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NOTES AND PROBLEMS

LONG-RUN COVARIANCE MATRICES
FOR FRACTIONALLY INTEGRATED

PROCESSES

PEEETTTEEERRR C.B. PHHHIIILLLLLLIIIPPPSSS
Cowles Foundation for Research in Economics, Yale University

University of York
and

University of Auckland

CHHHAAANNNGGG SIIIKKK KIIIMMM
Sungkyunkwan University

An asymptotic expansion is given for the autocovariance matrix of a vector of
stationary long-memory processes with memory parameters d � @0, 12_ !+ The theory
is then applied to deliver formulas for the long-run covariance matrices of multi-
variate time series with long memory+

1. MOTIVATION

Stationary long-memory processes have extensive applications in economics
and finance, particularly with regard to modeling financial variables such as
volatility and trading volume+ The autocovariances of such processes decay
according to a power law, and the spectra are undefined at the origin+ Corre-
spondingly, conventional formulas and estimation procedures for long-run vari-
ance matrices that apply under weak dependence are no longer relevant under
long-range dependence+ Nonetheless, some modified versions of these ~typi-
cally infinite-dimensional! quantities do exist and are useful in the develop-
ment of asymptotics involving long-memory time series, for instance, in the
estimation of fractionally cointegrated systems ~Kim and Phillips, 1999; Rob-
inson and Hualde, 2003; Velasco, 2003; Davidson, 2004; Davidson and
Hashimzade, 2008!+ Henry and Zaffaroni ~2003! provide a recent survey of the
many applications of fractional integration and long-range dependence in macro-
economics and finance+
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This note shows how to define long-run covariance matrices for general multi-
variate fractionally integrated processes, and we focus here on cases of long-
range dependence, some results on overdifferenced processes being given in
earlier work ~Phillips, 1995, Lem+ 8+1!+ We first develop a general form of
asymptotic expansion for the autocovariance matrix of such a multivariate pro-
cess+ The approximation induced by this expansion is of independent interest+
It has a simple form that gives the power law decay structure of the elements
of the autocovariance matrix and reveals an interesting asymmetric structure
for the cross autocovariances+ In the scalar case, the result reduces to a formula
obtained recently in Lieberman and Phillips ~2006!+ The expansion is particu-
larly useful in developing a limiting form of a standardized sum of the auto-
covariance matrices, allowing us to define the long-run variance matrix of a
multivariate fractional process+ In contrast to the autocovariance function, the
long-run variance matrix has a simple symmetric form that depends on the long-
memory parameters of the constituent processes and the long-run variance matrix
of the short-memory components+

2. RESULTS

Let Xt be a real-valued covariance stationary m-vector time series generated by
the system

�
~1 � L!d1 0

L

0 ~1 � L!dm
� �

X1t � EX1t

I

Xmt � EXmt

� � �
u1t

I

umt

� ,
0 � d1, + + + ,dm �

1

2
, (1)

where ut � ~u1t , + + + ,umt !
' is a covariance stationary process whose spectral den-

sity matrix fuu~l! is assumed to be continuously differentiable on @�p,p# and
bounded away from zero ~in the sense of positive definite matrices! at the zero
frequency l � 0+ The smoothness condition on fuu~l! is needed to develop an
asymptotic expansion of the autocovariance function defined by a Fourier inte-
gral inversion of fuu~l!+

Here Xt is a multivariate extension of a scalar fractionally integrated process
~the so-called I ~d ! process!, and each component Xat exhibits long-range depen-
dence whenever da � 0+ The time series Xt reduces to a multivariate autoregres-
sive fractionally integrated moving average ~ARFIMA! process when ut is a
vector autoregressive moving average ~ARMA! process, but the specification
~1! does not require ut to be of this or any other parametric form+
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Let fxx~l! denote the spectral density of Xt , so that the autocovariance matrix
is given by

Gxx ~k! � E~Xt � EXt !~Xt�k � EXt !
' ��

�p

p

e ikl fxx ~l! dl+

Define

F~l! � diag~~1 � e il !�d1, + + + , ~1 � e il !�dm !� diag~~1 � e il !�da !,

and then the spectral density of Xt satisfies ~e+g+, Hannan, 1970, p+ 61!

fxx ~l! � F~l! fuu~l!F
*~l!, (2)

where the affix * signifies complex conjugate transpose+ As is well known, the
memory parameters, da, govern the long-run dynamics of Xt and the behavior
of its spectrum fxx~l! around the origin+ Often, when attention is focused on
long-run dynamics, it is useful to specify the spectral density only locally in
the vicinity of the origin and to avoid short-run dynamic specifications concern-
ing ut altogether+ In the multivariate case, we also are interested in the behavior
of cross spectra at the origin and the corresponding cross autocovariances at
long lags, in addition to the individual spectra and autocovariance functions+

A first-order approximation to the behavior of fxx~l! at the origin is easily
seen to be given by

fxx ~l! ; diag~l�dae ipda 02 ! fuu~0!diag~l�dae�ipda 02 !, lr 0�, (3)

and higher order approximations may be similarly obtained ~e+g+, Phillips and
Shimotsu, 2004; Shimotsu, 2006!+ The factors involving the complex exponen-
tials e ipda 02 turn out to be important in the off diagonal elements of fxx~l!, and
these figure in the analysis that follows+When 0 � da � 1

2
_ , the individual time

series Xat have long memory, and the j-lag autocovariances decrease slowly,
according to the power law j 2da�1 as j r `+ In this case, the autocovariances
are not summable, and the usual formula for the long-run variance of Xat is
undefined+ However, as shown subsequently, upon suitable standardization, we
may define the long-run variances and covariances of the elements of Xt +

We start with the following result, which gives an asymptotic approximation
to the autocovariance matrix function for long lags+ Lieberman and Phillips
~2006! gave a complete asymptotic series expansion of the autocovariance func-
tion of a scalar long-memory time series+ Under stronger smoothness condi-
tions on the spectrum fuu~l!, similar asymptotic series may be developed here+
The theorem that follows gives the leading term in the corresponding expan-
sion for the multivariate case, which is sufficient for the present purpose of
developing a formula for the long-run variance matrix+ The proof is given in
the Appendix+
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THEOREM 1+ If da � @0, 12_ ! for all a � 1, + + + ,m, and the spectral density
matrix fuu~l! of ut is continuously differentiable, then

@Gxx ~k!#ab �
2fua ub

~0!G~1 � da � db !sin~pdb !

k 1�da�db
� O� 1

k 2�da�db
� . (4)

Remark 1+ Note that the asymptotic approximation ~4! is asymmetric+ Sup-
pose for example that da � db and fua ub

~0! � 0+ Then, for large k

gab~k! �
2fua ub

~0!G~1 � da � db !

k 1�da�db
sin$pdb %� O� 1

k 2�da�db
�

�
2fub ua

~0!G~1 � da � db !

k 1�da�db
sin$pda %� O� 1

k 2�da�db
�

� gba~k!,

because sin$pda% � sin$pdb%+ In particular, when da � 0 � db � 1
2
_ , sin$pda%�

0, and we have the interesting phenomenon that gba~k! decays faster than the
power law k db�1, corresponding to the short-memory property of Xat , whereas
gab~k! decays according to the power law k db�1 as k r `, corresponding to
the long-memory property of Xbt + This asymmetry is explained by the fact that
gab~k! is dominated by the slow decay in the impulse responses affecting Xbt�k,
whereas the impulse responses and autocovariances of Xat�k decay faster than
any power rate,1 thereby determining the different behavior of gba~k! when 0 �
da � db � 1

2
_ +

Remark 2+ When da � db, we have

gaa~k! �
2fua ua

~0!G~1 � 2da !

k 1�2da
sin$pda %� O� 1

k 2�2da
�, (5)

corresponding to the leading term given in the asymptotic expansion of the auto-
covariance function for the scalar case in Lieberman and Phillips ~2006!+

We now define the standardization matrix Dn � diag~nd1, + + + , ndm ! and the
partial sum St � �s�1

t Xs and let d � mina�m da for the following theorem,
whose proof is in the Appendix+

THEOREM 2+ If da � ~0, 12_ ! for all a � 1, + + + ,m, and the spectral density
matrix fuu~l! of ut is continuously differentiable, then as n r `

� 1

n
Dn

�1 E $Sn Sn
' %Dn

�1�
ab

r
2pfua ub

~0!G~1 � da � db !$sin~pdb !� sin~pda !%

p~da � db !~1 � da � db !
.

(6)
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Remark 3+ The diagonal elements of ~6! are

� 1

n
Dn

�1 E $Sn Sn
' %Dn

�1�
aa

r
2pfua ua

~0!G~1 � 2da !sin~pda !

pda~1 � 2da !

� lrvar~uat !
G~1 � 2da !sin~pda !

pda~1 � 2da !
, (7)

and, as da r 0, this formula tends to 2pfuu~0! � lrvar~ut !, the limiting vari-
ance of the standardized partial sum n�102Sn � n�102 �t�1

n ut +

Remark 4+ In the scalar case with ut ; iid~0,su
2!, Sowell ~1990! showed

that

lim
nr`

var~Sn !

n1�2d
� su

2
G~1 � 2d !

~1 � 2d !G~1 � d !G~1 � d !
+ (8)

We may compare this formula with ~7!+ By the reflection formula for the gamma
function we have G~d !G~1 � d ! � p0sin~pd !, so that ~7! may be written in
the alternate form

2pfuu~0!sin$pd %G~1 � 2d !

pd~1 � 2d !
�

2pfuu~0!G~1 � 2d !

d~1 � 2d !G~d !G~1 � d !

�
2pfuu~0!G~1 � 2d !

~1 � 2d !G~d � 1!G~1 � d !
, (9)

which clearly reduces to ~8! in the case of iid ut +

Remark 5+ Formula ~7! for the asymptotic variance corresponds to that deliv-
ered by the covariance kernel of the limiting fractional Brownian motion+ In
particular, it is well known ~e+g+, Chan and Terrin, 1995; Marinucci and
Robinson, 2000! that under certain regularity conditions we have the weak
convergence

1

n102�da
�
t�1

@nr#

Xat
d
&& Bda
~r!+

It is often convenient to define the limiting fractional Brownian motions Bda
~r!

in terms of their harmonizable representations ~see Samorodnitsky and Taqqu,
1994; Chan and Terrin, 1995; Davidson and Hashimzade, 2008! as follows:

Bda
~r! �

1

M2p
�

R

e ilr � 1

il
~il!�da dWa~l!, (10)
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where $Wa~l! : a � 1, + + + ,m% are complex-valued Gaussian random measures
satisfying

dWa~l! � dWa~�l!,

E@dWa~l!# � 0,

E@dWa~l!dWb~m!# � �vab dl, l�m

0, l�m
, a,b � 1, + + + ,m,

for l � @�p,p# , where vab � 2pfua ua
~0! and where the bar denotes complex

conjugation+ Observe that

E $Bda
~1!2 % �

vaa

2p
�

R
	 e il � 1

il 	
2

6l 6�2da dl

�
vaa

2p
�

R

2 � 2 cos l

l2�2da
dl�

2vaa

p
�

0

` 1 � cos l

l2�2da
dl

�
4vaa

p
�

0

`
sin2
l

2

l2�2da
dl

� �
2vaa

p
G~�1 � 2da !cos� ~1 � 2da !p

2
� (11)

�
2vaa

p
G~�1 � 2da !sin~dap!

�
2vaa

p

p sin~dap!

sin~p~2 � 2da !!G~2 � 2da !

�
2vaa sin~dap!

sin~2pda !G~2 � 2da !
�

vaa

cos~pda !G~2 � 2da !
(12)

using Gradshteyn and Ryzhik ~2000, formula 3+823! in ~11!; cf+ Davidson and
Hashimzade ~2008!+Applying the reflection formula G~1 � z!G~z!�p0sin~pz!
with z � 2 � 2da so that 1 � z � �1 � 2da, we have
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G~2 � 2da !cospda

�
p

sin~2pda � 2p!G~�1 � 2da !
cospda

�
p

sin~2pda !G~�1 � 2da !
cospda

�
p~�2da !~�1 � 2da !

2 sin~pda !G~1 � 2da !
�

pda~1 � 2da !

sin~pda !G~1 � 2da !
, (13)

using sin~2pda! � 2 sinpda cospda+ It now follows from ~12! and ~13! that

E $Bda
~1!2 % �

vaa

G~2 � 2da !cos~pda !
�
vaaG~1 � 2da !sin~pda !

pda~1 � 2da !

�
vaaG~1 � 2da !

da~1 � 2da !G~1 � da !G~da !
�

vaaG~1 � 2da !

~1 � 2da !G~1 � da !G~1 � da !
,

where we use the reflection formula again in the form G~1 � da!G~da! �
p0sin~pda!, leading to the stated correspondence with ~7! and ~9!+ Expression
~12! was also obtained in Davidson and Hashimzade ~2008, formula 2+6 with
k � 1!+ Similar arguments show that

E $Bda
~1!Bdb

~1!% �
vabG~1 � da � db !$sin~pdb !� sin~pda !%

p~da � db !~1 � da � db !
,

corresponding to ~6!+

3. DISCUSSION AND APPLICATION

Some estimation procedures such as fully modified estimation in a fractional
cointegration model ~Kim and Phillips, 1999; Davidson, 2004! involve unknown
long-run variance and covariance matrices for fractional processes such as those
given in Theorem 2, which need to be estimated consistently for these proce-
dures to be implemented+ Consistent estimation of these long-run covariances
can be accomplished by a stepwise procedure that involves separate consistent
estimation of the memory parameters and the long-run variance matrix, Vuu �
2pfuu~0! of ut + The memory parameters $da : a � 1, + + + ,m% can be estimated by
any consistent semiparametric method, such as the local Whittle ~Robinson,
1995! or exact local Whittle ~Shimotsu and Phillips, 2005! procedures+ Using
estimates Zda obtained in this way, estimates of the residuals uat can be con-
structed by the truncated filtering operation
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�
k�0

t

[pk~Xat�k � PXa ! � [uat , (14)

where [pk � G~k � Zda!0$G~k � 1!G~� Zda!%+ Using [uat , the long-run variance
matrix Vuu of ut may then be consistently estimated by any conventional het-
eroskedasticity and autocorrelation consistent ~HAC! procedure+2 These esti-
mates of Vuu and da may then be plugged into formulas such as those given in
Theorem 2 to produce consistent estimates of the required long-run covari-
ances of the fractional processes+

NOTES

1+ This may be proved directly using a Fourier integral asymptotic expansion when the spec-
trum of the short-memory component is analytic+

2+ Demonstration of consistency requires attention to the effect of the finite length filtering
operation ~14!, as in Velasco ~2003! and Robinson and Hualde ~2003!, and the use of residuals [uat

in the estimation of Vuu, as in conventional HAC estimation+
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APPENDIX: Proofs

Proof of Theorem 1. The derivation of ~4! uses an asymptotic expansion of the
Fourier inversion formula for Gxx~k!, which can be written as

Gxx ~k! ��
�p

p

e iwkL~e iw ! fuu~w!L~e
�iw ! dw, (A.1)

where

L~e iw ! � diag$~1 � e iw !�d1, + + + , ~1 � e iw !�dm %+

In what follows, we will work with the abth element of Gxx~k! denoted by

gab~k! � E $~Xat � EXat !~Xbt�k � EXbt�k !
'%+

Observe that 61 � e iw 6 � 62 sin~w02!6 and

arg~1 � e iw ! � �~w �p!02 for 0 � w � p

~p� 6w6!02 for �p� w � 0,

so that

1 � e iw � � 62 sin~w02!6e i ~w�p!02 0 � w � p

62 sin~w02!6e i ~p�6w6!02 �p� w � 0,

and then

~1 � e iw !u � � 62 sin~w02!6ue i ~w�p!u02 0 � w � p

62 sin~w02!6ue i ~p�6w6!u02 �p� w � 0

� 
 6w 6
u	 2 sin~w02!

w 	
u

e i ~w�p!u02 0 � w � p

6w 6u	 2 sin~w02!

w 	
u

e i ~p�6w6!u02 �p� w � 0+
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It follows that for 0 � w � p

~1 � e iw !�da~1 � e�iw !�db fua ub
~w!

� w�da�2 sin~w02!

w
��da

e�~i ~w�p!da !02

� w�db�2 sin~w02!

w
��db

e�~i ~p�w!db !02 fua ub
~w!

� e ~ip~da�db !!02w�da�db�2 sin~w02!

w
��da�db

e�~iw~da�db !!02 fua ub
~w!,

and for �p � w � 0

~1 � e iw !�da~1 � e�iw !�db fua ub
~w!

� 6w 6�da	 2 sin~w02!

w 	
�da

e�~i ~w�p!da !02

� 6w 6�db	 2 sin~w02!

w 	
�db

e�~i ~�w�p!db !02

� e�~ip~da�db !!02 6w 6�da�db	 2 sin~w02!

w 	
�da�db

e�~iw~da�db !!02 fua ub
~w!+

Hence,

gab~k! ��
�p

p

e iwk~1 � e iw !�da~1 � e�iw !�db fua ub
~w! dw

� ��
0

p

� �
�p

0 � e iwk~1 � e iw !�da~1 � e�iw !�db fua ub
~w! dw

� e ~ip~da�db !!02�
0

p

e iwk��2 sin~w02!

w
��da�db

fua ub
~w!e�~iw~da�db !!02�w�da�db dw

� e�~ip~da�db !!02�
�p

0

e iwk�	 2 sin~w02!

w 	
�da�db

� fua ub
~w!e�~iw~da�db !!02�6w 6�da�db dw

� e ~ip~da�db !!02�
0

p

e iwk��2 sin~w02!

w
��da�db

fua ub
~w!e�~iw~da�db !!02�w�da�db dw

� e�~ip~da�db !!02�
0

p

e�iwk��2 sin~w02!

w
��da�db

� fua ub
~�w!e ~iw~da�db !!02�w�da�db dw

� e ~ip~da�db !!02�
0

p

e iwkFua ub
~w!w�da�db dw

� e�~ip~da�db !!02�
0

p

e�iwkFua ub
~�w!w�da�db dw, (A.2)

where Fua ub
~w! � ~~2 sin~w02!!0w!�da�db fua ub

~w!e�~iw~da�db !!02 � C 1 @�p,p# +
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When at least one of da or db � 0, the two integrals in ~A+2! have critical points
~singularities in the integrand! at the origin w � 0+ For Fourier integrals of this type
asymptotic expansions for large k were originally developed by Erdélyi ~1956!, a con-
venient reference being Bleistein and Handelsman ~1986!+ In particular, if F~w! �
C` @a,b# , and a and b are not integers, then Erdélyi’s result implies that the integral

I ~k! ��
a

b

e ikw~w � a!a�1~b � w!b�1F~w! dw (A.3)

has the following complete asymptotic series representation as k r `:

I ~k! � Ia~k!� Ib~k!,

where

Ia~k! ; �
n�0

` d n

dan
$~b � a!b�1F~a!%

G~n � a!

n!k n�a
e ~pi02!~n�a!�ika (A.4)

and

Ib~k! ; �
n�0

` d n

dbn
$~b � a!a�1F~b!%

G~n � b!

n!k n�b
e ~pi02!~n�b!�ikb+ (A.5)

These expansions hold to the first term n � 0 provided F~w! � C 1 @a,b# , and this degree
of smoothness is all that is required for the present application+

Specializing the expansion of ~A+3! to the present case, we first consider the integral

�
0

p

e iwkFua ub
~w!w�da�db dw

and set a � 0, b � p, b � 1, and a � 1 � da � db in formula ~A+4!+ We deduce that

�
0

p

e ikwwa�1Fua ub
~w! dw

� �
n�0

` d n

dan
$Fua ub

~a!%a�0

G~n � a!

n!k n�a
e ~pi02!~n�a!�ika

�
G~1 � da � db !e

~pi02!~1�da�db !

k 1�da�db
Fua ub

~0!� O� 1

k 2�da�db
�+ (A.6)
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Using the same settings a � 0, b � p, b � 1, and a � 1 � da � db again, we next find
that

�
0

p

e�iwkFua ub
~�w!w�da�db dw

� �
n�0

` d n

dan
$Fua ub

~a!%a�0

G~n � a!

n!~�k!n�a
e ~pi02!~n�a!�ika

�
G~1 � da � db !e

~pi02!~1�da�db !

k 1�da�dbepi ~1�da�db !
Fua ub

~0!� O� 1

k 2�da�db
�

�
G~1 � da � db !e

�~pi02!~1�da�db !

k 1�da�db
Fua ub

~0!� O� 1

k 2�da�db
�+ (A.7)

Combining results ~A+6! and ~A+7! in ~A+2! we obtain

gab~k! � e ~ip~da�db !!02�
0

p

e iwkFua ub
~w!w�da�db dw

� e�~ip~da�db !!02�
0

p

e�iwkFua ub
~�w!w�da�db dw

� e ~ip~da�db !!02
G~1 � da � db !e

~pi02!~1�da�db !

k 1�da�db
Fua ub

~0!

� e�~ip~da�db !!02
G~1 � da � db !e

�~pi02!~1�da�db !

k 1�da�db
Fua ub

~0!� O� 1

k 2�da�db
�

�
G~1 � da � db !

k 1�da�db
Fua ub

~0!$e ~pi02!~1�2db ! � e�~pi02!~1�2db ! %� O� 1

k 2�da�db
�

�
2G~1 � da � db !

k 1�da�db
Fua ub

~0!cos�p
2
~1 � 2db !� � O� 1

k 2�da�db
�

�
2G~1 � da � db !

k 1�da�db
Fua ub

~0!sin$pdb %� O� 1

k 2�da�db
�,

which gives the stated result because Fua ub
~0! � fua ub

~0!+ �

Proof of Theorem 2. From Theorem 1, as k r `

gab~k! �
2fua ub

~0!G~1 � da � db !sin~pdb !

k 1�da�db
� O� 1

k 2�da�db
�+ (A.8)
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Correspondingly, as k r �`, we have, because gab~k! � gba~�k!,

gab~k! �
2fub ua

~0!G~1 � da � db !sin~pda !

6k 61�da�db
� O� 1

k 2�da�db
�+ (A.9)

Then,

1

n
Dn

�1 E $Sn Sn
' %Dn

�1

�
1

n
Dn

�1 E��
t�1

n

Xt���
t�1

n

Xt�'Dn
�1 �

1

n
Dn

�1 �
t, s�1

n

~EXt Xs
'!Dn

�1

�
1

n
Dn

�1 �
t, s�1

n

Gxx ~s � t !Dn
�1 � Dn

�1 �
h��n�1

n�1 �1 �
6h 6

n
�Gxx ~h!Dn

�1

� Dn
�1 �

h��n�1

n�1

Gxx ~h!Dn
�1 � n�1Dn

�1 �
h��n�1

n�1

6h 6Gxx ~h!Dn
�1 + (A.10)

For some L such that ~10L! � ~L0n2d! r 0 as n r `, we decompose the first sum in
~A+10! as follows:

Dn
�1 �

h��n�1

n�1

Gxx ~h!Dn
�1 � Dn

�1� �
�L�1

L�1

Gxx ~h!� �
L

n�1

Gxx ~h!� �
�n�1

�L

Gxx ~h!�Dn
�1

� Dn
�1��

L

n�1

Gxx ~h!� �
�n�1

�L

Gxx ~h!�Dn
�1 � o~1!+

The abth element of this matrix is

1

nda�db
��

L

n�1

gab~h!� �
�n�1

�L

gab~h!�� o~1!

�
1

nda�db
��

L

n�1

gab~h!� �
�n�1

�L

gba~�h!�� o~1!

�
1

nda�db
�
L

n�1

$gab~h!� gba~h!%� o~1!

�
1

nda�db
�
L

n�1� 2fua ub
~0!G~1 � da � db !$sin~pdb !� sin~pda !%

h 1�da�db

� O� 1

h 2�da�db
��� o~1!
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� 2fua ub
~0!G~1 � da � db !$sin~pdb !� sin~pda !%

1

nda�db
�
1

n 1

h 1�da�db
� o~1!

� 2fua ub
~0!G~1 � da � db !$sin~pdb !� sin~pda !%

1

nda�db
�

1

n dh

h 1�da�db
� o~1!

� 2fua ub
~0!G~1 � da � db !$sin~pdb !� sin~pda !%

1

nda�db
� h da�db

da � db
�

1

n

� o~1!

�
2fua ub

~0!G~1 � da � db !$sin~pdb !� sin~pda !%

da � db

� o~1!, (A.11)

by Euler summation+ It follows that

�Dn
�1 �

h��n�1

n�1

Gxx ~h!Dn
�1�

ab

r
2fua ub

~0!G~1 � da � db !$sin~pdb !� sin~pda !%

da � db

+

Next consider the second sum in ~A+10!+ The abth element is

1

n1�da�db
�

h��n�1

n�1

6h 6gab~h!

�
1

n1�da�db
�

h��L�1

L�1

6h 6gab~h!�
1

n1�da�db
�
h�L

n�1

hgab~h!�
1

n1�da�db
�

�n�1

�L

6h 6gab~h!

�
1

n1�da�db
�

h��L�1

L�1

6h 6gab~h!�
1

n1�da�db
�
h�L

n�1

h$gab~h!� gba~h!%

�
1

n1�da�db
�
h�L

n�1

h� 2fua ub
~0!G~1 � da � db !$sin~pdb !� sin~pda !%

h 1�da�db

� O� 1

h 2�da�db
�� � o~1!

�
1

n1�da�db
�
h�1

n�1� 2fua ub
~0!G~1 � da � db !$sin~pdb !� sin~pda !%

h�da�db
� � o~1!

� 2fua ub
~0!G~1 � da � db !$sin~pdb !� sin~pda !%

1

n1�da�db
�

1

n

h da�db dh � o~1!

�
2fua ub

~0!G~1 � da � db !$sin~pdb !� sin~pda !%

1 � da � db

� o~1!, (A.12)

by Euler summation again+
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We now combine ~A+11! and ~A+12! in ~A+10! giving, as n r `,

� 1

n
Dn

�1 E $Sn Sn
' %Dn

�1�
ab

�
2fua ub

~0!G~1 � da � db !$sin~pdb !� sin~pda !%

da � db

�
2fua ub

~0!G~1 � da � db !$sin~pdb !� sin~pda !%

1 � da � db

� o~1!

�
2fua ub

~0!G~1 � da � db !$sin~pdb !� sin~pda !%

~da � db !~1 � da � db !
� o~1!

r
2fua ub

~0!G~1 � da � db !$sin~pdb !� sin~pda !%

~da � db !~1 � da � db !
,

which corresponds to the stated result+ �
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