ( )θ µ+  is a measure of the quality of the investment environment, while 

γ  and δ  are measures of the decision-makers’ expertise to select good projects and bad 

projects, respectively.   In the absence of any evaluation, the optimal decision is clearly to 

accept a project if  0θ µ+ > , reject it if 0θ µ+ < , and be indifferent between accepting and 

rejecting the project if 0θ µ+ = .  Therefore, 0θ µ+ >  describes an above-average investment 

environment, while 0θ µ+ < describes a mediocre environment.  It follows that if project 

evaluation is to generate information of sufficient value – in the sense that neither the “accept” 

nor “reject” decision is the preferred default choice –  the decision team must be of a minimum 

size, as indicated by Proposition 4.   

When the investment environment is above-average, the optimal decision architecture 

described in Proposition 4a is a polyarchy of size ( ) /θ µ δ+ .  Similarly, when the investment 

environment is mediocre, the decision architecture described in Proposition 4b is a hierarchy of 

size ( ) /θ µ γ− + .  The optimality of either decision architecture is clearly sensitive to 

perturbations in the investment environment and the expertise of the decision-makers.  An 

improvement in decision-making expertise, due to an increase in p1 or an increase in 0p  (or 

both) reduces the minimum organizational size, as γ  and δ  are raised. Similarly, variations in 
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the quality of the investment environment, as measured by ( )θ µ+ , affect the minimum 

organizational size and therefore, the optimality of the hierarchy and polyarchy architectures.   

Suppose that the size of the decision team is reduced below the minimum level required 

for informative evaluation (due to, say, budgetary constraints), it follows from Proposition 4 

that the hierarchy architecture, if maintained, is dominated by not considering any investment at 

all.  Similarly, the polyarchy architecture, if maintained, is dominated by simply accepting all 

projects. Conversely, if the decision team is enlarged beyond the minimum size, then the 

optimal sequential architecture is clearly no longer a hierarchy or polyarchy, but a pair of 

sequential majority rules, as described in Proposition 2.  Clearly, then, the conditions under 

which the hierarchy and polyarchy can exist as optimal architectures are very stringent; both 

structures are optimal decision architectures only when the organizational size is fixed at the 

minimum level stated in Proposition 4. Formally, with marginal decision costs of C per 

evaluation, the expected net payoff of accepting a project in a hierarchy (after Hn  evaluations) 

must be greater than simply rejecting it without any evaluation.  In other words, we require that 

(1|1) 1 (1| 0) + − − 
H H

HP B P B n C  > (0 |1) (1 ) (0 | 0)α α+ −B B   (11) 

where 1

1 0(1 )(1 )
α

α α
=

+ − −

H

H H

n
H

n n
pP

p p
.  Similarly, for a polyarchy, the expected net payoff 

from rejecting a project (after Pn  evaluations) must be greater than simply accepting it without 

any review:  

(0 |1) 1 (0 | 0) + − − 
P P

PP B P B n C  > (1|1) (1 ) (1| 0)α α+ −B B                (12) 

where 1

1 0(1 )(1 )
α

α α
=

+ − −

P

P P

n
p

n n
pP

p p
.  However, even if the conditions in (11) and (12) hold for 

the hierarchy and polyarchy, respectively, they can be easily dominated by a larger organization 

if these larger organizations generate a higher expected payoff per project.   

 The analysis presented in this section is related to that in Ben-Yashar and Nitzan 

(2001), which also examined the optimality of the hierarchy and polyarchy architectures.  In 

their paper, Ben-Yashar and Nitzan proposed a size robustness measure, defined as the 



 13

maximal permissible change in the size of the organization that does not alter the optimal 

architecture.  Applying this measure to the hierarchy and polyarchy, they found that the size 

robustness measure is very small for both the hierarchy and polyarchy, and similarly concluded 

that these two architectures are, in general, sub-optimal organizational structures. 

 

5. Summary and Discussion   

This paper studies optimal collective decision-making in a sequential setting. Decision 

makers have a common objective to maximize the expected project payoffs, and must decide 

whether to accept or reject the project under consideration.  The optimal sequential decision 

architecture, presented in Proposition 2, is a pair of sequential majority rules { },L U
k kX X .  We 

show, in Proposition 4, that while the hierarchy or the polyarchy could exist as an optimal 

sequential architecture, the conditions under which this can occur are stringent.  

While our analysis considers constant marginal decision costs, it can be extended to the 

case where the marginal decision cost C  is not constant, but increases with the stage of 

evaluation.  Such a situation may arise in the case where senior managers hold greater 

responsibilities and face heavier demands on their time, or when further delay in decision-

making may adversely affect the organization’s chances of investing in the project as well as 

the eventual project payoff (as would be the case when there is competition to invest in the 

project).   It is easy to see that impact of increasing marginal decision costs as evaluation 

progresses will lead to a tighter range for requesting an additional evaluation; i.e. the difference 

( )−U L
k kX X  will be smaller, k ≤  n−1.  Thus, the likelihood of proceeding for an additional 

evaluation is reduced, compared with the case when marginal decision costs are constant.  In 

general, the impact of rising marginal decision cost is to reduce the optimal organizational size 

and the expected number of evaluations for a project.  The overall profitability of the 

organization may suffer as a greater number of good projects are rejected, and bad projects 

accepted, when decisions on acceptance and rejection are made earlier. 
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With rising marginal decision costs, the minimum feasible size of an organization – 

either as a hierarchy or a polyarchy – will likely be reduced as well.  Thus, under the rare 

circumstances when they emerge as optimal architectures, the hierarchy and polyarchy will 

apply only to smaller organizations.  In general, large hierarchies and polyarchies can almost 

always improve organizational efficiency by altering their architecture and adopting less 

extreme sequential majority rules in the decision-making process. 

 

Appendix   

To derive the optimal evaluation policy in Proposition 1, we require the following lemmas.  

 
Lemma 1:  [a] ( , ) ( , 1)V p k V p k≥ + ; [b] ( , ) ( , 1)c cR p k R p k≥ +  k = 1,  …, n–1 and p ∈ [0, 1].  

Lemma 2:  ( , )V p k  and ( , )cR p k  are convex in p;   k = 1, …, n–1 and p ∈ [0, 1]. 

 
Lemma 1 and 2 are well-known results in the optimal stopping rule literature (see Astrom 

(1970), DeGroot (1970) or Bertekas (1987)).  We present the proofs here for completeness.    

 
Proof of Lemma 1:  We first show if ( , )V p k  ≥  ( , 1)V p k +  is true for some k, then 

( , 1)V p k −  ≥  ( , )V p k .  Suppose ( , )V p k  ≥  ( , 1)V p k + , then 1( , 1)c kR p k− −   =  [ ]( , )kE V p k  

> [ ]( , 1)kE V p k + = ( , )c kR p k . Thus, 1( , 1)kV p k− −  =  { }1 1 1Max ( ), ( ), ( , 1)a k r k c kR p R p R p k− − − −  

≥  { }1 1 1Max ( ), ( ), ( , )a k r k c kR p R p R p k− − −  =  1( , )kV p k− . Next, we show that ( , 1)−V p n ≥  

( , )V p n . Since the maximum number of evaluations is n, 1( , 1)− −nV p n  = 

{ }1 1 1Max ( ), ( ), ( , 1)− − − −a n r n c nR p R p R p n   ≥   { }1 1Max ( ), ( )− −a n r nR p R p  = 1( , )−nV p n .     Q.E.D. 

 
Proof of Lemma 2:  First, we can write  ( , ) (1| ) (0 | )= + −c k k k k kR p k U p U p C  where   

1(1| ) , 1 (1| )
(1| )

 
≡ + 

 
k

k k k
k

p pU p V k H p
H p

, 1(1 )(0 | ) , 1 (0 | )
(0 | )

 −
≡ + 

 
k

k k k
k

p pU p V k H p
H p

. The 

expressions (1| )H p and (0 | )H p are defined in (5).    To show the convexity of ( , )cR p k  in p, 

 k = 1, 2…, n–1 and p ∈ [0, 1], it is sufficient to show that (1| )kU p and (0 | )kU p  are convex  
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in p.  To prove the convexity of (1| )kU p  in p, we must show for λ ∈ [0, 1], and  pa and               

pb ∈ [0, 1], (1| ) (1 ) (1| ) λ λ+ −k a k bU p U p ≥ (1| (1 ) )λ λ+ −k a bU p p .   For (1| )kU p ,   

    1(1| )
, 1

(1| ) (1 ) (1| ) (1| )
λ

λ λ
   

+  + −   
a a

a b a

H p p p
V k

H p H p H p
                                                                                         

+ 1(1 ) (1| )
, 1

(1| ) (1 ) (1| ) (1| )
λ

λ λ
   −

+  + −   
b b

a b b

H p p p
V k

H p H p H p
1( (1 ) )

, 1
(1| ) (1 ) (1| )

a b

a b

p p pV k
H p H p

λ λ
λ λ

 + −
≥ + + − 

 

Hence, (1| )kU p  is convex in p if ( , 1)V p k +  is convex in p. The convexity of (0 | )kU p  can be 

proven similarly.  Since ( , )c kR p k = (1| )k kU p  + (0 | )k kU p  −  C, this implies that ( , )cR p k is 

convex in p if ( , 1)V p k +  is convex in p.  Let’s suppose ( , )cR p k is convex in p; it follows then 

that since ( , )V p k is the maximum of three convex functions, ( , )V p k  is also convex in p. 

Hence, the convexity of ( , 1)V p k +  in p implies the convexity of ( , )V p k  in p, k = 1, 2…, n–1.  

Finally, ( , )V p n is convex is p since it is the maximum of two linear functions, ( )aR p  and 

( )rR p .Therefore, ( , 1)V p n − is convex in p.                               Q.E.D. 

 
Proof of Proposition 1:   The proof utilizes Lemmas 1 and 2.  First, as p tends to 1, ( , )cR p k  

tends to  B(1|1) – C ; similarly, as p tends to 0, ( , )cR p k  tends to  B(0|0) – C ,  k = 1, …, n.  

From Lemma 2, ( , 1)cR p k −  ≥  ( , )cR p k  so that if the evaluation reaches (n−1)th stage,  

( , 1)cR nφ −  = ( )aR φ  = ( )rR φ , where  [ ](0) / (0) (1)B B Bφ ≡ + .  Since ( )aR p  and ( )rR p  are 

linear, and ( , )cR p k  is convex in p,  with (1, )cR k  > ( )aR φ  = ( )rR φ  and (0, )cR k  > ( )aR φ  = 

( )rR φ , it is easy to verify that the function ( , 1)cR p n −  intersects the function 

{ }Max ( ), ( )a rR p R p  at two points, ( )1 1, ( )U U
n a nq R q− −  and ( )1 1, ( )L L

n r nq R q− −   so that 1( , 1)U
c nR q n− −  

= 1( )U
a nR q −  and 1( , 1)L

c nR q n− −   =  1( )L
r nR q − , and  1

L
nq −  <  φ   < 1

U
nq − .   Next, utilizing Lemma 1, 

it follows that the probability range ( L
kq , U

kq ) narrows as k increases.  Since ( , 1)cR p k −  ≥  

( , )cR p k  for  p ≠ 0 or 1, it follows that L
kq is increasing in p and U

kq  is decreasing in p.  Q.E.D. 
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We illustrate the relationship between ( , )kV p k , ( , )cR p k , ( )aR p and ( )rR p  in Figure 2. 

 
 

----------------------------------------- 

INSERT FIGURE 2     

----------------------------------------- 

 

Proof of Proposition 3:   

[a] To prove that 1 1L L L
k k kX X Xβ ++ < < + for k = 1, …, n−1, we first note from Proposition 1 

that L
kq < L

kq 1+ ; hence, )( L
kk XP < )( 11

L
kk XP ++ . Using the definition of )( kk XP , it is routine to 

show that L
k

L
k XX 1+<+ β . Next, to show that 1 1L L

k kX X+ < + , suppose that L
kk XX 1 1 +≤+ .  

This implies that 1( ( 1), 1)k kV P X k+ + +  = 1( ( 1))r k kR P X+ +  and 1( ( ), 1)k kV P X k+ +  = 

1( ( ))r k kR P X+ . In turn, this implies, using (5) and (6) to take conditional expectation, that 

( ( ), )c k kR P X k  = ( ( ))r k kR P X . Therefore, ( ( ), )k kV P X k ) = ( ( ))r k kR P X .  Since this is true for 

kX  < L
kX  it follows that since we assume 11   L

k kX X ++ ≤  that  kX +1 ≤ 11 1 +<+ +
L
k

L
k XX .    

[b]  Next, to prove that for k = 1, …, n−1, β+<< +
U
k

U
k

U
k XXX 1 . Again, we note from 

Proposition 1 that U
kq is decreasing, so that  U

kq > U
kq 1+ ; this implies )( U

kk XP > )( 11
U
kk XP ++  

Similarly, using the definition of )( kk XP , it is routine to show that β+<+
U
k

U
k XX 1 . Next, to 

show that U
kX  < 1

U
kX + .  Suppose U

kk XX 1+≥ . This implies that 1( ( 1), 1)k kV P X k+ + +  = 

1( ( 1))a k kR P X+ +  and 1( ( ), 1)k kV P X k+ +  = 1( ( ))a k kR P X+ . This in turn implies, using (5) and (6) 

to take conditional expectation, ( ( ), )c k kR P X k  = Ra( )( kk XP ). Therefore, we have 

( ( ), )k kV P X k  = ( ( ))a k kR P X .  Since this is true for kX  > U
kX , it follows from our assumption 

that kX ≥  U
kX 1+  that  kX ≥  U

kX 1+  > U
kX .                                  Q.E.D.
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Figure 1:   The  optimal sequential decision architecture 
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Figure 2:   An illustration of  ( , )kV p k  ≡  { }Max ( ), ( ), ( , )a r cR p R p R p k  
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