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Functional Coefficient Estimation with Both Categorical and

Continuous Data∗
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cDepartment of Economics, University of California at Riverside, CA, USA
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Abstract

We propose a local linear functional coefficient estimator that admits a mix of discrete and contin-

uous data for stationary time series. Under weak conditions our estimator is asymptotically normally

distributed. A small set of simulation studies is carried out to illustrate the finite sample performance

of our estimator. As an application, we estimate a wage determination function that explicitly allows

the return to education to depend on other variables. We find evidence of the complex interacting

patterns among the regressors in the wage equation, such as increasing returns to education when

experience is very low, high return to education for workers with several years of experience, and

diminishing returns to education when experience is high. Compared with the commonly used para-

metric and semi-parametric methods, our estimator performs better in both goodness-of-fit and in

yielding economically interesting interpretation.

Key words: Discrete variables, Functional coefficient estimation, Local linear estimation, Cross-

validation.
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1 Introduction

In this paper we extend the work of Racine and Li (2004) to estimating functional coefficient models

with both continuous and categorical data:

Y =
dX

j=1

aj (U)Xj + ε, (1.1)

where ε is the disturbance term, Xj is a scalar random variable, U is a (p+ q) × 1 random vector,

and aj (
.) , j = 1, ..., d, are unknown smooth functions. As Cai, Fan and Yao (2000) remark, the

idea for this kind of model is not new, but the potential of this modeling techniques had not been

fully explored until the seminal work of Cleveland et al. (1992), Chen and Tsay (1993), and Hastie

and Tibshirani (1993), in which nonparametric techniques were proposed to estimate the unknown

functions aj (.) . An important feature of these early works is to assume that the random variable U

is continuous, which limits the model’s potential applications.

Drawing upon the work of Aitchison and Aitken (1976), Racine and Li (2004) propose a novel

approach to estimate nonparametric regression mean functions with both categorical and continuous

data in the iid setup. They apply their new estimation method to some publicly available data and

demonstrate the superb performance of their estimators in comparison with some traditional ones.

In this paper, we consider extending the work of Racine and Li (2004) to the estimation of the

functional coefficient model (1.1) when U contains both continuous and categorical variables. This

is important since categorical variables may be present in the functional coefficients. For example,

in the study of the output functions for individual firms, firms that belong to different industries

may exhibit different output elasticities with respect to labor and capital. So we should allow the

categorical variable ‘industry’ to enter U.We will demonstrate that this modelling strategy outperforms

the traditional dummy-variable approach widely used in the literature.

Another distinguishing feature of our approach is that we allow for weak data dependence. One of

the key applications of nonparametric function estimation is the construction of prediction intervals

for stationary time series. The iid setup of Racine and Li (2004) cannot meet this purpose.

To demonstrate the usefulness of our proposed estimator in empirical applications, we estimate a

wage determination equation based on recent CPS data. While in the literature of labor economics,

the return to education has already been extensively investigated from various aspects, in this paper,

we explicitly allow the return to education to be dependent on other variables, both continuous and

discrete, including experience, gender, age, industry and so forth. Our findings are clearly against the

parametric functional form assumption of the most widely used linear separable Mincerian equation,

and the return to education does vary substantially with the other regressors. Therefore, our model

can help to uncover economically interesting interacting effects among the regressors, and so should

have high potential for applications.

The paper is structured as follows. In Section 2 we introduce our functional coefficient estimators

and their asymptotic properties. We conduct a small set of Monte Carlo studies to check the relative

performance of the proposed estimator in Section 3. Section 4 provides empirical data analysis. Final
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remarks are contained in Section 5. All technical details are relegated to the Appendix.

2 Functional Coefficient Estimation with Mixed Data

2.1 Local linear estimator

In this paper, we study estimation of model (1.1) when U is comprised of a mix of discrete and

continuous variables. Let {(Yi,Xi, Ui) , i = 1, 2, ..., } be jointly strictly stationary processes, where
(Yi,Xi, Ui) has the same distribution as (Y,X,U) . Let Ui =

¡
U c
i , U

d
i

¢
, where Uc

i and Ud
i denote a

p×1 vector of continuous regressors and a q×1 vector of discrete regressors, respectively. Like Racine
and Li (2004), we will use Ud

it to denote the tth component of U
d
i , and assume that U

d
it can take ct ≥ 2

different values, i.e., Ud
it ∈ {0, 1, ..., ct − 1} for t = 1, ..., q. Denote u =

¡
uc, ud

¢
∈ Rp × Rq. We use

fu (u) = f
¡
uc, ud

¢
to denote the joint density function of

¡
Uc
i , U

d
i

¢
and D =Πqt=1 {0, 1, ..., ct − 1} to

denote the range assumed by Ud
i .With a little abuse of notation, we also use {(Yi,Xi, Ui) , i = 1, ..., n}

to denote the data.

To define the kernel weight function, we focus on the case for which there is no natural ordering

in Ud
i . Define

l
¡
Ud
it, u

d
t , λt

¢
=

(
1 if Ud

it = udt ,

λt if Ud
it 6= udt ,

(2.1)

where λt is a bandwidth that lies on the interval [0, 1]. Clearly, when λt = 0, l
¡
Ud
it, u

d
t , 0
¢
becomes

an indicator function, and λt = 1, l
¡
Ud
it, u

d
t , 1
¢
becomes an uniform weight function. We define the

product kernel for the discrete random variables by

L
¡
Ud
i , u

d, λ
¢
=

qY
t=1

l
¡
Ud
it, u

d
t , λt

¢
. (2.2)

For the continuous random variables, we use w (.) to denote a univariate kernel function and

define the product kernel function by Wh,iu = Π
p
t=1w ((U

c
it − uct) /ht) , where h = (h1, ..., hp) denotes

the smoothing parameters and Uc
it (u

c
t) is the tth component of U

c
i (u

c). We then define the kernel

weight function Kiu by

Kiu = Lλ,iuWh,iu (2.3)

where Lλ,iu = L
¡
Ud
i , u

d, λ
¢
.

We now estimate the unknown functional coefficient functions in model (1.1) by using a local

linear regression technique. Suppose that aj (.) assumes a second order derivative. Denote by
.
aj (u) =

∂aj (u) /∂u
c the p × 1 first order derivative of aj (u) with respect to its continuous-valued argument

uc. Denote by
..
aj (u) = ∂2aj (u) / (∂u

c∂uc0) the p × p second order derivative matrix of aj (u) with

respect to uc. We use aj,ss (u) to denote the sth diagonal element of
..
aj (u) .

For any given u and eu in a neighborhood of u, it follows from a first order Taylor expansion that

aj (eu) ≈ aj (u) +
.
aj (u)

0
(euc − uc) , (2.4)

2



for uc in a neighborhood of euc and eud = ud. To estimate {aj (u)} (and
© .
aj (u)

ª
), we choose {aj} and

{bj} to minimize
nX
i=1

⎡⎣Yi − dX
j=1

©
aj + b0j (Ui − u)

ª
Xij

⎤⎦2Kiu. (2.5)

Let
n
(baj ,bbj)o be the local linear estimator. Then the local linear regression estimator for the func-

tional coefficient is given by baj (u) = baj , j = 1, ..., d. (2.6)

The local linear regression estimator for the functional coefficient can be easily obtained. To do

so, let ej,d(p+1) be the d (1 + p)× 1 unit vector of with 1 at the jth position and 0 elsewhere. Let eX
denote an n× d (1 + p) matrix with

eXi =
¡
X 0
i,X

0
i ⊗ (Ui − u)0

¢
as its ith row. Let Y = (Y1, ..., Yn)

0 . SetW =diag{K1u, ...,Knu} . Then (2.5) can be written as³
Y−eXθ

´0
W
³
Y−eXθ´ ,

where θ = (a1, ..., ad, b01, ...., b
0
d)
0
. So the local linear estimator is simply

bθ = ³eX0WeX´−1 eX0WY, (2.7)

which entails that baj (u) = baj = e0j,d(1+p)bθ, j = 1, ..., d. (2.8)

We will study the asymptotic properties of bθ.
2.2 Assumptions

To facilitate the presentation, let Ω (u) = E
³
XiX

0

i |Ui = u
´
, σ2 (u, x) = E

£
ε2i |Ui = u,Xi = x

¤
,

Ω∗ (u) = E
£
XiX

0
iσ
2 (Ui,Xi) |Ui = u

¤
. Let f (u, x)denote the joint density of (Ui,Xi) and fu (u) be

the marginal density of Ui. Also, let fu|x (u|x) be the conditional density of Ui given Xi = x. Let

fi (u, eu|x, ex) be the conditional density of (U1, Ui) given (X1,Xi) = (x, ex) .
We now list the assumptions that will be used to establish the asymptotic distribution of our

estimator.

Assumption
A1. (i) The process {(Yi, Ui,Xi), i ≥ 1} is a strictly stationary α-mixing process with coefficients

α (n) satisfying
P

j≥1 j
c [α (j)]

γ/(2+γ)
<∞ for some γ > 0 and c > γ/ (2 + γ) .

(ii) fu|x (u|x) ≤M <∞ and fi (u, eu|x, ex) ≤M <∞ for all i ≥ 2 and u, eu, x, ex.
(iii) Ω∗ (u) and Ω (u) are positive definite.

(iv) The functions fu
¡
·, ud

¢
, σ2

¡
·, ud, x

¢
, Ω

¡
·, ud

¢
, and Ω∗

¡
·, ud

¢
are continuous for all ud ∈ D,

and fu (u) > 0.

3



(v) aj
¡
·, ud

¢
has continuous second derivatives for all ud ∈ D.

(vi) E kXk2(2+γ) <∞, where || · || is the Euclidean norm and γ is given in (i) .

(vii) E
£
Y 2
1 + Y 2

i | (U1,X1) = (u, x) ; (Ui,Xi) = (eu, ex)¤ ≤M <∞.

(viii) There exists δ > 2 + γ such that E
£
Y δ
1 | (U1,X1) = (eu, x)¤ ≤ M < ∞ for all x ∈ Rd and alleu in the neighborhood of u. α (j) = O (j−κ) , where κ ≥ (2 + γ) δ/ {2 (δ − 2− γ)} .

(ix) There exists a sequence of positive integers sn such that sn →∞, sn = o((nh1...hp)
1/2
), and

n1/2 (h1...hp)
−1/2

α (sn)→ 0.

A2. The kernel function w (.) is a density function that is symmetric, bounded, and compactly

supported.

A3. As n → 0, the bandwidth sequences hs → 0, for s = 1, ..., p, λs → 0, for s = 1, ..., q, and (i)

nh1...hp →∞, (ii) (nh1...hp)1/2 (khk2 + kλk) = O (1) .

Assumptions A1-A2 are similar to Conditions A and B in Cai, Fan and Yao (2000) except that we

consider mixed regressors. Assumptions A1(i) is standard in the nonparametric regression for time

series. See, for example, Cai, Fan and Yao (2000), and Cai and Ould-Saïd (2003). It is satisfied by

many well-known processes such as linear stationary ARMA processes and a large class of processes

implied by numerous nonlinear models, including bilinear, nonlinear autoregressive (NLAR), and

ARCH-type models (see Fan and Li, 1999). As Hall et al. (1999) and Cai and Ould-Saïd (2003)

remark, the requirement in Assumption A2 that w (.) is compactly supported can be removed at the

cost of lengthier arguments used in the proofs, and in particular, Gaussian kernel is allowed.

Assumption A3 is standard for nonparametric regression with mixed data (see Li and Racine,

2005).

2.3 Asymptotic theory for the local linear estimator

To introduce our main results, let μs,t =
R
R v

sw (v)
t
dv, s, t = 0, 1, 2. Define two d (1 + p) × d (1 + p)

diagonal matrices S = S (u) and Γ = Γ (u) by

S = fu (u)

Ã
Ω(u) 00dp×d
0dp×d μ2,1Ω(u)⊗ Ip

!
, Γ = fu (u)

Ã
μp0,2Ω

∗(u) 00dp×d
0dp×d μ2,2Ω

∗(u)⊗ Ip

!
,

where 0l×k is an l×k matrix of zeros, Ip is the p×p identity matrix, and ⊗ is the Kronecker product.
For any p× 1 vectors c = (c1, ..., cp)0 and d = (d1, ..., dp)

0 , let c¯ d ≡ (c1d1, ...., cpdp)0 .
To describe the leading bias term associated with the discrete random variables, we define an

indicator function Is (·, ·) by

Is
¡
ud, eud¢ = 1 ¡uds 6= euds¢ qY

t6=s
1
¡
udt = eudt ¢ .

That is, Is
¡
ud, eud¢ is one if and only ud and eud differ only in the sth component and is zero otherwise.
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Let

b (h, λ) = H

(Ã
1
2μ2,1fu (u)Ω (u)A

0dp×1

!

+

qX
s=1

λsIs
¡
ud, eud¢ fu ¡uc, eud¢Ã Ω ¡uc, eud¢ ¡a ¡uc, eud¢− a (u)¢−μ2,1

¡
Ω
¡
uc, eud¢⊗ Ip

¢
b (u)

!)
, (2.9)

where H =
p
nh1...hp, A = (

Pp
s=1 h

2
sa1,ss (u) , ...,

Pp
s=1 h

2
sad,ss (u))

0, a (u) = (a1 (u) , ...., ad (u))
0, and

b (u) =
¡ .
a1 (u)

0
, ....,

.
ad (u)

0¢0. Define Bj,1s (u) =
¡
μ2,1/2

¢
aj,ss (u) and

Bj,2s (u) = μ2fu (u)
−1

⎧⎨⎩X
ud∈D

Is
¡
ud, eud¢ f ¡uc, eud¢ ¡aj ¡uc, eud¢− aj (u)

¢⎫⎬⎭ .

Now we state our main theorem.

Theorem 2.1 Assume that Assumptions A1-A3 hold. Then

HH1

³bθ − θ
´
− S−1b (h, λ)

d→ N
¡
0, S−1ΓS−1

¢
.

where H1 =diag(1, ..., 1, h0, ..., h0) is a d (p+ 1)× 1 diagonal matrix with d diagonal elements of 1 and
d diagonal elements of h. In particular, for j = 1, ..., d,

p
nh1...hp

Ãbaj − aj (u)−
pX

s=1

h2sBj,1s (u)−
qX

s=1

λsBj,2s (u)

!
d→ N

Ã
0,

μp0,2e
0

j,dΩ
−1 (u)Ω∗ (u)Ω−1 (u) ej,d

fu (u)

!
.

Remark. Noting that S and Γ are both block diagonal matrices, we have asymptotic independence
between the estimator for a (u) and that for b (u) . Under Assumption A3, the asymptotic bias of baj
is comprised of two components,

Pp
s=1 h

2
sBj,1s (u) and

Pq
s=1 λsBj,2s (u) , which are associated with

the continuous and discrete variables, respectively.

2.4 Selection of smoothing parameters

In this subsection we focus on how to choose the smoothing parameters for baj . It is well known that
the choice of smoothing parameters is crucial in nonparametric kernel estimation.

Theorem 2.1 implies that the leading term for the mean squared error (MSE) of baj is
MSE (baj) = " pX

s=1

h2sBj,1s (u) +

qX
s=1

λsBj,2s (u)

#2
+

1

nh1...hp

μp0,2e
0

j,dΩ
−1 (u)Ω∗ (u)Ω−1 (u) ej,d

fu (u)
.

By symmetry, all hj should have the same order and all λs should also have the same order but with

λj ˜ h2j . By an argument similar to Li and Racine (2005), it is easy to obtain the optimal rate of
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bandwidth in terms of minimizing a weighted integrated version of MSE (baj) . To be concrete, we
should choose

hj ˜ n
−1/(4+p) and λj ˜ n

−2/(4+p).

Nevertheless, the exact formula for the optimal smoothing parameters is difficult to obtain except

for the simplest cases (e.g., p = 1 and q ≤ 1). This also suggests that it is infeasible to use the

plug-in bandwidth in applied setting since the plug-in method would first require the formula for each

smoothing parameter and then pilot estimates for some unknown functions in the formula.

In practice, we propose to use least squares cross-validation to choose the smoothing parameters.

We choose (h, λ) to minimize the following least squares cross validation criterion function

CV (h, λ) =
1

n

nX
i=1

⎛⎝Yi −
dX

j=1

ba(−i)j (Ui)Xij

⎞⎠2

,

where ba(−i)j (Ui) is the leave-one-out functional coefficient estimator of aj (Ui) . Let (bh, bλ) denote the
solution to the above problem. It will be used in the following study.

3 Monte Carlo Simulations

We now conduct Monte Carlo experiment to illustrate the finite sample performance of our nonpara-

metric functional coefficient estimators with mixed data. In addition to the proposed estimator, we

also include several other parametric and nonparametric estimators.

The first data generating process (DGP) we consider is given by

Yi = 0.1
¡
U2i1 + Ui2 + Ui3

¢
+ 0.1 (Ui1Ui2 + Ui3)Xi1 + 0.15 (Ui1Ui2 + Ui3)Xi2 + εi,

where Xij ˜ Uniform(0, 4) (j = 1, 2), Ui1 ˜ Uniform(0, 4) , Uij ∈ {0, 1, ..., 5} with P(Uij = l) = 1/6

for l = 0, 1, ..., 5 and j = 2, 3, and εi ˜ N (0, 1) . Furthermore, Xij , Uij, and εi are iid and mutually

independent.

We consider two nonparametric estimators and three parametric estimators for the conditional

mean function m (x, u) = E (Yi|Xi = x, Ui = u) . We first obtain our nonparametric functional co-

efficient estimator (NP) with mixed data where the smoothing parameters (h, λ) are chosen by the

least squares cross-validation. Then we obtain the nonparametric frequency estimator (NP-FREQ)

with mixed data by using the cross-validated h and setting λ = 0 (see Li and Racine, 2007, Ch 3).

It is expected that the smaller the ratio of the sample size to the number of “cells”, the worse the

nonparametric frequency approach relative to our proposed kernel approach.

For the parametric estimation, we consider in practice what an applied econometrician would do

when he or she confronts the data {Yi,Xi, Ui}ni=1 and have a strong belief that all the variables in Xi

and Ui can affect the dependent variable Yi. In the first parametric model, we ignore the potential

interaction between regressors and estimate a linear model without any interaction (LIN) by regressing

Yi on Xi, Ui1, and the dummy variables created from the two categorical variables Ui2 and Ui3. In

6



Table 1: Comparison of finite sample performance of various estimators (DGP1)
n Model Mean Median Sd dev IQR

100 NP 0.731 0.713 0.138 0.176

NP-FREQ 0.995 0.993 0.158 0.185

LIN 2.395 2.336 0.553 0.720

LIN-INT1 1.694 1.637 0.359 0.458

LIN-INT2 1.088 1.072 0.211 0.283

200 NP 0.525 0.524 0.071 0.085

NP-FREQ 0.884 0.886 0.100 0.120

LIN 2.473 2.461 0.380 0.533

LIN-INT1 1.777 1.767 0.250 0.362

LIN-INT2 1.142 1.138 0.153 0.229

400 NP 0.371 0.368 0.052 0.057

NP-FREQ 0.558 0.547 0.065 0.076

LIN 2.487 2.471 0.376 0.340

LIN-INT1 1.780 1.785 0.196 0.263

LIN-INT2 1.134 1.132 0.110 0.162

the second parametric model, we take into account potential interaction between Xi and U1i, and

estimate a linear model with interaction (LIN-INT1) by adding the interaction terms between Xi and

U1i into the LIN model. In the third parametric model, we also consider the interaction between Xi

and (U2i, U3i) , so we estimate a linear model with interaction (LIN-INT2) by adding the interaction

terms between Xi and (U1i, U2i, U3i) into the LIN-INT2 model. We expect LIN-INT2 outperforms

LIN-INT1, which in turn outperforms LIN in terms of mean squared errors.

For performance measure, we compute the in-sample mean-square error (MSE) using

MSE =
1

n

nX
i=1

{m (Xi, Ui)− bm (Xi, Ui)}2 ,

where bm (Xi, Ui) is the estimator for the conditional mean m (Xi, Ui) using different methods intro-

duced earlier. We report the mean, median, standard error, and interquartile range of MSE over 500

Monte Carlo replications. We set the sizes for the estimation samples to be n = 100, 200, and 400.

Table 1 reports the results from all five regression models. From Table 1 we observe that our pro-

posed nonparametric functional coefficient estimator dominates both the conventional nonparametric

frequency estimator and the three parametric models in terms of MSE.

We now consider a second DGP which allows for data dependence between observations. The data

are generated from the following DGP

Yi = Ui1 (Ui1 + Ui2 + Ui3) + Ui1 (Ui1 + Ui2 + Ui3)Xi + εi,

7



Table 2: Comparison of finite sample performance of various estimators (DGP2)
n Model Mean Median Sd dev IQR

100 NP 0.396 0.377 0.138 0.156

NP-FREQ 0.495 0.459 0.171 0.249

LIN 2.544 2.373 0.895 1.037

LIN-INT1 1.946 1.848 0.633 0.798

LIN-INT2 0.391 0.365 0.146 0.157

200 NP 0.245 0.217 0.113 0.125

NP-FREQ 0.286 0.247 0.123 0.170

LIN 2.634 2.552 0.698 0.985

LIN-INT1 2.067 1.973 0.515 0.635

LIN-INT2 0.389 0.376 0.112 0.145

400 NP 0.144 0.123 0.057 0.078

NP-FREQ 0.156 0.130 0.066 0.091

LIN 2.675 2.628 0.449 0.598

LIN-INT1 2.087 2.082 0.336 0.466

LIN-INT2 0.385 0.379 0.076 0.097

where

Xi = 0.5Xi−1 + ei1,

Ui1 = 0.5Ui−1,1 + ei2,

εi ˜ N (0, 1) , eij ˜ N (0, 1) (j = 1, 2), Uij ∈ {−1, 0, 1} with P(Uij = l) = 1/3 for l = −1, 0, 1 and
j = 2, 3. Furthermore, eij (j = 1, 2) , Ui2, Ui3, and εi are iid and mutually independent.

Like the case for DGP1, we also consider two nonparametric estimators and three parametric

estimators for the conditional mean function m (x, u) = E (Yi|Xi = x,Ui = u) . We denote the cor-

responding regression models as NP, NP-FREQ, LIN, LIN-INT1, and LIN-INT2, respectively. We

again consider the performance measure in terms of MSE. We report the mean, median, standard

error, and interquartile range of MSE over 500 Monte Carlo replications. We set the sizes for the

estimation samples to be n = 100, 200, and 400. The results are reported in Table 2. From Table

2 we observe that our proposed nonparametric functional coefficient estimator dominates both the

conventional nonparametric frequency estimator and the three parametric models in terms of MSE.

4 An Empirical Application: Estimating the Wage Equation

In this section, we apply our functional coefficient model to estimate a wage equation embedded in

the framework of Mincer’s (1974) human capital earning function. The basic Mincer wage function

takes the form:

log Y = β0 + β1S + β2A+ β3A
2 + , (4.1)
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where Y is some measure of individual earnings, S is years of schooling and A is age or work experience.

In spite of its simplicity, Mincer Equation captures the reality remarkably well (Card, 1999), and

has been firmly established as a benchmark in labor economics. Concerning its specification, several

extensions have been made to allow more general parametric functional forms (see Murphy and Welch,

1990). Further, a nonparametric analysis has been done in Ullah (1985) and Zheng (2000). And in

practice, other control variables, such as indicators of gender, race, occupation, or martial status

are routinely included in the wage equation when they are available. Nevertheless, the additive

separability assumption of the standard Mincer equation may be too stringent. For instance, it

ignores the possibility that higher education results in more return to seniority. Also, it is often of

keen economic and policy interest to investigate the differentials among different gender and race

groups, where the return to education or experience may differ substantially. Therefore, we intend to

estimate the functional coefficient model of the following form:

log Y = a1(U) + a2(U)S + , (4.2)

where Y and S are as defined above, and U is a vector of mixed variables including one continuous

variable — age or work experience, and six categorical variables for gender, race, martial status,

veteran status, industry, and geographic location. The specification of (4.2) enables us to both study

the direct effects of variables in U flexibly, and investigate whether and how they influence the return

to education. Some past literature has already suggested nonlinear relationship between seniority and

wage beyond a quadratic form (Murphy and Welch, 1990, Ullah, 1985, Zheng, 2000), as well as the

fact that rising return to education from the 1980s is more drastic in the younger cohorts than in the

older ones (Card and Lemieux, 2001).

Our model is also suitable for analyzing the gender and racial wage differentials. In the study

of discrimination, it is common practice to estimate a “gender/racial wage gap” or estimate wage

equation in separate samples. (For a survey of race and gender in the labor market, see Altonji

and Blank, 1999.) Here the limitation of application of the traditional nonparametric method is

the fact that indicators for gender and race are discrete, a problem overcome in our model. Also,

compared with estimating wage separately among gender-racial groups or the frequency approach,

our approach utilizes the entire dataset, thus achieving efficiency gain. We can also explicitly address

other supposedly complicated interaction effects between the variables of interest. Further, unlike a

complete nonparametric specification, model (4.2) has the further advantage that it can be readily

extended to instrument variable estimation (Cai et al., 2006), provided we have some reasonable

instruments to correct the endogeneity in education. To keep our discussion focused, however, this

aspect is not further explored in this paper.

The data utilized are drawn from March CPS data of the year 1990, 1995, 2000 and 2005. The

earning variable is the weekly earning calculated from annual salary income divided by weeks of work,

and deflated by the CPI (1982-1984=100). As usual, we exclude observations that are part-time

workers, self-employed, over 65, under 18, or earn less than 50 dollars per week. All observations fall

into 3 racial categories — white, Hispanic and otherwise, 4 geographic location categories — Northeast,

Midwest, South and West, and 10 industrial categories. There are also three dichotomous variables
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Table 3: Linear Wage Equation

Year 1990 1995 2000 2005
(1) (2) (3) (4)

Education 0.098a (0.002) 0.107a (0.002) 0.105a (0.003) 0.107a (0.002)
Experience 0.029a (0.001) 0.036a (0.002) 0.029a (0.002) 0.031a (0.001)
Experience2 -0.000a (0.000) -0.001a (0.000) -0.001a (0.000) -0.001a (0.000)
Female -0.309a (0.010) -0.290a (0.010) -0.279a (0.011) -0.277a (0.008)
White 0.100a (0.013) 0.130a (0.013) 0.097a (0.013) -0.098a (0.010)
Hispanic 0.034c (0.017) 0.040c (0.022) 0.033c (0.019) 0.034b (0.014)

Single -0.087a (0.009) -0.071a (0.010) -0.097a (0.010) -0.102a (0.008)
Veteran -0.013 (0.013) -0.049a (0.015) -0.008 (0.016) -0.031b (0.014)

Observations 12328 10834 10433 17466
R2 0.37 0.36 0.33 0.34

Note: 1) Heteroskedasticity-robust standard errors in parentheses.

2) a, b and c stand for 1%, 5% and 10% significant levels, respectively.

3) 3 region indicators, 9 industry indicators and a constant in all specifications.

“Female”, “Veteran” and “Single”. Years of schooling are estimated by records of the highest educa-

tional degree attained and experience is approximated by Age-Schooling-6.

As a comparison, we also estimate a simple linear wage function, a linear wage function with

interacting covariates, and a partially linear model. The results are reported in Table 3, Table 4, and

Table 5 (see also Figure 1), respectively.

Results in Table 3 are in conformity with some stylized effects in labor economics, including stable

return to schooling in the 1990s (Card and DiNardo, 2002; Beaudry and Green, 2004), concavity in

return to experience, falling gender-wage gaps (Altonji and Blank, 1999), etc. Nevertheless, the inad-

equacy of a simple linear separable model is made clear in Table 4, since most of the interaction items

of the covariates are significantly different from zero. And many of them are of important economic

implications, such as the higher return to education for female and higher return to experience for

the white. And the goodness-of-fit of the model after accounting for the interaction effects has also

increased modestly.

Another extension of equation (4.1) is to consider the partially linear model: log Y = m(Schooling,

Experience) +Z0β + , where Z is a set of dummy variables, and education and experience enter the

model nonparametrically. Reported in Table 5, the partially linear model also performs better in

goodness-of-fit, as expected. However, it is noteworthy that comparing with the simple linear model,

accounting for the possibly complex function form of education and experience has also significantly

changed the estimates of the coefficients for the other covariates. For instance, the effects of race have

drastically dropped in magnitude as well as significance. The difference may be the result of biases

induced by the misspecification in a parametric model, and thus indicates the needs for the more

general functional form assumption.
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Table 4: Linear Wage Equation with Interacted Regressors

Year 1990 1995 2000 2005
(1) (2) (3) (4)

Education 0.133a (0.007) 0.146a (0.007) 0.134a (0.008) 0.151a (0.006)
Experience 0.059a (0.003) 0.071a (0.003) 0.049a (0.004) 0.053a (0.003)
Experience2 -0.001a (0.000) -0.001a (0.000) -0.001a (0.000) -0.001a (0.000)
Female -0.349a (0.061) -0.379a (0.069) -0.526a (0.074) -0.353a (0.059)

White 0.039 (0.089) 0.091 (0.091) -0.077 (0.106) 0.025 (0.082)
Hispanic 0.496a (0.098) 0.551a (0.114) 0.455a (0.111) 0.607a (0.086)
Single -0.132a (0.013) -0.128a (0.014) -0.137a (0.014) -0.155a (0.012)
Veteran -0.024c (0.014) -0.056a (0.015) -0.010a (0.017) -0.027c (0.015)
Education×Experience -0.002a (0.000) -0.002a (0.000) -0.001a (0.000) -0.001a (0.000)
Education×Female 0.014a (0.004) 0.016a (0.004) 0.022a (0.005) 0.009b (0.004)
Education×White 0.009 (0.006) 0.007 (0.006) 0.010 (0.007) 0.006 (0.006)
Education×Hispanic -0.034a (0.007) -0.035a (0.008) -0.039a (0.008) -0.046a (0.006)
White×Female -0.135a (0.025) -0.123a (0.026) -0.087a (0.026) -0.098a (0.020)

Hispanic×Female -0.017 (0.034) -0.069 (0.043) -0.035 (0.038) 0.012 (0.028)
Single×Female 0.114a (0.018) 0.141a (0.018) 0.105a (0.020) 0.135a (0.010)
Experience×Female -0.005a (0.001) -0.004a (0.001) -0.002a (0.001) -0.001a (0.001)
Experience×White 0.000 (0.001) 0.000 (0.001) 0.004a (0.001) 0.002a (0.001)
Experience×Hispanic -0.003c (0.002) -0.004b (0.002) 0.001 (0.002) -0.000 (0.001)

Observations 12328 10834 10433 17466
R2 0.39 0.38 0.34 0.36

Note: 1) Heteroskedasticity-robust standard errors in parentheses.

2) a,b and c stand for 1%, 5% and 10% significant levels, respectively.

3) 3 region indicators, 9 industry indicators and a constant in all specifications.
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Table 5: Partially Linear Wage Equation

Year 1990 1995 2000 2005
(1) (2) (3) (4)

Female -0.280a (0.010) -0.265a (0.011) -0.259a (0.011) -0.259a (0.008)
White 0.103a (0.012) 0.135a (0.013) 0.096a (0.013) 0.102a (0.010)
Hispanic 0.001 (0.017) -0.001a (0.022) -0.017 (0.019) -0.007 (0.014)
Single -0.077a (0.009) -0.058a (0.010) -0.082a (0.010) -0.077a (0.008)
Veteran 0.024a (0.013) -0.009 (0.015) 0.021 (0.016) -0.001 (0.014)

Observations 12328 10834 10433 17446
R2 0.40 0.39 0.36 0.38

Note: 1) Heteroskedasticity-robust standard errors in parentheses.

2) a, b and c stand for 1%, 5% and 10% significant levels, respectively.

3) 3 region indicators, 9 industry indicators and a constant in all specifications.

4) The estimate of m(Schooling,Experience) is plotted in Figure 1.

In all the above specifications, we use dummy variables to allow different intercepts for different

regions and industries, and the majority of them have a significant estimated coefficient. The large

number of categories makes it difficult to study their interaction effects with other regressors. In

contrast, in the nonparametric framework of mixed regressors, only one categorical variable is necessary

to describe such characteristic as industry or location. And this advantage has made our proposed

model further suitable for the application.

For a comprehensive presentation of the regression results of model (4.2), we plot the wage-

experience profiles of different cells defined by a discrete characteristic averaged over other cate-

gorical covariates. We use the second order Epanechnikov kernel in our nonparametric estimation:

w (v) = 3
4

¡
1− v2

¢
1 (|v| ≤ 1) , and choose the bandwidth by the least-squares cross-validation. The

R20s of the model have been increased up to 0.66, 0.65, 0.62, 0.68, respectively for the four years.

Figure 2 reports the estimated a1(Experience, Region, :) and a2(Experience, Region, :) of model

(4.2) for different regions averaged across all other categorical variables. a1(Experience, Region, :)

can be viewed as the direct effects of experience on wage for the particular region (averaged across all

other categorical variables), and a2(Experience, Region, :) represents the marginal return to schooling

as a function of experience for the particular region. We summarize some interesting findings from

figure 2. First, while there are considerable variations between regions, we find the direct effects

of experience on wage are usually positive (upward sloping) but not necessarily concave, which
is in sharp contrast with the results of the parametric model. Notably, the experience-wage profile

estimated here are from cross-sections and cannot be taken as individuals life-cycle earning trend.

Second, if the standard Mincer equation holds, we expect the estimated a2(Experience, Region, :)

to be a horizontal line. But clearly, this is far from reality. The effects of experience on return to

schooling are mainly negative, which agrees with our previous results from the parametric setting,

presented in Table 4. The findings here have interesting econometric interpretation. On the one hand,
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we may wonder if higher education causes higher return to seniority, or similarly, longer experience

leads to higher return to education. On the other hand, it is possible that the young cohorts (implied

by shorter experience) have higher return to education, due to cohort supply effects, technological

changes or some other reasons. And we need to resort to empirical results to evaluate the overall

influence. In the sample studied here, the later force has been found to dominate the former in their

direction of impacts. Admittedly, the interacting patterns of the regressors in the wage equation

uncovered by this functional coefficient model require further careful investigation.

Figure 3 reports the estimated a1(Experience, Race, :) and a2(Experience, Race, :) of model

(4.2) for different races averaged across all other categorical variables. a1(Experience, Race, :) can be

viewed as the direct effects of experience on wage for the race, and a2(Experience, Race, :) represents

the marginal return to schooling as a function of experience for the particular race. The findings are

similar to those in figure 2. We only mention that the return to schooling seems much higher for

White and others (above 0.1 across 2/3 of the range of experience) than Hispanic (below 0.1 in almost

all the range of experience).

Figures 4 reports the estimated a1(Experience, :) and a2(Experience, :) depending on whether

a person is male or female, single or non-single, and veteran or non-veteran. Figure 5 reports the

estimated a1(Experience, Industry, :) and a2(Experience, Industry, :) of model (4.2) for different

industries averaged across all other categorical variables. Both figures can be interpreted similarly to

the case of figure 2. The most eminent implication by these figures is that return to education does

depend heavily upon other variables. In particular, the top panel in figure 4 indicates that higher

return to education for female across all the range of age or work experience. In addition, we can see

substantial variation among the cells which suggests the highly complex functional form of the wage

equation.

Figure 6 reports the estimated a1(Experience, :) and a2(Experience, :) averaged over all categor-

ical variables. Similarly to the cases of figures 2-5, we observe that the direct impact of experience

on wage is positive but the marginal return to schooling as a function of experience tends to be
decreasing except when experience is low (≤ 4 years in 1990, ≤ 12 in 2005). When experience is larger
than 37 years, the marginal return to schooling is diminishing very fast a function of experience. Prior

to 37 years, the marginal returns to schooling may vary from 0.105 to 0.145.

Therefore, our empirical application has demonstrated the usefulness of our proposed model in

uncovering complicated patterns of interacting effects of the covariates on the dependent variable.

And the results are of interesting economic interpretation.

5 Conclusions

This paper proposes a local linear functional coefficient estimator that admits a mix of discrete and

continuous data for stationary time series. Under weak conditions our estimator is asymptotically

normally distributed. We also include simulations and empirical applications. We find from the

simulations that our nonparametric estimators behave reasonably well for a variety of DGPs.

As an empirical application, we estimate a human capital earning function from the recent CPS
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data. Unlike the widely used linear separable model, or the frequency approach that conducts esti-

mation in splitted samples, the proposed model enables us to utilize the entire dataset and allows

the return to education to vary with the other categorical and continuous variables. The empirical

findings show considerable interacting effects among the regressors in the wage equation. For in-

stance, the younger cohorts are found to have higher return to education. While these patterns need

further explanation from labor economic theory, the application demonstrates the usefulness of our

proposed functional coefficient model due to its flexibility and clear economic interpretation. And

thus the model has good potential for applied research. Our future research will address some related

problems such as the optimal selection of smoothing parameters. Another extensions is to study the

estimation of functional coefficient model with both endogeneity and mixed regressors.

6 Appendix: Proof of Theorem 2.1

We use k·k to denote the Euclidean norm of ·, C to signify a generic constant whose exact value may

vary from case to case, and a0 to denote the transpose of a. Let duiu =
Pq

t=1 1
¡
Ud
it 6= udt

¢
, where

1
¡
Ud
it 6= udt

¢
is an indicator function that takes value 1 if Ud

it 6= udt and 0 otherwise. So duiu indicates

the number of disagreeing components between Ud
it and udt .

We first define some notation. For any p × 1 vectors c = (c1, ..., cp)
0 and d = (d1, ..., dp)

0 , let

c¯ d = (c1d1, ...., cpdp)
0 and c/d = (c1/d1, ...., cp/dp)

0 whenever applicable. Let

Sn = Sn(u) =

Ã
Sn,0 Sn,1

S0n,1 Sn,2

!
, Tn = Tn(u) = Tn,1 + Tn,2,

with

Sn,0 = Sn,0 (u) = n−1
nX
i=1

XiX
0

iKiu,

Sn,1 = Sn,1 (u) = n−1
nX
i=1

³
XiX

0

i

´
⊗ ((Uc

i − uc) /h)
0
Kiu,

Sn,2 = Sn,2 (u) = n−1
nX
i=1

³
XiX

0

i

´
⊗
¡
((Uc

i − uc) /h) ((Uc
i − uc) /h)

0¢
Kiu,

Tn,1 = Tn,1 (u) = n−1
nX
i=1

Ã
Xiεi

(Xiεi)⊗ ((Uc
i − uc) /h)

!
Kiu, and

Tn,2 = Tn,2 (u) = n−1
nX
i=1

Ã
(XiX

0
ia (Ui))

(XiX
0
ia (Ui))⊗ ((Uc

i − uc) /h)

!
Kiu,

where recall a (Ui) = (a1 (Ui) , ..., ad (Ui))
0 . Then

bθ = H−11 S−1n Tn,

where H1 =diag(1, ..., 1, h0, ..., h0) is a d (p+ 1) × d (p+ 1) diagonal matrix with d diagonal elements

14



of 1 and d diagonal elements of h. Let H =
p
nh1...hp. Then

HH1

³bθ − θ
´

= HS−1n (Tn − Snθ)

= HS−1n Tn,1 +HS−1n (Tn,2 − Snθ) .

We first prove several lemmas.

Lemma 6.1 (a) Sn,0 = Ω (u) fu (u) + op (1) ,

(b) Sn,1 = Op

³
khk2 + khk kλk

´
= op (1) ,

(c) Sn,2 = μ2,1 (Ω (u) fu (u))⊗ Ip + op (1) .

Proof. We only prove (a) since the proofs of (b) and (c) are similar. First by the stationarity of
{Xi, Ui} ,

E (Sn,0) = E
³
XiX

0

iKiu

´
= E

³
XiX

0

iWh,iu|duiu = 0
´
p
¡
ud
¢
+

qX
s=1

E
³
XiX

0

iWh,iuLλ,iu|duiu = s
´
p (duiu = s)

= E (Ω (Ui)Wh,iu|duiu = 0) p
¡
ud
¢
+O (kλk)

=

Z
Ω
¡
uc + h¯ v, ud

¢
fu
¡
uc + h¯ v, ud

¢
W (v) dv +O (kλk)

= Ω (u) fu (u) +O
³
khk2 + kλk

´
. (6.1)

Since a typical element of Sn,0 is

sn,st = n−1
nX
i=1

XisXitKiu, s, t = 1, ..., d,

by the Chebyshev’s inequality, it suffices to show that

var (sn,st) = o (1) . (6.2)

Let ξi = XisXitKiu. By the stationarity of {Xi, Ui} , we have

var (sn,st) =
1

n
var (ξ1) +

2

n

n−1X
j=1

µ
1− j

n

¶
cov

¡
ξ1, ξj

¢
. (6.3)

Clearly,

var (ξ1) ≤ E
¡
X2
1sX

2
1tK

2
1,u

¢
= O

³
(h1...hn)

−1
´
. (6.4)

To obtain an upper bound for the second term on the right hand side of (6.3), we split it into two

terms as follows

n−1X
j=1

¯̄
cov

¡
ξ1, ξj

¢¯̄
=

dnX
j=1

¯̄
cov

¡
ξ1, ξj

¢¯̄
+

n−1X
j=dn+1

¯̄
cov

¡
ξ1, ξj

¢¯̄
≡ J1 + J2,
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where dn is a sequence of positive integers such that dnh1...hp → 0 as n→∞. Since for any j > 1,¯̄
E
¡
ξ1ξj

¢¯̄
= |E (X1sX1tK1,uXjsXjtKj,u)| = O (1) ,

J1 = O (dn) . For J2, by the Davydov’s inequality (e.g., Hall and Heyde, 1980, p. 278; or Bosq, 1996,

p. 19), we have

cov
¡
ξ1, ξj

¢
≤ C [α (j − 1)]γ/(2+γ)

³
E |ξ1|

2+γ
´2/(2+γ)

= C [α (j − 1)]γ/(2+γ)
n
E
¯̄̄
(X1sX1t)

(2+γ)K2+γ
1,u

¯̄̄o2/(2+γ)
= O

³
(h1....hp)

−(2+2γ)/(2+γ)
´
[α (j − 1)]γ/(2+γ) . (6.5)

So

J2 ≤ C (h1....hp)
−(2+2γ)/(2+γ)

n−1X
j=dn

[α (j)]γ/(2+γ)

≤ C (h1....hp)
−(2+2γ)/(2+γ)

d−αn

∞X
j=dn

jα [α (j)]
γ/(2+γ)

= o
³
(h1....hp)

−1
´
, (6.6)

by choosing dn such that d−αn (h1....hp)
−γ/(2+γ)

= o (1) . This, in conjunction with (6.3)-(6.4), implies,

var(sn,st) = O
³
(nh1....hp)

−1
´
= o (1) .

Lemma 6.2

HTn,1 = n−1/2 (h1...hp)
1/2

nX
i=1

Ã
Xiεi

(Xiεi)⊗ ((Uc
i − uc) /h)

!
Kiu

d→ N (0,Γ) ,

where H =
p
nh1...hp, σ

2 (u, x) = E
£
ε2i |Ui = u,Xi = x

¤
, Ω∗ (u) = E

£
XiX

0
iσ
2 (Ui,Xi) |Ui = u

¤
, and

Γ = Γ (u) = fu (u)

Ã
μp0,2Ω

∗(u) 00

0 μ2,2Ω
∗(u)⊗ Ip

!
.

Proof. Let c be a unit vector on Rd(p+1). Let

ζi = (h1...hp)
1/2 c0

Ã
Xiεi

(Xiεi)⊗ ((Uc
i − uc) /h)

!
Kiu.

By the Cramėr-Wold device, it suffices to prove

In = n−1/2
nX
i=1

ζi
d→ N (0, c0Γc) . (6.7)

Clearly, by the law of iterated expectation, E (ζi) = 0. Now

var (In) = var (ζ1) + 2
n−1X
j=1

µ
1− j

n

¶
cov

¡
ζ1, ζj

¢
.
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By arguments similar to those used in the proof of Lemma 6.1,

var (ζ1)

= h1...hpc
0E

(Ã
Ω∗(Ui) Ω∗(Ui)⊗ ((Uc

i − uc) /h)
0

Ω∗(Ui)⊗ ((Uc
i − uc) /h) Ω∗(Ui)⊗

¡
((Uc

i − uc) /h) ((Uc
i − uc) /h)

0¢
!
Kiu

)
c

= c0Γc+ o (1) ,

and
n−1X
j=1

¯̄
cov

¡
ζ1, ζj

¢¯̄
= o (1) ,

which implies that

var (In)→ c0Γc as n→∞.

Using the standard Doob’s small-block and large-block technique, we can finish the rest of the

proof by following the arguments of Cai, Fan and Yao (2000, pp.954-955) or Cai and Ould-Saïd (2003,

pp.446-448).

Lemma 6.3 Let Bn = H (Tn,2 − Snθ) . Then Bn = b (h, λ)+op (1) , where b (h, λ) is defined in (2.9).

Proof. Let

ςi = H

Ã
(XiX

0
ia (Ui))

(XiX
0
ia (Ui))⊗ ((Uc

i − uc) /h)

!
Kiu

−H
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Then we have

Bn =
1

n

nX
i=1

ςi. (6.8)

Let ςi = E (ςi|Ui) . Then

E (Bn) = E (ςi)

= E {ςi|duiu = 0} p
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0
, ....,

.
ad (u)

0¢0
. Then we have

bn,1 =
1

2
H E

(Ã
Ω (Ui)A (Ui, u)

(Ω (Ui)A (Ui, u))⊗ ((Uc
i − uc) /h)

!
Wh,iu

¯̄̄̄
¯ duiu = 0

)
× p

¡
ud
¢
+ o (1)

=
Hμ2,1
2

Ã
fu (u)Ω (u)A

0

!
+ o (1) ,
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and

bn,2

= H E {ςi|duiu = 1}P (duiu = 1)

= H E

(Ã
Ω (Ui) (a (Ui)− a (u))−

¡
Ω (Ui)⊗ ((Uc

i -u
c) /h)

0¢
b (u)

(Ω (Ui) (a (Ui)− a (u)))⊗ ((Uc
i -u

c) /h)−
¡
Ω (Ui)⊗

¡
((Uc

i -u
c) /h) ((Uc

i -u
c) /h)

0¢¢
b (u)

!

×Kiu

¯̄̄̄
¯ duiu = 1

)
p (duiu = 1) + o (1)

= H

qX
s=1

λsIs
¡
ud, eud¢ fu ¡uc, eud¢Ã Ω ¡uc, eud¢ ¡a ¡uc, eud¢− a (u)¢−μ2,1

¡
Ω
¡
uc, eud¢⊗ Ip

¢
b (u)

!
+ o (1) .

Consequently, E (Bn) = b (h, λ) + o (1) , where b (h, λ) is defined in (2.9).

To show var(Bn) = o (1) elementwise, we focus on the first d elements ς(1)i of ςi since the other

cases are similar, where

ς
(1)
i = H

£
XiX

0
i (a (Ui)− a (u))−

¡
XiX

0
i ⊗ ((Uc

i − uc) /h)
0¢
b (u)

¤
Kiu.

A typical element of ς(1)i is

ς
(1)
i,t = H

"
Xit

dX
s=1

Xis (as (Ui)− as (u))−Xit

dX
s=1

Xis ((U
c
i − uc) /h)0 bj (u)

#
Kiu,

t = 1, ...., d.

var

Ã
1

n

nX
i=1

ς
(1)
i,t

!
=
1

n
var

³
ς
(1)
1,t

´
+
2

n

n−1X
j=1

µ
1− j

n

¶
cov

³
ς
(1)
1,t , ς

(1)
j,t

´
.

By arguments similar to those used in the proof of Lemma 6.1,

1

n
var

³
ς
(1)
1,t

´
= O

³
khk4 + kλk2

´
= o (1) ,

and
n−1X
j=1

¯̄̄
cov

³
ς
(1)
1,t , ς

(1)
j,t

´¯̄̄
= o (1) ,

which implies that var
³
1
n

Pn
i=1 ς

(1)
i,t

´
= o (1) . Similarly, one can show that the variance of the other

elements in Bn is o (1) . The conclusion then follows by the Chebyshev’s inequality.

By Lemmas 6.1-6.3,

HH1

³bθ − θ
´
−B−1b (h, λ)

d→ N
¡
0, B−1ΓB−1

¢
.

This completes the proof.
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Figure 1: Education-Experience-Wage proflie resulting from the partially linear models
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Figure 2: Plots of a1 (Experience,Region, :) and a2 (Experience,Region, :) averaging over other cat-
egorical variables. Horizontal axis: Experience. Vertical axis: a1 or a2. The two rows correspond to a1
and a2 respectively from the top to the bottom. The four columns correspond to Region =Northeast,
Midwest, South and West from the left to the right column. 1990: solid line, 1995: dotted line, 2000:

dashdot line, 2005: dashed line.
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Figure 3: Plots of a1 (Experience,Race, :) and a2 (Experience,Race, :) averaging over other categor-
ical variables. Horizontal axis: Experience. Vertical axis: a1 or a2. The two rows correspond to a1

and a2 from the top to the bottom. The three columns correspond to Race = Otherwise, Hispanic,
and White from the left to the right column. 1990: solid line, 1995: dotted line, 2000: dashdot line,
2005: dashed line.
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Figure 4: Plots of a1 (Experience,Gender, :) and a2 (Experience,Gender, :) (1st row), a1(Experience,
Single, :) and a2 (Experience, Single, :) (2nd row), a1 (Experience, V eteran, :) and a2(Experience,

V eteran, :) (3rd row), averaging over other categorical variables. Horizontal axis: Experience. Vertical
axis: a1 or a2. First row: the four columns from the left to the right correspond to a1 for male, a1 for
female, a2 for male, and a2 for female, respectively. Second row: the four columns from the left to the
right correspond to a1 for non-single, a1 for single, a2 for non-single, and a2 for single, respectively.
Third row: the four columns from the left to the right correspond to a1 for non-veteran, a1 for veteran,
a2 for non-veteran, and a2 for veteran, respectively. 1990: solid line, 1995: dotted line, 2000: dashdot
line, 2005: dashed line.
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Figure 5: Plots of a1 (Experience, Industry, :) and a2 (Experience, Industry, :) averaging over other
categorical variables. Horizontal axis: Experience. Vertical axis: a1 or a2. The first two rows cor-
respond to a1, and the last two rows correspond to a2. For rows 1 and 3, the five columns from the
left to the right correspond respectively to Industry = Agriculture, Mining, Construction, Manufac-
turing, and Transportation. For rows 2 and 4, the five columns from the left to the right correspond
respectively to Industry = Wholesale and return, Finance, Personal services, Professional services,
and Public administration. 1990: solid line, 1995: dotted line, 2000: dashdot line, 2005: dashed line.
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Figure 6: Plots of a1 (Experience, :) and a2 (Experience, :) averaging over all categorical variables.
Horizontal axis: Experience. Vertical axis: a1 or a2. The two columns from the left to the right
correspond to a1 and a2, respectively. 1990: solid line, 1995: dotted line, 2000: dashdot line, 2005:
dashed line.
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