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Testing Structural Change in Partially Linear Models ∗

Liangjun Sua and Halbert Whiteb

aSchool of Economics, Singapore Management University, Singapore
bDepartment of Economics, UCSD, La Jolla, CA 92093-0508

December 3, 2009

Abstract

We consider two tests of structural change for partially linear time-series models. The

first tests for structural change in the parametric component, based on the cumulative sums

of gradients from a single semiparametric regression. The second tests for structural change

in the parametric and nonparametric components simultaneously, based on the cumulative

sums of weighted residuals from the same semiparametric regression. We derive the limiting

distributions of both tests under the null hypothesis of no structural change and for sequences

of local alternatives. We show that the tests are generally not asymptotically pivotal un-

der the null but may be free of nuisance parameters asymptotically under further asymptotic

stationarity conditions. Our tests thus complement the conventional instability tests for para-

metric models. To improve the finite sample performance of our tests, we also propose a wild

bootstrap version of our tests and justify its validity. Finally, we conduct a small set of Monte

Carlo simulations to investigate the finite sample properties of the tests.

JEL classifications: C12, C14, C22, C5
∗The authors gratefully thank Oliver Linton, and two anonymous referees for their many constructive com-

ments on the previous versions of the paper. They also thank Peter Robinson, Rong Chen, Jiti Gao, Yong

Zhou, and the participants of FERM 2007 in Beijing, and the 2008 International Symposium on Nonlin-

ear Time Series in Xiamen, for their valuable comments. The first author gratefully acknowledges financial

support from the NSFC under grant numbers 70501001 and 70601001. Address correspondence to: Halbert

White, Department of Economics, UCSD, La Jolla, CA 92093-0508, USA. Phone: +1 858 534-3502; e-mail:

hwhite@weber.ucsd.edu.

1



Key Words: CUSUM test, Structural change, Partially linear models, Semiparametric

estimation

1 Introduction

Time-series data in economics and finance often have two prominent characteristics, namely,

instability and nonlinearity. The first feature has to do with whether the underlying data

generating process (DGP) is stable over time, whereas the second has to do with whether the

widely used linear model is adequate for modeling the DGP. In principle, many economic and

financial factors, such as changes in tastes, technical progress, and economic and financial

policies, may lead to an unstable DGP. As the Lucas critique further suggests, changes in

economic agents’ expectations can induce changes in the reduced-form relationship among

economic variables. Even in the absence of instability, applying a linear parametric model to

data generated by a nonlinear process can lead to apparent model instability.

Since the seminal work of Page (1955) and Chow (1960), there has developed a large

literature on testing for structural change. One procedure that has played a particularly

important role in the study of structural change is the CUSUM test proposed by Brown,

Durbin, Evans (1975) and extended in a variety of ways by Krämer, Ploberger, and Alt

(1988), Ploberger and Krämer (1992), Kuan and Hornik (1995), and Lee and Park (2001),

to name just a few. Compared to some other tests in the literature (e.g., Andrews, 1993;

Andrews and Ploberger, 1994), CUSUM-type tests are computationally simple and thus easier

to implement in practice. On the other hand, all of these conventional procedures assume a

parametric regression model, usually linear. If the parametric functional form is misspecified,

then the test may not perform as intended.

Linear parametric models provide a parsimonious way to express relationships among vari-

ables, but they also impose strong restrictions. Nonparametric models allow for much greater

flexibility and thus may have certain advantages in applications. For this reason, Delgado

and Hidalgo (2000) advocate conducting nonparametric inference when testing for structural

breaks; and Su and Xiao (2008) propose a nonparametric test of structural change in dynamic

nonparametric regression models. Nevertheless, as Robinson (1988) has remarked, a correctly

specified parametric model affords precise inferences, a badly misspecified one, possibly seri-

ously misleading inference; whereas nonparametric modeling is associated with both greater
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robustness and lesser precision. An intermediate strategy is to adopt a semiparametric ap-

proach. Partially linear models are widely used in this context, motivating the approach we

take here.

Since Engle, Granger, Rice, and Weiss (1986), partially linear models have attracted much

attention among econometricians. See Robinson (1988), Linton (1995), Fan and Li (1999), Li

and Wooldridge (2002), Juhl and Xiao (2005a, 2005b), to mention only a few. To the best of

our knowledge, early empirical applications of partially linear models have been focused on

either cross-section or conventional panel data. A few exceptions include Engle et al. (1986)

and Härdle, Liang, and Gao (2000) who survey empirical applications of partially linear models

for some classical time-series data, such as the sunspot, lynx, and the Australian blowfly data.

Recent applications of partially linear models in economic time series include four impor-

tant branches. One is that of partially linear error correction models (e.g., Li and Wooldridge,

2002). See Bachmeier and Li (2002), Lee (2003) and Gaul and Theissen (2006) for empiri-

cal data analysis. The second branch generalizes conventional GARCH models to partially

linear models. For example, Wu and Xiao (2002) study the relationship between return

shocks and conditional volatility, where the impact of return shocks on conditional volatility

is specified as a general function and estimated nonparametrically, whereas lagged conditional

volatility enters the model linearly. The third branch re-examines certain economic and finan-

cial hypotheses by incorporating a nonparametric component. For example, Aneiros-Pérez,

Gonzalez-Mánteiga, and Reboredo-Nogueira (2006) propose a new test for the forward pre-

mium unbiasedness hypothesis based on a partial linear regression model and find that the

forward premium is an unbiased predictor of the spot return when they add a nonparametric

component with time as a covariate in the traditional linear regression model. The fourth

branch extends the theory and applications of partially linear models from stationary time

series data to nonstationary time series data. Using U.S. monthly macroeconomic time series,

Juhl and Xiao (2005a) illustrate how using a partially linear model with covariates can lead

to a rejection of the unit root null hypothesis when standard unit root tests fail to reject, and

Juhl and Xiao (2005b) find that nonparametrically including a stationary covariate in testing

a cointegrating relationship may result in conclusions different from those of the standard

cointegration test.

In this paper, we thus study tests for structural change using partially linear time-series
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DGPs:

ynt = x0ntγnt +mnt (znt) + εnt, t = 1, 2, ..., n, (1.1)

where ynt is the dependent variable, xnt is an Rp-valued regressor, znt is an Rq-valued regressor,

γnt is a p×1 vector of unknown coefficients,mnt (·) is an unknown but smooth function, and εnt
is a random disturbance term satisfying E (εnt|xnt, znt) = 0 a.s. Note that we have written

(1.1) using triangular array notation and that both γnt and mnt (
.) may be time-varying.

As Hansen (2000a) remarks, this notation facilitates large sample distribution assumptions

allowing for a certain degree of non-stationarity in the process {(xnt, znt, εnt), 1 ≤ t ≤ n} . In
this paper, we assume that this triangular array process is a strong (α-) mixing process. We are

interested in testing whether (i) the parametric regression coefficient, (ii) the nonparametric

component, or (iii) both change over time.

We distinguish two important cases. In the first case, we test the null hypothesis that

there is no structural change in the parametric regression coefficient (H0a : γnt = γ0 for all

t = 1, ..., n), allowing the nonparametric component to be unstable over time. In the second

case, we test the null hypothesis that there is no structural break in either the parametric

regression coefficient or the nonparametric component (H0b : γnt = γ0 and P [mnt (znt) =

m0 (znt)] = 1 for all t = 1, ..., n). Thus, the first test focuses on the stability of the parametric

component of the regression function, whereas the second test focuses on the stability of the

entire regression relation.

The motivation for the first test is three-fold. First, there are cases where one is only

interested in testing the stability of the parametric component of the regression function. For

example, such situations arise when one firmly believes that some policy change can only result

in the potential change of the relationship between the regressors of the parametric component

and the dependent variable, but not between those of the nonparametric component and the

dependent variable. Second, we allow the presence of structural breaks in the nonparametric

component when we test H0a. As we show, the stability test for the parametric component

is robust to instability in the nonparametric component. Third, when one rejects the second

null, H0b, it is of interest to know whether the apparent structural change is due to a break

in the parametric component or in the nonparametric component. In this case, a test of H0a

may provide useful information.

To test H0a, it is desirable to allow potential structural breaks in the regressor process

{xnt, znt} . When we allow the process {xnt, znt} to be nonstationary under the null, several
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possibilities arise: (a) the marginal probability density function (PDF) fnt (·) of znt can be
time varying; (b) the conditional expectation function gnt (·) ≡ E (xnt|znt = ·) can be time
varying; (c) the nonparametric component mnt(·) in the conditional mean process of ynt can
be time varying. We can also consider the marginal distribution of xnt. Nevertheless, because

our tests rely directly upon kernel estimation of fnt (·) , gnt (·) , andmnt (·) , the possible breaks
in these nonparametric objects will play essential roles. Of course, all the above three types

of breaks may be due to the breaks in the joint distribution of (xnt, znt, εnt) .

To proceed, it is worthwhile to distinguish two categories of breaks, namely, small breaks

and fixed breaks. The former means break sizes that shrink to zero as the sample size n tends

to ∞, a case that is widely used in the study of local power properties for various tests. The

latter means break sizes that do not vanish as n→∞. For example, if

fnt (z) =

⎧⎨⎩ f1 (z) if t ≤ dnπ0c
f2 (z) if t ≥ dnπ0c+ 1

for some π0 ∈ (0, 1)

where the functions f1 (·) and f2 (·) satisfy P (f1 (znt) = f2 (znt)) < 1 and neither f1 nor f2

depends on n, then we say that there is a single fixed break in the nonparametric object f (·)
(or f for short). Following the literature, we call π0 the “break point” of the nonparametric

component f . Analogously, one can define fixed breaks in the nonparametric objects m (·)
and g (·) (or m and g for short).

In this paper, we will allow for fixed breaks in f but not in m or g. In sharp contrast

to pure parametric models (e.g., Andrews, 1993; Bai, 1996; Hansen, 2000a), allowing for

fixed breaks in the nonparametric objects m and g when testing structural changes in the

finite-dimensional parameters (H0a), is complicated by the need for consistent first-stage non-

parametric estimation of these objects. Further, it is much easier to handle nonstationary

data in the parametric framework because one has available a variety of applicable weak con-

vergence results. For example, Andrews (1993) assumes that the triangular array of random

variables is L0-NED on a strong mixing process; Hansen (2000a) considers both asymptoti-

cally stationary and asymptotically nonstationary processes and allows for structural change

in the distribution of the regressors.

Because our test is a nonparametric test for the semiparametric model, we require a

preliminary consistent nonparametric estimator in order to consistently estimate the finite-

dimensional parameter (γ0 here). The latter consistency under the null is essential for the

derivation of the asymptotic null distribution of our test statistic. Preliminary consistent esti-
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mation can be ensured if we consider only small breaks inm and g, corresponding to Hansen’s

(2000a) asymptotically stationary case. As we show, however, in the case of fixed breaks in

bothm and g, one generally cannot consistently estimate the finite dimensional parameters us-

ing a two-stage kernel method. As a result, deriving the asymptotic null distribution becomes

intractable.

Similarly, in the case of the pure nonparametric model ynt = mnt (znt)+εnt, t = 1, 2, ..., n,

one can always estimate the conditional mean object m0 (z) consistently under the null (or

the sequence of local alternatives). The test is based on one-step estimation of m0 (z) under

the null restriction. There is no preliminary estimate involved that can cause difficulties.

We propose a CUSUM-type test for each hypothesis. The test of H0a is based upon the

cumulative sums of gradients from a single semiparametric regression, whereas the test of

H0b is based upon the cumulative sums of weighted residuals from the same semiparametric

regression. We derive the asymptotic properties of the two tests under their corresponding

null and for sequences of local alternatives. We show that the limiting null distributions of the

proposed CUSUM tests are generally not asymptotically pivotal if we allow for fixed breaks

in the process {(xnt, znt, εnt)} . Nevertheless, under some asymptotic stationarity conditions,
these limiting distributions become asymptotically distribution-free under the null hypotheses;

each is associated with a vector of independent standard Brownian bridges. We also show

that both tests have nontrivial power against n−1/2 local alternatives, and we propose a wild

bootstrap version of our tests. We demonstrate through simulations that our tests work

reasonably well in finite samples.

The paper is organized as follows. In Section 2, we introduce our hypotheses, H0a and

H0b, and the corresponding test statistics. We study the asymptotic properties of the CUSUM

test of H0a in Section 3 and those of the CUSUM test of H0b in Section 4. In Section 5, we

propose a wild bootstrap version of our tests and justify its validity. We provide a small set

of Monte Carlo experiments to evaluate the finite sample performance of our tests in Section

6. Section 7 contains concluding remarks. All proofs are relegated to the appendix.

NOTATION: Throughout the paper, Bp denotes a p-dimensional vector of independent

standard Brownian bridges on [0, 1] , d·c signifies the integer part, k·k denotes the Euclidean
norm of a matrix (e.g., kAk = [tr (AA0)]1/2), and 1(·) denotes the indicator function of a set.
Let π1 ∧ π2 ≡ min (π1, π2) , where x ≡ y indicates that x is defined by y. The operators

p→
and d→ denote convergence in probability and distribution, respectively. We use ⇒ to denote
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weak convergence in the space D [0, 1]p or D [0, 1] of p-vectors of right-continuous functions

with left-hand limits, endowed with the uniform topology (see Pollard (1984)), where p = p

or 1. We let
p⇒ denote weak convergence in probability as defined by Giné and Zinn (1990);

see also Hansen (2000a) and Cavaliere and Taylor (2006).

2 Hypotheses and Test Statistics

2.1 The Hypotheses

Consider the following partially linear data generating process (DGP):

ynt = x0ntγnt +mnt (znt) + εnt, t = 1, 2, ..., n, (2.1)

where ynt, xnt, znt, and εnt are defined after eq. (1.1). If mnt (·) is absent from the DGP

in (2.1), we obtain the conventional time-varying linear regression DGP. If x0ntγnt is absent,

however, the DGP in (2.1) becomes time-varying nonparametric (see, e.g., Su and Xiao, 2008).

We consider two scenarios. In the first, allowing (but not requiring) the nonparametric

component function mnt (·) to change over time (so mnt = m0 for some m0 when there is

no change), we test whether the coefficient γnt is stable over time. In this case, the null

hypothesis is that for some unknown γ0, we have

H0a : γnt = γ0 for all t = 1, ..., n, (2.2)

and the alternative hypothesis is the negation of H0a.

In the second case, we consider testing the joint stability of mnt (·) and γnt. Our null

hypothesis here is that for some unknown γ0 and smooth m0, we have

H0b : γnt = γ0 and P [mnt (znt) = m0 (znt)] = 1 for all t = 1, ..., n, (2.3)

and the alternative hypothesis is the negation of H0b. When H0b holds, we say that there is

no structural change or break in the conditional mean process.

We will not impose restrictions on the conditional variance process {E ¡ε2nt|xnt, znt¢}, or on
other aspects of the joint distribution of xnt, znt, and εnt. Indeed, following Su and Xiao (2008),

we permit time-varying behavior in the conditional variance process and a nonstationary

distribution for {xnt, znt, εnt} under both the null and alternative hypotheses. Nevertheless,
to facilitate the presentation we will assume that some aspects of the process {xnt, znt, εnt}
are asymptotically stationary in a sense to be defined precisely below.
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2.2 Estimation and Test Statistics

We base our tests on estimates of the restricted model

ynt = x0ntγ +m (znt) + unt, t = 1, 2, ..., n, (2.4)

where unt represents the model residual.

There are several ways to estimate the model of eq. (2.4); one of the more popular

methods is the local constant estimator of Robinson (1988). Nevertheless, to handle the

random denominator problem, Robinson’s estimator requires not only selection of a kernel

bandwidth parameter, but also a trimming parameter. To avoid the latter feature, we use

density weighted kernel estimation, following Fan and Li (1999).

For this, let fnt (·) be the density function of znt. We first use kernel methods to estimate
fnt ≡ fnt (znt) , E (ynt|znt) , and E(xnt|znt) as:

bfnt = bfnt (znt) ≡ n−1
nX
s6=t

Khts, bynt ≡ n−1
nX
s 6=t

ynsKhts/ bfnt, and bxnt ≡ n−1
nX
s6=t

xnsKhts/ bfnt,
(2.5)

where Khts ≡ h−qK ((znt − zns) /h) , K (·) is a given kernel function, and h = h (n) is the

bandwidth parameter. (We divide by n instead of n−1 in eq. (2.5) for notational simplicity.)
Then Fan and Li’s (1999) density-weighted estimator of γ is given by

bγ ≡ S−1
(X−X)fS(X−X)f,(Y−Y )f , (2.6)

where (X − bX) bf is an n × p matrix whose tth row is given by (xnt − bxnt)0 bfnt, (Y − bY ) bf is
analogously defined, and, using the notation of Robinson (1988) and Fan and Li (1999), for

any two matrices with n rows, A and B, we define SA,B ≡ n−1
Pn

t=1 a
0
tbt and SA ≡ SA,A,

where at and bt are the tth rows of A and B, respectively.

Let bεnt ≡ n−1
Pn

s6=t εnsKhts/ bfnt and bmnt ≡ n−1
Pn

s6=tmns (zns)Khts/ bfnt. Define (M −cM) bf, ε bf , and bε bf similarly to (X− bX) bf. Then under either null hypothesis we have√n (bγ − γ0) =

S−1
(X−X)f

√
nS

(X−X)f,(M−M)f+εf−εf . Under some regularity conditions, we can show that under

either null hypothesis
√
n (bγ − γ0)

d→ N
¡
0,Φ−1ΨΦ−1

¢
, (2.7)
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where

Φ ≡ lim
n→∞n−1

nX
t=1

E{[xnt −E (xnt|znt)] [xnt −E (xnt|znt)]0 f2nt (znt)} and (2.8)

Ψ ≡ lim
n→∞n−1

nX
t=1

E{[xnt −E (xnt|znt)] [xnt −E (xnt|znt)]0 ε2ntf4nt (znt)}. (2.9)

Once we obtain bγ, we can estimate m (zt) in (2.4) by
em (znt) ≡ n−1

nX
s6=t

¡
yns − x0nsbγ¢Khts/ bfnt. (2.10)

Let eunt ≡ ynt − x0ntbγ − em (znt) . (2.11)

Like Ploberger and Krämer (1992) and Bai (1996), our test statistics are based on these

estimated residuals. Under mild conditions,

bΨ ≡ n−1
nX
t=1

eu2nt(xnt − bxnt)(xnt − bxnt)0 bf4nt (2.12)

consistently estimates Ψ. To test H0a, we thus consider tests based on the stochastic process

Γna (π) ≡ n−1/2bΨ−1/2 dnπcX
t=1

(xnt − bxnt) eunt bf 2nt, 0 ≤ π ≤ 1. (2.13)

Note that (xnt − bxnt) eunt bf 2nt appears as the summand in the first order conditions for the
regression of (ynt − bynt) bfnt on (xnt − bxnt) bfnt. Therefore, Γna (π) is a standardized cumulative
sum of the gradients. We will show that under some weak conditions, the process Γna (·) ≡
{Γna (π) : 0 ≤ π ≤ 1} converges weakly to a mean-zero Gaussian process Γa (·).

Note that Γna will be sensitive to deviations from H0a caused by changes in the parametric

regression coefficients. On the other hand, tests based on this process will not have power to

detect changes in the nonparametric component. Heuristically, any deviations of mnt (·) from
m0 (·) will appear in the residual sequence {eunt} , and these are asymptotically orthogonal to
(xnt − bxnt) . For this reason, Γna cannot be used to test H0b.

To test H0b, we propose statistics based on the cumulative sums of weighted residuals:

Γnb (π) ≡ n−1/2bσ−1 dnπcX
t=1

eunt bfnt, 0 ≤ π ≤ 1, (2.14)
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where bσ ≡ nn−1Pn
t=1 eu2nt bf 2nto1/2 . We will show that Γnb (·) ≡ {Γnb (π) : 0 ≤ π ≤ 1} converges

weakly to a mean-zero Gaussian process Γb (·).
Let La(·) and Lb(·) be continuous functionals that measure the fluctuations of Γna (·) and

Γnb (·) respectively. By the continuous mapping theorem,

La (Γna (·)) d→ La (Γa (·)) and Lb (Γnb (·)) d→ Lb (Γb (·)) . (2.15)

In principle, there is a rich variety of choices for La and Lb. The classical Kolmogorov-Smirnoff
measure yields the following CUSUM-type test statistics:

KSna ≡ sup
0≤π≤1

|Γna (π)|∞ = max
1≤j≤n

¯̄̄̄
¯n−1/2bΨ−1/2

jX
t=1

(xnt − bxnt) eunt bf 2nt
¯̄̄̄
¯
∞
, and (2.16)

KSnb ≡ sup
0≤π≤1

|Γnb (π)| = max
1≤j≤n

¯̄̄̄
¯n−1/2bσ−1

jX
t=1

eunt bfnt
¯̄̄̄
¯ , (2.17)

where for any p-vector an = (an1, ..., anp)
0 , |an|∞ ≡ max1≤i≤p |ani| . Alternatively, the Cramer-

von Mises metric yields the following test statistics:

CMna ≡
Z 1

0
kΓna (π)k2 ds = 1

n

nX
j=1

°°°°°n−1/2bΨ−1/2
jX

t=1

(xnt − bxnt) eunt bf 2nt
°°°°°
2

, (2.18)

CMnb ≡
Z 1

0
|Γnb (π)|2 ds = 1

n

nX
j=1

Ã
n−1/2bσ−1 jX

t=1

eunt bfnt!2 , (2.19)

where k·k denotes the Euclidean norm. We will study the limiting distributions of KSna,

KSnb, CMna, and CMnb below.

3 Asymptotic Properties of Γna (·)
In this section, we study the asymptotic properties of Γna (·) under H0a and a sequence of

local alternatives. We study Γnb (·) in the next section.

3.1 Assumptions

Let wnt ≡ (x0nt, z0nt, εnt)0. We will use the mixing coefficients αn (j), defined by

αn (j) = sup1≤l≤n−j{P (A ∩B)− P (A)P (B)|A ∈ σ (wnt : 1 ≤ t ≤ l) ,

B ∈ σ (wnt : l + j ≤ t ≤ n)}, j ≤ n− 1,
αn (j) = 0 for j ≥ n.

10



Define the coefficient of strong mixing as α (j) = supn∈N αn (j) for j ∈ N and α (0) = 1.

To state the assumptions, let gnt (znt) ≡ E (xnt|znt) and vnt ≡ xnt − gnt (znt) . Let

σ2nt (x, z) ≡ E
¡
ε2nt|xnt = x, znt = z

¢
, σ2nt (z) ≡ E

¡
ε2nt|znt = z

¢
, and σ2nt,i (z) ≡ E

³
v2nt,i|znt = z

´
,

where vnt,i is the ith component of vnt, i = 1, ..., p. We make the following assumptions on

the disturbance term, regressors, kernel function, and bandwidth.

Assumption A1. (i) {wnt} is a strong mixing process with mixing coefficients α (j)
satisfying supn

Pn
j=1 j

3α (j)η/(4+η) ≤ C <∞ for some η > 0 with η/ (4 + η) ≤ 1/2.
(ii) E (εnt|Fn,t−1) = 0, where Fn,t−1 ≡ σ (xnt, znt, xn,t−1, zn,t−1, εn,t−1, ...) .

(iii) For all t ≥ 1, fnt (·) ∈ G∞r , mnt (·) ∈ G4+ηr , and gnt (·) ∈ G4+ηr for some integer r ≥ 2,
where Gar is a class of functions defined in Definition C.3 in the Appendix. Also, fnt,mnt, and

the elements of gnt each satisfy a global Lipschitz condition: |φ (z∗)− φ (z)| ≤ Dφ (z) kz∗ − zk
for all z∗, z ∈ Rq, where Dφ (znt) has finite 4 + η moments and φ = fnt,mnt, or an element of

gnt.

(iv) supn≥1max1≤t≤nE(kξntk4+η) ≤ c4+η < ∞ for ξnt = εnt and vnt. For all t ≥ 1,

(x, z)→ σ2nt (x, z) , z → σ2nt (z) , and z → σ2nt,i (z) (i = 1, ..., p) all belong to G21 .
(v) With ξnt = εnt or xnt, supzsupn≥1max1≤t≤nE(kξntk4+η |znt = z)fnt (z) ≤ b1 <∞ and

for some ϑ ≥ q, supzsupn≥1max1≤t≤n kzkϑE(|ξnt| |znt = z)fnt (z) ≤ b2 < ∞. There is some

t∗ < ∞ such that for all t ≥ t∗ > 1, supz,z0supn≥1max1≤s,t≤nE(|ξnsξnt| |zns = z, znt = z0)

fn,st (z, z
0) ≤ b3 <∞, where fn,st denotes the joint density of (zns, znt) .

(vi) For some θ ∈ [1/2, 1), we have logn/ ¡nθhq¢ = o (1) , and

q

ϑ
+ 3 + 2θ − 1− θ

2

µ
(2α+ 3) (η + 2)

η + 3
− 2q

¶
≤ 0, (3.1)

where α = 4 + 16/η.

(vii) There exists mn (·) and gn (·) such that max1≤t≤n kmnt (z)−mn (z)k ≤ αmncmn (z)

and max1≤t≤n kgnt (z)− gn (z)k ≤ αgncgn (z) for some functions cmn (·) and cgn (·) and scalar
sequences αmn and αgn. In addition, supn≥1 max1≤t≤nE |cξn (znt)|4+η <∞ for ξ = m, and g.

(viii) Let fn (z) ≡ n−1
Pn

t=1 fnt (z) and fnt ≡ fn (znt) . n
−1Pdnπc

t=1 f
2
ntvntv

0
nt

p→ Φ (π) uni-
formly in π, n−1

Pdnπc
t=1 f

4
ntvntv

0
ntε

2
nt

p→ Ψ (π) uniformly in π, n−1Pdnπc
i=1 f

2
ntε

2
nt+op (1)

p→ σ2 (π)

uniformly in π, and n−1/2
Pdn·c

t=1 f
2
ntvntεnt ⇒ N (·) , where Φ (π) and Ψ (π) are q×q nonrandom

positive definite matrices and σ2 (π) > 0 for any π ∈ (0, 1], Φ (0) = 0,Ψ (0) = 0, σ2 (0) = 0, and
N (·) is a zero-mean Gaussian process with covariance kernel E[N (π1)N (π2)

0] = Ψ (π1 ∧ π2) .

Assumption A2. The kernel function K (·) is product kernel of k (·) , a symmetric

11



rth order kernel with compact support A such that
R
R a

ik (a) da = δi0 (i = 0, 1, ..., r − 1),
supa∈A |k (a)| ≤ c1 <∞, and |k (a)− k (a0) | ≤ c2|a− a0| for any a, a0 ∈ R and some c2 <∞,

where δij is Kronecker’s delta.

Assumption A3. As n→∞, nh2q/ (logn)2 →∞ and nh4r → 0.

Assumptions A1(i)-(iv) parallel Assumptions (A1)(i)-(iv) in Fan and Li (1999). A note-

worthy difference is that Fan and Li (1999) assume a strictly stationary β-mixing (absolutely

regular) process in order to use Lemma 1 of Yoshihara (1976). It turns out that we can relax

the β-mixing condition to α-mixing by applying Lemma 2.1 of Sun and Chiang (1997) (see

also Lemma C.1 in the appendix). Assumption A1(i) implies that α (j) = o(j−(4+16/η)). The

smaller is η, the faster the rate at which α (j) decays to zero. Assumption A1(ii) imposes

a martingale difference structure on {εnt}. The smoothness and moment conditions in As-
sumptions A1(iii)-(iv) are similar to those in Robinson (1988) and Fan and Li (1999). In

particular, Assumptions A1(i) and A1(iv) reflect the trade-off between the degree of depen-

dence and the moments of the process {xnt, znt, εnt} . Assumption A1(v) is used in the proof
of Lemma C.5 in the Appendix. It controls the tail behavior of the conditional expectations

E(|ξnt|4+η |znt = z), E (|ξnt| |znt = z) , and E(|ξnsξnt| |zns = z, znt = z0), relative to the mar-

ginal density fnt (z) or the joint density fn,st (z, z0) . Assumption A1(vi) reflects the trade-off

between the mixing coefficient, moments of the process {εnt, xnt, znt} , and the bandwidth h.

For fixed θ ∈ [1/2, 1) and ϑ ≥ q, (3.1) can easily be satisfied by requiring sufficiently small η.

Assumption A1(vii) specifies the nonstationary nature of the regressor process {xnt, znt} in

terms of mnt (·) and gnt (·). It allows for both fixed and small breaks, as we have not required
that the sequences αmn and αgn shrink to zero as n → ∞. (These sequences are not to be

confused with the mixing coefficients, subscripted differently.) In the case of fixed breaks for

m and g, one can take αmn = 1 and αgn = 1, respectively. Assumption A1(viii) is a high level

assumption. If we only consider small breaks in the process {xnt, znt, εnt} , one can impose
the following linearity assumption on Φ (·) , Ψ (·) , and σ2 (·) :

Φ (π) = πΦ, Ψ (π) = πΨ, and σ2 (π) = πσ20, (3.2)

where Φ and Ψ are defined in (2.8) and (2.9) respectively, and σ20 ≡ σ2 (1) .

Assumption A2 requires the kernel function K (·) to be compactly supported, which can
be relaxed at the cost of lengthier arguments (see Hansen, 2008). Assumption A3 is a little

bit stronger than the bandwidth condition in Fan and Li (1999), who require nh2q → ∞

12



and nh4r → 0 as n → ∞. With some lengthier arguments, we conjecture that we can relax

nh2q/ (logn)2 →∞ to nh2q →∞.

3.2 Asymptotic Behavior of bγ
Since our test statistics rely heavily upon the asymptotic behavior of bγ, it is worthwhile to
study bγ before we proceed to study the asymptotic properties of our test statistics. Let

Aξn (z) ≡ n−1
Pn

t=1 fnt (z) ξnt (z) for ξ = m, g, or 1. In particular, when ξ = 1, we have

A1n (z) = fn (z) . To allow for possible fixed breaks in either m or g, or more generally, the

joint distribution of (xnt, znt) , we make the following high level assumptions.

Assumption A1 (vii∗). As n→∞, n−1
Pn

t=1

£
Agn (znt)−A1n (znt) gnt (znt)

¤
[Agn (znt)−

A1n (znt) gnt (znt)]
0 p→ Φgg, and n−1

Pn
t=1[Agn (znt)−A1n (znt) gnt (znt)][Amn (znt)−A1n (znt)mnt (znt)]

p→ Φgm, where Φgg and Φgm are q × q and q × 1 nonrandom matrices, respectively.

Clearly, if we have only small breaks in m and g, then Φgg = 0 and Φgm = 0. These are

generally non-zero if we allow for fixed breaks inm and g. The following theorem characterizes

the asymptotic behavior of bγ under H0a.

Theorem 3.1 Suppose Assumptions A1-A3 and H0a hold. (a) If Assumption A1(vii*) holds,

then bγ − γ0 = (Φ (1) + Φgg)
−1Φgm + op (1) .

(b) If we have fixed breaks in m but not g and hr = o(n−1/2), then

√
n (bγ − γ0) = Φ (1)−1

⎧⎨⎩n−5/2
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [mnk (zni)−mni (zni)] (vnj − vni)

+n−1/2
nX
i=1

f
2
n (zni) vniεni

)
+ op (1) .

(c) If we have fixed breaks in g but not m and hr = o(n−1/2) and Assumption A1(vii*) holds,

then

√
n (bγ − γ0) = (Φ (1) + Φgg)

−1
⎧⎨⎩n−5/2

nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [gnj (zni)− gni (zni)] (εnk − εni)

+n−1/2
nX
i=1

f
2
n (zni) vniεni

)
+ op (1) .

13



(d) If αmn and αgn in Assumption A1(vii) and h in Assumption A3 also satisfy αmnh
r =

o
¡
n−1/2

¢
, αgnh

r = o
¡
n−1/2

¢
, and αmnαgn = o

¡
n−1/2

¢
, then

√
n (bγ − γ0) = Φ (1)

−1 n−1/2
nX
i=1

f
2
n (zni) vniεni + op (1) .

Remark 1. As mentioned above, if fixed breaks are present in both m (.) and g (.) , then

generally Φgm 6= 0. This is true even if we have only a one-time simultaneous fixed break in
m (.) and g (.). As a result, we are unable to estimate γ0 consistently by bγ and thus cannot
derive an asymptotic null distribution for our test statistics. If we have a fixed break in either

m or g but not both, then Theorem 3.1 indicates that bγ is √n-consistent for γ0 under H0a and

some further conditions. Nevertheless, the unknown fixed breaks in m or g contribute to the

variance of
√
n (bγ − γ0) and the expansion of our test statistics in a complicated way, which

makes characterizing the asymptotic null distribution of our test statistics quite cumbersome.

In contrast, if m and g have only small breaks,
√
n (bγ − γ0) will have the same asymptotic

distribution under the null as in the purely stationary case. For these reasons, we focus only

on this last case in what follows.

3.3 Asymptotic Null Distribution of Γna (·)
The following theorem gives the asymptotic distribution of Γna (·) under H0a.

Theorem 3.2 Suppose Assumptions A1-A3 hold. Suppose the conditions in part (d) of

Theorem 3.1 hold. Then under H0a, Γna (·) ⇒ Γa (·) , where Γa (π) = Ψ (1)−1/2 [N (π) −
Φ (π)Φ (1)−1N (1)].

Remark 2. By the continuous mapping theorem, Theorem 3.2 implies that KSna
d→

sup0≤π≤1 |Γa (π)|∞ , and CMna
d→ R 1

0 kΓa (π)k2 dπ. Obviously, the tests KSna and CMna are

generally not asymptotically pivotal. The asymptotic null distributions of these test statistics

appear to depend on the functions Φ (π) and Ψ (π) in a complicated way. As there is no way

to tabulate the critical values for the tests, we later provide a method to obtain bootstrap

p-values.

Remark 3. Nevertheless, when both Φ (π) and Ψ (π) are linear in π (see (3.2)), the above

Γna-based tests are asymptotically pivotal. In this case, we have Γa (π) = Ψ−1/2 [N (π)− πN (1)]

= Bp (π) , where Bp (·) denotes a vector of p independent standard Brownian bridges defined
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on [0, 1] with zero mean and covariance function E[Bp (π1)Bp (π2)
0] = (π1∧π2−π1π2)Ip, and

Ip is a p× p identity matrix. The tests KSna and CMna are then asymptotically distribution

free, despite parameter estimation. For this special case, one can easily obtain the critical

values for the KSna and CMna test statistics, and reject the null hypothesis H0a for large

values of KSna and CMna.

3.4 Local Power of Γna- based Tests

Now we study the local power properties of the test based on Γna. We focus on the local

alternative

H1a,n : γnt = γ0 + n−1/2δ1 (t/n) , (3.3)

where δ1 (.) is an arbitrary non-constant p-dimensional measurable function defined on the

[0, 1] interval. Following Krämer, Ploberger, and Alt (1988) and Ploberger and Krämer (1992),

we only require that δ1 (.) be expressed as a uniform limit of functions that are constants on

intervals. Clearly, if δ1 (t/n) = δ 1 (t/n ≥ π0) for some nonzero p-vector δ, then eq. (3.3)

includes a one-time shift of the regression coefficient at time nπ0 as a special case.

Theorem 3.3 Suppose Assumptions A1-A3 hold. Suppose the conditions in part (d) of The-

orem 3.1 hold. Then under H1a,n, we have Γna (·)⇒ Γa (·) +∆a (·), where for 0 ≤ π ≤ 1,

∆a (π) = Ψ (1)
−1/2

½Z π

0
Φ(1) (s) δ1 (s) ds−Φ (π)Φ (1)−1

Z 1

0
Φ(1) (s) δ1 (s) ds

¾
, (3.4)

and Φ(1) (s) = (∂/∂s)Φ (s) .

Remark 4. Theorem 3.3 implies that the KSna and CMna tests have non-trivial power

in detecting n−1/2- local alternatives, provided ∆a (π) 6= 0 for π in a set of positive Lebesgue
measure. Even a single break at time t = nπ0, i.e., δ1 (t/n) = δ 1 (t/n ≥ π0) , affects the

right-hand side of (3.4) for all π ∈ (0, 1) , no matter where the structural change occurs. More
importantly, structural changes affect the limiting rejection probabilities only via Φ(1) (·) δ1 (·);
this is a semiparametric analog of the parametric case. In that case, if all structural shifts in

the finite dimensional parameters are orthogonal to the mean regressor then the residual-based

CUSUM test is not consistent. See Ploberger and Krämer (1992). In addition, if Φ (π) is linear

in π (see (3.2)), then the expression for ∆a (π) reduces to ∆a (π) = Ψ (1)
−1/2Φ{R π0 δ1 (s) ds−

π
R 1
0 δ1 (s) ds}.
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Remark 5. As mentioned above, Γna- based tests have no power to detect structural

changes in the nonparametric component m0 (·) . This can be seen more clearly from the the

right-hand side of (3.4), as mnt (zt)−m0 (zt) will necessarily be orthogonal to vnt by the law of

iterated expectations: E [vnt (mnt (znt)−m0 (znt))] = E [E (vnt|znt) (mnt (znt)−m0 (znt))] =

0. Thus, if one replaces one of the two vnt’s in the definition of Φ (π) by mnt (zt) −m0 (zt),

then the matrix Φ (π) becomes zero.

4 Asymptotic Properties of Γnb (·)
In this section, we study the asymptotic properties of Γnb under H0b and a sequence of local

alternatives.

4.1 Asymptotic Null Distribution of Γnb (·)
Let S11 (π1, π2) ≡ limn→∞ n−1

Pdn(π1∧π2)c
i=1 E(f

2
niε

2
ni), S22 (π1, π2) ≡ limn→∞ n−3

Pdnπ1c
i=1

Pn
j=1Pdnπ2c

k=1 E[fni (znj) fnk (znj) ε
2
nj ], S12 (π1, π2) ≡ limn→∞ n−2

Pdnπ1c
i=1

Pdnπ2c
j=1 E

£
fnifnj (zni) ε

2
ni

¤
,

and S21(π1, π2) ≡ S12 (π2, π1) . The asymptotic null distribution of Γnb is given in the next

theorem.

Theorem 4.1 Suppose Assumptions A1-A3 hold. Suppose the conditions in part (d) of Theo-

rem 3.1 hold and nh2r → 0 as n→∞. Then under H0b, Γnb (·)⇒ Γb (·) , where Γb is a mean-
zero Gaussian process with covariance kernel E [Γb (π1)Γb (π2)] = σ−20

P2
i=1

P2
j=1 (−1)i+j

×Sij (π1, π2) , and σ20 = limn→∞ n−1
Pn

t=1E(f
2
ntε

2
nt).

Remark 6. Note that we have strengthened the bandwidth condition from nh4r → 0 to

nh2r → 0 in Theorem 4.1. This means that the optimal bandwidth chosen by standard least-

squares or generalized cross-validation is not directly applicable to Γnb-based tests, because

such bandwidths converge to zero at the rate n−1/(q+2r). Instead, we require undersmoothing.

By the continuous mapping theorem, Theorem 4.1 implies that KSnb
d→ sup0≤π≤1 |Γb (π)| ,

and CMnb
d→ R 1

0 |Γb (π)|2 dπ. Again, the tests KSnb and CMnb are not asymptotically pivotal

in general. We provide a bootstrap method to obtain p-values.

Remark 7. When {znt} is also asymptotically stationary in the sense thatmax1≤t≤n |fnt (z)
−fn (z) |→ 0 ∀z for some continuous function fn (

.), we can show that under H0b, Γnb (π) =

σ−10 {n−1/2
Pdnπc

t=1 fntεnt − n−1/2π
Pn

t=1 fntεnt}+ op (1) . If σ2 (π) is also linear in π (see (3.2)
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), then by Theorem 1 in Herrndorf (1985) we have Γnb (·) ⇒ B1 (·) under H0b, where B1 (·)
denotes the standard Brownian bridge defined on [0, 1] . In this special case, the tests KSnb

and CMnb are asymptotically distribution free despite parameter estimation. One rejects the

null hypothesis H0b for large values of KSnb and CMnb.

4.2 Local Power of Γnb- based Tests

Now we study the local power of Γnb-based tests. We focus on the local alternative

H1b,n : γnt = γ0 + n−1/2δ1 (t/n) , mnt (znt) = m0 (znt) + n−1/2δ2 (znt, t/n) , (4.1)

where δ1 (.) is as defined in (3.3), and δ2 (
.,. ) is an arbitrary non-constant measurable func-

tion defined on Z × [0, 1] , where Z is the support of znt. In addition, we follow Krämer,

Ploberger, and Alt (1988) and require that for each z, δ2 (z,
. ) can be expressed as a uniform

limit of functions that are constants on intervals. Clearly, if δ1 (.) ≡ 0 and δ2 (znt, t/n) =

δ2 (znt) 1 (t/n ≥ π0) in eq. (4.1), we have the special case of a one-time shift in the nonpara-

metric regression component at time nπ0.

Theorem 4.2 Suppose Assumptions A1-A3 hold. Suppose the conditions in part (d) of The-

orem 3.1 hold, and nh2r → 0 as n → ∞. Then under H1b,n, we have Γnb (·) ⇒ Γb (·) +
∆b1 (·) +∆b2 (·) , where for 0 ≤ π ≤ 1,

∆b1 (π) ≡ σ−10 lim
n→∞

⎧⎨⎩n−1
dnπcX
i=1

E
¡
fnix

0
ni

¢
δ1 (i/n)− n−2

dnπcX
i=1

nX
j=1

E[fni (znj)x
0
nj ]δ1 (j/n)

⎫⎬⎭ ,

∆b2 (π) ≡ σ−10 lim
n→∞

⎧⎨⎩n−1
dnπcX
i=1

E
£
fniδ2 (zni, i/n)

¤− n−2
dnπcX
i=1

nX
j=1

E [fni (znj) δ2 (znj , j/n)]

⎫⎬⎭ .

Remark 8. The difference between the limiting distribution of Γnb under H1b,n and its as-

ymptotic null distribution consists of two terms. The first arises from a shift in the parametric

component γnt; the other arises from a shift in the nonparametric component mnt (
.) . Γnb-

based tests thus have non-trivial power in detecting n−1/2-local alternatives whenever these

two components do not vanish simultaneously. When we reject H0b, we thus have evidence

of structural breaks in either γnt or mnt (
.) or both. To see whether the structural break is

caused by a break in the parametric component, we can apply the test of H0a introduced in

the previous section. If H0a is not rejected, then the test indicates a structural break in the
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nonparametric component. Of course, care must be taken to ensure the correct probability of

Type I error when conducting such a sequential test.

Remark 9. If {znt} is also asymptotically stationary as in Remark 7, then the proof of
Theorem 4.2 can be greatly simplified. In this case, one can readily show that n−2

Pdnπc
i=1

Pn
j 6=i

E
h
fni (znj)x

0
nj

i
δ1 (j/n) = πn−1

Pn
j=1E(fnjx

0
nj)δ1 (j/n)+o (1) , and n

−2Pdnπc
i=1

Pn
j=1E[fni (znj)

δ2 (znj , j/n)] = πn−1
Pn

j=1 E[fnjδ2 (znj , j/n)] + o (1) . Now the expressions for ∆b1 (π) and

∆b2 (π) reduce to ∆b1 (π) = σ−10 (
R π
0 R

(s)
1 (s) δ1 (s) ds − π

R 1
0 R

(s)
1 (s) δ1 (t) dt), and ∆b2 (π) =

σ−10 [R2 (π)− πR2 (1)] , whereR1 (π) ≡ limn→∞ n−1
Pdnπc

i=1 E(fnix
0
ni), R

(1)
1 (π) = (∂/∂π)R1 (π) ,

R2 (π) ≡
R π
0

R
f2 (z) δ2 (z, t) dzdt, and f (z) ≡ limn→∞ fn (z) .

5 Bootstrap Tests

From the previous two sections we see that if we allow fixed breaks in the process {xnt, znt, εnt} ,
neither Γna-based tests nor Γnb-based tests are asymptotically pivotal in general, preventing

tabulation of critical values. To obtain the p-values, we now propose and analyze a wild

bootstrap version of our tests.

From the proofs of Theorem 3.2 and Theorem 4.1, we have that under the applicable null

hypothesis

Γna (π) = eΓna (π) + op (1) , and Γnb (π) = eΓnb (π) + op (1) , (5.1)

where

eΓna (π) = n−1/2bΨ−1/2
⎧⎨⎩
dnπcX
t=1

bf 2nt (xnt − bxnt) εnt
− Φ (π)Φ (1)−1

nX
t=1

bf 2nt (xnt − bxnt) εnt
)

(5.2)

eΓnb (π) = n−1/2bσ−1
⎧⎨⎩
dnπcX
t=1

bfntεnt − nX
t=1

bfdnπc (znt) εnt
⎫⎬⎭ , (5.3)

and bfdnπc (znt) ≡ n−1
Pdnπc

s=1 Khts. Even though Theorems 3.2 and 4.1 imply that {eΓna (π) ,
0 ≤ π ≤ 1} and {eΓnb (π) , 0 ≤ π ≤ 1} are not asymptotically pivotal in general under the
relevant null, we can mimic the asymptotic distribution of Γna (resp. Γnb) by bootstrappingeΓna (resp. eΓnb).
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To obtain the bootstrap versions of our test statistics, we define the wild bootstrap resid-

uals as

u∗nt ≡ euntηt, (5.4)

where {ηt} satisfy the conditions stated in Assumption A4(i) below. One can draw such a
sequence {ηt} in a number of ways. In our simulations, we draw {ηt} independently from
a distribution with masses c =

¡
1 +
√
5
¢
/
¡
2
√
5
¢
and 1 − c at the points

¡
1−√5¢ /2 and¡

1 +
√
5
¢
/2, respectively. Consequently, the wild bootstrap draws each u∗nt from a different

distribution with mean zero and variance eu2nt, conditional on the data. Our bootstrap processes
are then defined by

Γ∗na (π) = n−1/2bΨ∗−1/2
⎧⎨⎩
dnπcX
t=1

bf 2nt (xnt − bxnt)u∗nt
−bΦ (π) bΦ (1)−1 nX

t=1

bf 2nt (xnt − bxnt)u∗nt
)

(5.5)

Γ∗nb (π) = n−1/2bσ∗−1
⎧⎨⎩
dnπcX
t=1

bfntu∗nt − nX
t=1

bfdnπc (znt)u∗nt
⎫⎬⎭ , (5.6)

where bΦ (π) = n−1
Pdnπc

t=1
bf 2nt (xnt − bxnt) (xnt − bxnt)0 , bΨ∗ = n−1

Pn
t=1

bf 4ntu∗2nt(xnt − bxnt)(xnt −bxnt), and bσ∗2 = n−1
Pn

t=1
bf 2ntu∗2nt. Using Γ∗na, we construct the bootstrap version KS∗na of the

statistic KSna. We repeat this procedure B times to obtain the sequence
n
KS∗na,j

oB
j=1
. We

reject the null when, for example, p∗ = B−1
PB

j=1 1(KSna ≤ KS∗na,j) is smaller than the

desired significance level. The procedure is analogous for CMna, KSnb, and CMnb, where we

use Γ∗nb for the latter two statistics. To prove the validity of the above bootstrap procedure,

we need the following additional assumption.

Assumption A4. (i) {ηt} are IID with E (ηt) = 0, E
¡
η2t
¢
= 1, and E(η4t ) < ∞, and

independent of the process {ynt, xnt, znt} . (ii) n−1
Pn

t=1
bf 2dnπc (znt) (eunt − εnt)

2 = op (1) for

each π ∈ [0, 1] .

Assumption A4(i) is standard in the literature. Assumption A4(ii) is a high level assump-

tion that parallels to the second condition in Assumption A10 of Delgado and Fiteni (2002).

Even though not stated explicitly, the proof of bootstrap consistency in Hansen (2000a) also

relies upon similar conditions.
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Theorem 5.1 Suppose Assumptions A1-A4 hold. Then Γ∗na (·) p⇒ Γa (·) , and Γ∗nb (·)
p⇒

Γb (·) .

Remark 10. Theorem 5.1 shows that each bootstrapped process ({Γ∗na} or {Γ∗nb}) con-
verges weakly to the relevant limiting null Gaussian process, thus providing a valid asymptotic

basis for approximating the limiting null distribution of test statistics based on {Γna} or {Γnb} .
By the properties of the wild bootstrap, our approximation to the limiting null distribution is

valid even when the null hypothesis does not hold for the underlying data. This helps ensure

reasonable power for the bootstrap test against potential departures from the null hypothesis.

Remark 11. It is worth mentioning that the validity of the above bootstrap procedure

relies heavily on Assumption A4(ii), which, unfortunately, we are unable to relax. This

assumption can be easily satisfied under either null or local alternatives. This is true no

matter whether we have fixed breaks in the marginal PDF fnt (·) of znt or not. Nevertheless,
it may be difficult to ensure this in the case of global alternatives. We note that this is a

phenomenon associated with many bootstrap versions of tests for structural change, including

those of Hansen (2000a) and Delgado and Fiteni (2002).

In the following, we restrict ourselves to the case where the marginal PDF fnt (·) of znt
has only small breaks and the linearity assumption in (3.2) holds. In this case, we can

re-examine the proofs of Theorem 3.2 and Theorem 4.1 and obtain Γna (π) = eΓna (π) +
op (1) , and Γnb (π) = eΓnb (π) + op (1) , where eΓna (π) = n−1/2bΨ−1/2Pdnπc

t=1
bf 2nt (xnt − bxnt) εnt

−πn−1/2bΨ−1/2Pn
t=1

bf 2nt (xnt − bxnt) εnt, and eΓnb (π) = n−1/2bσ−1Pdnπc
t=1

bfntεnt−πn−1/2bσ−1Pn
t=1bfntεnt. In this special case, we propose the following bootstrap processes

Γ∗na (π) = n−1/2bΨ∗−1/2 dnπcX
t=1

bf 2nt (xnt − bxnt)u∗nt − πn−1/2bΨ∗−1/2 nX
t=1

bf 2nt (xnt − bxnt)u∗nt,
Γ∗nb (π) = n−1/2bσ∗−1 dnπcX

t=1

bfntu∗nt − πn−1/2bσ∗−1 nX
t=1

bfntu∗nt,
where bΨ∗and bσ∗2 are as defined above. In this case, we have the following corollary.
Corollary 5.2 Suppose Assumptions A1-A3 and A4(i) hold. Suppose that the linearity con-

dition in (3.2) holds, and max1≤t≤n |fnt (z)− fn (z)| → 0 ∀z for some continuous function
fn (

.). Then Γ∗na (·) p⇒ Bp (·) , and Γ∗nb (·)
p⇒ B1 (·) .
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Remark 12. We sketch the proof of the above corollary in the appendix. A crucial point

here is that we do not require Assumption A4(ii). Under the stated conditions and the extra

condition in part (d) of Theorem 3.1, both Γna- and Γnb-based tests are asymptotically pivotal

under the relevant null hypothesis. We thus are able to compare the bootstrap versions of the

tests with those based on the asymptotic critical values in this case.

6 Monte Carlo Simulations

In this section we present a small set of Monte Carlo experiments to evaluate the finite sample

performance of our tests. We consider the following DGP:

ynt = γntxnt +mnt (znt) + εnt, εnt =
p
ϑntζ1nt, (6.1)

where ϑnt = 0.05 + 0.90ϑn,t−1 + 0.05ε2n,t−1; znt = 0.5 + 0.8zn,t−1 + ζ2nt; xnt = 1 + cos (znt) +

vnt; and {ζ1nt} , {ζ2nt} , and {vnt} are each IID N(0, 1) sequences, mutually independent

of each other. The subscripts for γnt and mnt (
.) indicate that both the parametric and

nonparametric components of the regression function may be time-varying. We consider the

following specifications of γnt and mnt (
.) :

γnt = 1 + δ11 (t ≥ dnπ0c) , and mnt (znt) = znt − 0.5z2nt +
δ2 exp (znt)

1 + exp (znt)
1 (t ≥ dnπ0c) . (6.2)

We consider three different break ratios π0 = 0.25, 0.5, 0.75, and (δ1, δ2) pairs with δ1, δ2 = 0,

0.25, 0.5, and 1.

To construct the test statistics, we choose the fourth order (r = 4) Epanechnikov kernel,

K (u) = 3
4
√
5
(158 − 7

8u
2)(1 − 1

5u
2)1(|u| ≤ √5). To motivate our choice of the bandwidth h,

let X = (xn1, ..., xnn)
0, Y = (yn1, ..., ynn)

0 , eX = (exn1, ..., exnn)0, eY = (eyn1, ..., eynn)0 , and
U = eY − eXbγ, where exnt = (xnt − bxnt) bfnt, and eynt = (ynt − bynt) bfnt. The tth element of U is
given by eunt bfnt, i.e., the residual from the partially linear regression weighted by the density

estimate, bfnt. Let K denote the n × n smoothing matrix whose (s, t)th element is given by

Khst/(n bfns), and let W =diag( bfn1, ..., bfnn). Then eX = W (In −K)X, eY = W (In −K)Y,
and bγ = ( eX 0 eX)−1 eX 0 eY . Consequently, U =eY − eX( eX 0 eX)−1 eX 0 eY = A (h)Y, where A (h) =

[In− eX( eX 0 eX)−1 eX 0]W (In −K) . Following Xu (2006), we propose to choose h to minimize the
following generalized cross-validation (GCV) score,

GCVn (h) = n−1Y 0A (h)0A (h)Y /
¡
n−1tr (A (h))

¢2
. (6.3)
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Let bh denote the minimizer of GCVn (h) . Then bh is optimal in the sense of Xu (2006), andbh ∝ n−1/(2r+q) = n−1/9. Since undersmoothing is required for the tests based on Γnb (.) , we

apply a rule of thumb to choose h according to h = bhn1/9n−1/λ. We study the behavior of
our tests with different choices λ = 7, 6, 5 in order to examine the sensitivity of our test to

the bandwidth sequence. Robinson (1991, p.448) proposes similar devices. Note that these

choices for h and the kernel function meet the requirements for both tests.

In the following, we will report the empirical rejection frequencies of the tests KSna,

CMna, KSnb and CMnb for different choices of δ1 and δ2. Since the process {xnt, znt, εnt}
does not exhibit fixed breaks under either the null or local alternatives, the linearity condition

in (3.2) holds and Corollary (5.2) applies. Both Γna- and Γnb-based tests are asymptotically

pivotal under the relevant null hypothesis and they can be conducted based on the asymptotic

critical values. To see how well our nonparametric tests based on asymptotic distributions

perform in finite samples, we report the rejection frequencies for both the bootstrap versions

of the tests, denoted as KSb
na, CM

b
na, KSb

nb, CM
b
nb, and the tests based on critical values

from the pivotal asymptotic distributions. We use 1000 replications for each sample size n

and 199 bootstrap resamples for the bootstrap test in each replication. For ease of reference,

we refer to the KSna, CMna, KSb
na, and CM

b
na tests as a-tests and the KSnb, CMnb, KSb

nb,

and CM b
nb tests as b-tests.

6.1 Finite Sample Level

We first examine the finite sample performance of a-tests under H0a. To do so, we set δ1 = 0

and allow δ2 to take different values (0, 0.25, 0.5, and 1) in (6.2). Table 1 reports the empirical

rejection frequencies of these tests at the nominal level 0.05 and break ratio π0 = 0.5. We

summarize some important findings from Table 1. (a) Surprisingly, the CMna test based

on asymptotic critical values is as good as the bootstrap version of the tests (KSb
na and

CM b
na). The KSna test based on asymptotic critical values is undersized for small sample

sizes (n = 100, 200), but its level improves as n increases. (b) All tests are robust to different

choices of bandwidth h (or equivalently λ). (c) The CMna, KSb
na and CM b

na tests behave

similarly. In all cases, the empirical levels of these tests are close to the nominal levels. (d)

As predicted by our asymptotic theory, the empirical levels of the KSna, CMna, KSb
na and

CM b
na tests are robust to the presence of structural changes in the nonparametric component.

To examine the finite sample performance of b-tests under H0b, we set δ1 = δ2 = 0 in (6.2).
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Table 1: Finite sample rejection frequencies under H0a (nominal level: 0.05)
δ2 Test\n 100 200 400

λ= 7 λ= 6 λ= 5 λ= 7 λ= 6 λ= 5 λ= 7 λ= 6 λ= 5
0 KSna 0.023 0.023 0.023 0.028 0.023 0.025 0.043 0.037 0.038

CMna 0.044 0.044 0.050 0.030 0.029 0.031 0.050 0.047 0.051
KSb

na 0.044 0.048 0.044 0.045 0.040 0.036 0.051 0.053 0.046
CM b

na 0.043 0.045 0.047 0.033 0.036 0.036 0.048 0.053 0.050
.25 KSna 0.023 0.023 0.023 0.028 0.023 0.025 0.043 0.041 0.041

CMna 0.044 0.044 0.050 0.030 0.029 0.031 0.047 0.047 0.053
KSb

na 0.044 0.048 0.044 0.045 0.040 0.036 0.052 0.054 0.047
CM b

na 0.043 0.045 0.047 0.033 0.036 0.036 0.047 0.051 0.049
.5 KSna 0.023 0.023 0.023 0.028 0.023 0.025 0.042 0.037 0.041

CMna 0.044 0.044 0.050 0.030 0.029 0.031 0.052 0.049 0.049
KSb

na 0.044 0.048 0.044 0.045 0.040 0.036 0.052 0.052 0.049
CM b

na 0.043 0.045 0.047 0.033 0.036 0.036 0.050 0.052 0.051
1 KSna 0.023 0.023 0.023 0.028 0.023 0.025 0.043 0.040 0.040

CMna 0.044 0.044 0.050 0.030 0.029 0.031 0.048 0.048 0.053
KSb

na 0.044 0.048 0.044 0.045 0.040 0.036 0.050 0.055 0.047
CM b

na 0.043 0.045 0.047 0.033 0.036 0.036 0.046 0.052 0.051

Note. h = bhn1/9n−1/λ, where bh is chosen by GCV.
Table 2: Finite sample rejection frequencies under H0b (nominal level: 0.05)

Test\n 100 200 400
λ = 7 λ = 6 λ = 5 λ = 7 λ = 6 λ = 5 λ = 7 λ = 6 λ = 5

KSnb 0.050 0.044 0.040 0.055 0.057 0.053 0.060 0.057 0.055
CMnb 0.059 0.058 0.055 0.062 0.061 0.059 0.061 0.057 0.057
KSb

nb 0.068 0.062 0.054 0.059 0.070 0.064 0.068 0.064 0.056
CM b

nb 0.064 0.057 0.056 0.057 0.060 0.063 0.060 0.056 0.054

Note. h = bhn1/9n−1/λ, where bh is chosen by GCV.
Table 2 reports the empirical rejection frequencies of these tests at the nominal level 0.05 and

break ratio π0 = 0.5. From Table 2 we have findings similar to those in Table 1, except that

the KSnb test based on asymptotic critical values performs almost as well as CMnb and the

bootstrap version of these two tests (KSb
nb and CM b

nb). As before, all tests are robust to the

choice of bandwidth; and all tests have empirical levels close to their nominal levels.

We also conducted tests for other choices of break ratios: π0 = 0.25, 0.75 (not tabulated

here). We find that the results are similar to the above.
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Table 3: Finite sample rejection frequencies under H1a,n (nominal level: 0.05)

δ1 δ2 n = 100 n = 200
λ = 7 λ = 6 λ = 5 λ = 7 λ = 6 λ = 5

KSb CM b KSb CM b KSb CM b KSb CM b KSb CM b KSb CM b

.25 0 0.12 0.12 0.12 0.12 0.11 0.12 0.23 0.24 0.22 0.23 0.23 0.23
.25 0.11 0.12 0.11 0.12 0.11 0.12 0.22 0.23 0.22 0.22 0.22 0.22
.5 0.11 0.11 0.11 0.12 0.11 0.12 0.21 0.21 0.21 0.20 0.21 0.20
1 0.09 0.09 0.09 0.10 0.10 0.09 0.16 0.17 0.17 0.16 0.17 0.17

.5 0 0.39 0.39 0.37 0.35 0.35 0.35 0.70 0.72 0.70 0.71 0.69 0.69
.25 0.38 0.36 0.35 0.34 0.33 0.33 0.70 0.71 0.69 0.70 0.68 0.68
.5 0.35 0.35 0.33 0.33 0.31 0.31 0.68 0.69 0.67 0.67 0.66 0.66
1 0.29 0.28 0.27 0.27 0.27 0.25 0.60 0.60 0.60 0.59 0.58 0.59

1 0 0.88 0.88 0.86 0.86 0.85 0.86 0.99 0.99 0.99 0.98 0.99 0.99
.25 0.87 0.87 0.85 0.85 0.84 0.85 0.99 0.99 0.98 0.98 0.99 0.99
.5 0.85 0.85 0.83 0.83 0.82 0.84 0.99 0.99 0.98 0.98 0.98 0.98
1 0.80 0.81 0.77 0.78 0.76 0.78 0.99 0.98 0.97 0.97 0.98 0.98

Note. h = bhn1/9n−1/λ, where bh is chosen by GCV. KSb and CM b refer to KSb
na and CM

b
na.

6.2 Finite Sample Power

To examine the power performance of the tests, we first focus on the a-tests. Here and below

we conserve space by only reporting results for the bootstrap version of the tests. Table

3 reports the results of these tests based on the bootstrap critical values where the break

ratio π0 is 0.5. Some of the main findings from Table 3 are: (a) As in the level study, the

KSb
na and CM b

na tests behave similarly. (b) As the sample size increases, the powers of both

tests increase. (c) The choices of the bandwidth sequence have little influence on the power

performance of these tests. (d) For fixed δ2, the powers of both tests increase as the break

size δ1 increases. (e) For fixed δ1, the power does not increase as δ2 increases. Instead, there

is a general trend suggesting that power may be adversely affected by an increase in δ2.

We next examine the power performance of the b-tests. Table 4 reports the finite sample

performance of these tests based on the bootstrap critical values where the break ratio π0 is

0.5. We find that: (a) As in the case for size study, the KSb
nb and CM

b
nb tests behave similarly

in terms of power. (b) As n increases, the powers of both tests increase. (c) The choice of the

bandwidth sequence has little influence on the power performance of these tests. (d) When

either δ1 or δ2 increases, the powers of both tests increase.

Comparing the results in Table 4 for b-tests with those in Table 3 for a-tests, we have two

interesting findings. First, when there is a structural break in the parametric component only
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Table 4: Finite sample rejection frequencies under H1b,n (nominal level: 0.05)

δ1 δ2 n = 100 n = 200
λ = 7 λ = 6 λ = 5 λ = 7 λ = 6 λ = 5

KSb CM b KSb CM b KSb CM b KSb CM b KSb CM b KSb CM b

0 .25 0.14 0.14 0.14 0.14 0.14 0.15 0.23 0.24 0.24 0.23 0.23 0.23
.5 0.38 0.37 0.38 0.38 0.38 0.37 0.68 0.67 0.67 0.67 0.66 067
1 0.89 0.88 0.88 0.87 0.88 0.88 0.99 0.99 0.99 0.99 0.99 0.99

.25 0 0.12 0.12 0.11 0.11 0.11 0.11 0.15 0.15 0.15 0.14 0.15 0.13
.25 0.29 0.28 0.29 0.28 0.29 0.28 0.53 0.51 0.51 0.50 0.52 0.50
.5 0.60 0.58 0.59 0.58 0.59 0.58 0.90 0.90 0.90 0.89 0.89 0.88
1 0.94 0.93 0.94 0.93 0.94 0.93 0.99 0.99 0.99 0.99 0.99 0.99

.5 0 0.22 0.21 0.21 0.21 0.22 0.21 0.38 0.37 0.37 0.36 0.37 0.38
.25 0.48 0.47 0.48 0.47 0.47 0.47 0.79 0.78 0.78 0.77 0.78 0.77
.5 0.75 0.73 0.75 0.73 0.74 0.72 0.97 0.97 0.97 0.96 0.97 0.96
1 0.97 0.97 0.96 0.96 0.97 0.97 0.99 0.99 0.99 0.99 0.99 0.99

1 0 0.51 0.50 0.51 0.50 0.50 0.49 0.79 0.78 0.78 0.77 0.78 0.77
.25 0.75 0.72 0.74 0.72 0.73 0.72 0.96 0.95 0.95 0.94 0.96 0.95
.5 0.89 0.88 0.89 0.87 0.89 0.87 0.99 0.99 0.98 0.98 0.99 0.99
1 0.99 0.98 0.98 0.98 0.98 0.98 1 1 1 1 1 1

Note. h = bhn1/9n−1/λ, where bh is chosen by GCV. KSb and CM b refer to KSb
nb and CM

b
nb.

(i.e., δ1 6= 0, δ2 = 0), the a-tests dominate the b-tests in terms of power. Second, except in this
case, the b-tests dominate the a-tests in terms of power for the same values of (δ1, δ2) . This is

not surprising, because the a-tests are designed to test for structural changes in the parametric

component only. Even though we cannot prove that a-tests are more powerful than the b-tests

when we have only breaks in the parametric component, they definitely outperform the b-tests

for certain alternatives. On the other hand, if we have breaks in both the parametric and

nonparametric components, the b-tests can pick up both types of divergence from the null

and are thus expected to be more powerful than the a-tests against certain alternatives. As

is well known, no theory can ensure a uniform dominance of one class of such tests over the

other class.

6.3 Comparing the a-tests with the Andrews test

It is interesting to compare our a-tests with the Andrews (1993) test. In order to implement

the Andrews test, we must specify the conditional mean function parametrically. Suppose

that the data are generated according to (6.1) and (6.2), but we pretend that the DGP is
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Table 5: Finite sample size of Andrews’s test for DGP (6.1) and (6.2) (δ1=0, nominal level: 0.05)

Test H01 Test H02

n δ2\test SupFn ExpFn AveFn SupFn ExpFn AveFn
100 0 0.286 0.314 0.256 0.299 0.323 0.243

0.25 0.286 0.317 0.265 0.331 0.350 0.259
0.5 0.304 0.336 0.289 0.398 0.425 0.328
1 0.350 0.378 0.315 0.566 0.602 0.547

200 0 0.308 0.348 0.244 0.379 0.386 0.268
0.25 0.319 0.339 0.268 0.412 0.409 0.320
0.5 0.353 0.366 0.306 0.501 0.520 0.434
1 0.438 0.468 0.405 0.753 0.766 0.720

linear: ynt = β0nt + β1ntxnt + β2ntznt + unt, and we test the null hypothesis

H01 : β1nt = β1 for some β1 ∈ R for all t ≥ 1 (6.4)

or

H02 : β0nt = β0 and β1nt = β1 for some (β0, β1) ∈ R2 for all t ≥ 1. (6.5)

We follow Hansen (2000a) and calculate his statistics SupFn, ExpFn, and AveFn. For exam-

ple, to test H01, we first run the restricted OLS regression ynt = β0+β1xnt+β2znt+ ent, and

denote the residuals as bet and variance estimate as bσ2 = (n− 3)−1Pn
t=1 be2t . Then we run the

set of unrestricted regressions: ynt = β0 + β1xnt + β2znt + ϑ1xnt1 (t ≥ s) + ent. Denote the

residuals from the above regression as bets and the variance estimate as bσ2s = (n− 4)−1Pn
t=1be2ts. Define Fs = [(n− 3)bσ2 − (n− 4)bσ2s]/bσ2s. Then SupFn, ExpFn, and AveFn are defined as

SupFn = sup
s∈(τ1,τ2)

Fs, ExpFn = log

µZ
s
exp(Fs/2)dw(s)

¶
, and AveFn =

Z
s
Fsdw(s),

where w(s) = 1/(τ2 − τ1) if s ∈ (τ1, τ2) and 0 otherwise. The asymptotic null distributions
of these test statistics are given in Andrews (1993) and Andrews and Ploberger (1994). Table

5 reports the finite sample “level” of these tests for the case π0 = 0.5 when we choose τ1 =

d0.15nc, τ2 = d0.85nc and the number of replications to be 1000. From Table 5, we see

that under this functional misspecification, the level of the Andrews test is highly distorted,

and the distortion tends to increase as n or δ2 increases. In this case, it is inappropriate to

compare the power performance of the Andrews test to that of our a-tests. In addition, it is

difficult, if possible at all, to calculate the level-adjusted empirical power.

Nevertheless, if we stick to linear DGPs, we can compare the power performance of the
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Table 6. Finite sample rejection frequencies under DGP (6.6) (nominal level: 0.05)

Andrews’s tests Our a-tests
λ = 7 λ = 6 λ = 5

n ∆1 SupFn ExpFn AveFn KSb
na CM b

na KSb
na CM b

na KSb
na CM b

na

100 0 0.042 0.059 0.054 0.046 0.038 0.050 0.044 0.052 0.049
0.25 0.157 0.209 0.216 0.146 0.156 0.146 0.152 0.144 0.138
0.5 0.501 0.588 0.594 0.433 0.428 0.426 0.429 0.412 0.421
1 0.977 0.986 0.986 0.927 0.914 0.914 0.908 0.900 0.894

200 0 0.042 0.046 0.046 0.040 0.046 0.041 0.039 0.049 0.051
.25 0.261 0.320 0.335 0.259 0.264 0.267 0.262 0.241 0.243
0.5 0.812 0.868 0.872 0.741 0.742 0.730 0.726 0.699 0.716
1 1 1 1 0.993 0.994 0.990 0.992 0.984 0.987

Note. For our nonparametric test, we set h = bhn1/9n−1/λ where bh is chosen by GCV.
two sets of tests. For simplicity, we consider the following linear DGP:

ynt = β1ntxnt + β2ntznt + εnt, (6.6)

where we generate {xnt} and {znt} as two independent N (0, 1) sequences with independent

observations and with {εnt} as in (6.1). We consider testing the null hypothesis H01 specified

in (6.4). The Andrews test of H01 requires no structural change in β2nt, so we now assume

that β2nt = 1 for all t ≥ 1. Table 6 compares the Andrews test of H01 with our a-tests when

the parameters are generated according to β1nt = 1 +∆11 (t ≥ dn/2c) , and β2nt = 1 for all

t ≥ 1. To save space, for our nonparametric a-tests, we only report the empirical rejection
frequencies based upon the bootstrap critical values with 199 bootstrap resamples in each

replication. The total number of replications is 1000 for each scenario. When ∆1 = 0, Table

6 reports the level behavior of both types of tests. Clearly, the levels of all tests behave

reasonably well. When ∆1 6= 0, Table 6 reports the power behavior of both types of tests.

We see that the Andrews parametric tests outperform our nonparametric test in most cases.

Nevertheless, the power loss of our a-tests in this case is not severe.

7 Concluding Remarks

In this paper we propose two tests for structural change in partially linear time-series models.

One procedure tests for structural change in the parametric component only, and the other

tests for structural change in both the parametric and nonparametric components jointly. Our

tests complement the conventional procedures for testing for structural change in parametric
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models and are natural diagnostics for testing for structural change in partially linear regres-

sion models. In particular, both tests have non-trivial power to detect deviations from the

null at the parametric rate n−1/2. The generality of our second test does not come for free, as

it requires more stringent assumptions on the bandwidth parameter.
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Appendix

A Proof of the Main Results in Sections 3-5

We use C to signify a generic constant whose exact value may vary from case to case. For

any random sequence {wi} and function φ (wj , wi) , let Ej [φ (wj , wi)] denote expectation

with respect to wj only, e.g., EjKhij =
R
h−dK ((zni − z) /h) fnj (z) dz. Let fni = fni (zni) ,

mni = mni (zni) , gni = gni (zni) , fdnπc (z) = n−1
Pdnπc

j=1 fnj (z) , fn (z) = n−1
Pn

j=1 fnj (z) ,

and fni = fn (zni) . Let f = (fn1, · · · , fnn)0 , M = (mn1, · · · ,mnn)
0 , G = (g0n1, · · · , g0nn)0 ,

ε = (εn1, · · · , εnn)0, and V = (v0n1, · · · v0nn)0. Similarly, let bf = ( bfn1, · · · , bfnn)0, and for ξ = ε,

V, M, or G, define bξ = (bξ0n1, · · · ,bξ0nn)0 with bξni ≡ n−1
Pn

j 6=i ξnjKhij/ bfni. We write An ' Bn

to signify that An = Bn (1 + op (1)) as n→∞. Denote νn ≡ n−1/2h−q/2
√
logn+ hr.

Proof of Theorem 3.1

Under H0a : γni = γ0, we can write

bγ − γ0 = bΦ−1 nS
(X−X)f,(M−M)f

+ S
(X−X)f,(ε−ε)f

o
. (A.1)

We first study the asymptotic behavior of bΦ, S
(X−X)f,(M−M)f

, and S
(X−X)f,(ε−ε)f . Then we

discuss what occurs if we have fixed breaks in both m and g, in either m or g, or in neither.

Note that Lemma B.1(i) holds whether we have fixed breaks in m and g or not.

Step 1. We study bΦ, S
(X−X)f,(M−M)f

, and S
(X−X)f,(M−M)f

.

Step 1(i). We show bΦ p→ Φ (1)+Φgg. Write bΦ = n−1
Pn

i=1
bf2ni (vni + gni − bxni) (vni + gni − bxni)0

= Φn1+Φn2+Φn3+Φ
0
n3, where Φn1 = n−1

Pn
i=1

bf2nivniv0ni, Φn2 = n−1
Pn

i=1
bf2ni (gni − bxni) (gni − bxni)0 ,

and Φn3 = n−1
Pn

i=1
bf2nivni (gni − bxni)0 . By Lemma B.1(i) and Assumption 1(viii), Φn1 =
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n−1
Pn

i=1 f
2
n (zni) vniv

0
ni + op (1)

p→ Φ (1) . By Assumptions A1(i), (iv)-(v), (vii*) and A2-A3,
and the repeated use of Lemmas B.1(i), C.1-C.2, and the Chebyshev inequality,

Φn2 = n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik (xnj − gni) (xnk − gni)

= n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik (gnj − gni) (gnk − gni) + op (1)

= n−3
nX
i=1

nX
j 6=i

nX
k 6=i

fnj (zni) fnk (zni) [gnj (zni)− gni] [gnk (zni)− gni] + op (1)

= n−1
nX
i=1

£
Agn (zni)−A1n (zni) gni

¤ £
Agn (zni)−A1n (zni) gni

¤0
+ op (1)

p→ Φgg.

Clearly, if no fixed breaks are present in g (·) , then Φgg = 0. It is straightfoward to show that
Φn3 = op (1) . Hence bΦ p→ Φ (1) + Φgg. (A.2)

Step 1(ii). We analyze S
(X−X)f,(M−M)f

. Noting that xnt = gnt + vnt, we can write

S
(X−X)f,(M−M)f

= S
(G−G)f,(M−M)f

+ S
(V−V )f,(M−M)f

≡ Sn1 + Sn2, say. (A.3)

For Sn1, we have

Sn1 = n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [mnj (znj)−mnj (zni)] [gnk (znk)− gnk (zni)]

+n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [mnj (znj)−mnj (zni)] [gnk (zni)− gni (zni)]

+n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [mnj (zni)−mni (zni)] [gnk (znk)− gnk (zni)]

+n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [mnj (zni)−mni (zni)] [gnk (zni)− gni (zni)]

≡ Sn11 + Sn12 + Sn13 + Sn14, say. (A.4)

By using Lemma C.4 repeatedly, it is standard to show that

Sn11 = Op

¡
h2r
¢
, Sn12 = Op (αgnh

r) , Sn13 = Op (αmnh
r) , and Sn14 = Op (αgnαmn) . (A.5)

In particular, if we allow fixed breaks in both m and g so that αgn = αmn = O (1) , then we

have

Sn14 = n−1
nX
i=1

£
Agn (zni)−A1n (zni) gni

¤ £
Amn (zni)−A1n (zni)mni

¤
+ op (1)

p→ Φgm. (A.6)
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For Sn2, write

Sn2 = n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik (vnj − vni) [mnk (znk)−mnk (zni)]

+n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik (vnj − vni) [mnk (zni)−mni (zni)] ≡ Sn21 + Sn22.(A.7)

By the repeated use of Lemmas C.1-C.2 and the Chebyshev inequality, we can show

Sn21 = op(n
−1/2) and Sn22 = Op(αmnn

−1/2). (A.8)

It follows from (A.3)-(A.8) that

S
(X−X)f,(M−M)f

= n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [mnj (zni)−mni (zni)] [gnk (zni)− gni (zni)]

+n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [mnk (zni)−mni (zni)] (vnj − vni)

+Op

¡
h2r + αgnh

r + αmnh
r
¢
+ op(n

−1/2). (A.9)

Step 1(iii). We analyze S
(X−X)f,(ε−ε)f . Write

S
(X−X)f,(ε−ε)f = S

(G−G)f,(ε−ε)f + S
(V−V )f,(ε−ε)f ≡ Sn3 + Sn4, say. (A.10)

For Sn3, we have

Sn3 = n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [gnj (znj)− gnj (zni)] (εnk − εni)

+n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [gnj (zni)− gni (zni)] (εnk − εni) ≡ Sn31 + Sn32.(A.11)

It is standard to show that

Sn31 = op(n
−1/2), and Sn32 = Op(αgnn

−1/2). (A.12)

Similarly, write

Sn4 = n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik (vnj − vni) (εnk − εni)

= n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhikvnjεnk − n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhikvnjεni

−n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhikvniεnk + n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhikvniεni

≡ Sn41 − Sn42 − Sn43 + Sn44, say. (A.13)
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It is standard to show that

Sn4j = Op

¡
n−1h−q

¢
= op(n

−1/2), j = 1, 2, 3, and Sn44 = n−1
nX
i=1

f
2
nivniεni + op(n

−1/2).

(A.14)

It follows from (A.10)-(A.14) that

S
(X−X)f,(ε−ε)f = n−3

nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [gnj (zni)− gni (zni)] (εnk − εni)

+n−1
nX
i=1

f
2
nivniεni + op(n

−1/2). (A.15)

Step 2. We discuss the various cases. Combining (A.1), (A.2), (A.9), and (A.15) yields

bγ − γ0 = (Φ (1) +Φgg)
−1 (1 + op (1))

×
⎧⎨⎩n−3

nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [mnj (zni)−mni (zni)] [gnk (zni)− gni (zni)]

+n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [mnk (zni)−mni (zni)] (vnj − vni)

+n−3
nX
i=1

nX
j 6=i

nX
k 6=i

KhijKhik [gnj (zni)− gni (zni)] (εnk − εni)

+n−1
nX
i=1

f
2
n (zni) vniεni

)
+Op

¡
h2r + αgnh

r + αmnh
r
¢
+ op(n

−1/2). (A.16)

If both m and g have fixed breaks so that one can take αmn = αgn = 1, then the first term in-

side the curly brackets in (A.16) dominates, and by (A.6) we have bγ−γ0 = (Φ (1) + Φgg)−1Φgm+
op (1) .

If only m has fixed breaks, so that αmn = 1 and αgn = o (1) , then (A.16) in conjunction

with (A.5) implies
√
n (bγ − γ0) = Φ (1)

−1
n
n−5/2

Pn
i=1

Pn
j 6=i
Pn

k 6=iKhijKhik [mnk (zni)−mni (zni)]

× (vnj − vni) + n−1/2
Pn

i=1 f
2
nivniεni

o
+ Op (

√
nhr) + op (1) . If only g has fixed breaks, so

that αgn = 1 and αmn = o (1) , then (A.16) in conjunction with (A.7) implies
√
n (bγ − γ0) =

(Φ (1) +Φgg)
−1 {n−5/2Pn

i=1

Pn
j 6=i
Pn

k 6=iKhijKhik [gnj (zni)− gni (zni)] (εnk − εni)+n
−1/2Pn

i=1

f
2
nivniεni}+Op (

√
nhr)+ op (1) . If neither m nor g has a fixed break, so that αmn = o (1) and

αgn = o (1) , then combining (A.5), (A.8), and (A.16) yields
√
n (bγ − γ0) = n−1/2

Pn
i=1 f

2
nivniεni

+Op (
√
n(αmnh

r + αgnh
r + αmnαgn)) + op (1) . The conclusion then follows under the given

extra condition. ¥
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Proof of Theorems 3.2 and 3.3

The proof of Theorem 3.2 is a special case of that of Theorem 3.3, so we only prove

Theorem 3.3. Noting that γni = γ0 + n−1/2δ1 (i/n) under H1a,n, we have

√
n(bγ − γ0)

= bΦ−1√n³S
(X−X)f,(M−M)f

+ S
(X−X)f,(ε−ε)f

´
+ bΦ−1

⎧⎨⎩n−1
nX
i=1

bf2ni (xni − bxni)x0niδ1 (i/n)− n−2
nX
i=1

bfni (xni − bxni) nX
j 6=i

Khijx
0
njδ1 (j/n)

⎫⎬⎭ .

(A.17)

Under case (d) in Theorem 3.1, we have shown that
√
n
³
S
(X−X)f,(M−M)f

+ S
(X−X)f,(ε−ε)f

´
= n−1/2

Pn
i=1 f

2
nivniεni + op (1) . By Lemmas B.1(i)-(ii), it is straightforward to show that

n−1
Pn

i=1
bf2ni(xni −bxni)x0niδ1 (i/n) = n−1

Pn
i=1 f

2
nivnix

0
niδ1 (i/n) + op (1) and that the last

term inside the curly brackets in (A.17) is op (1) . In addition, bΦ = Φ (1) + op (1) . It follows

that

√
n(bγ − γ0) = Φ (1)

−1
(
n−1/2

nX
i=1

f
2
nivniεni + n−1

nX
i=1

f
2
nivnix

0
niδ1 (i/n)

)
+ op (1) . (A.18)

By (2.1) and (2.11), euni = εni−x0ni (bγ − γ0)−[em (zni)−mni (zni)] +n
−1/2x0niδ1 (i/n) under

H1a,n. It follows from (2.13) that

bΨ1/2Γna (π)
= n−1/2

dnπcX
i=1

bf 2ni (xni − bxni) εni − n−1/2
dnπcX
i=1

bf 2ni (xni − bxni)x0ni(bγ − γ0)

−n−1/2
dnπcX
i=1

bf 2ni (xni − bxni) [em (zni)−mni (zni)] + n−1
dnπcX
i=1

bf 2ni (xni − bxni)x0niδ1 (i/n)
≡ An1 (π)−An2 (π)−An3 (π) +An4 (π) , say. (A.19)

We analyze each of the four terms in the last expression in separate steps.

Step 1. We show that An1 (π) = n−1/2
Pdnπc

i=1 f
2
nivniεni + op (1) uniformly in π ∈ [0, 1] .
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Write

An1 (π) = n−1/2
dnπcX
i=1

[vni − (bxni − gni (zni))] bf 2niεni
= n−1/2

dnπcX
i=1

n
f
2
nivniεni + 2

³ bfni − fni

´
fnivniεni +

³ bfni − fni

´
2

vniεni

−[bxni − gni (zni)] bfnifniεni − [bxni − gni (zni)] bfni ³ bfni − fni

´
εni

o
≡ An11 (π) + 2An12 (π) +An13 (π)−An14 (π)−An15 (π) , say.

It suffices to show that sup0≤π≤1 |An1l (π)| = op (1) , l = 2, 3, 4, 5. First, write An12 (π) =

n−3/2
Pdnπc

i=1

Pn
j 6=i (Khij −EjKhij) fnivniεni+n

−3/2Pdnπc
i=1

Pn
j 6=i[EjKhij−fnj (zni)]fnivniεni+

n−3/2
Pdnπc

i=1

Pn
j 6=i [fnj (zni)−fni]fnivniεni ≡ An12a (π)+An12b (π)+An12c (π) , say. By Lemma

B.3(i), sup0≤π≤1 kA12a (π)k = op (1) . By the same arguments as in the analysis of An22 (π)

in the proof of Lemma B.3(ii), we can show that sup0≤π≤1 |An12b (π)| = o (1) . Noting thatPn
j 6=i(fnj (zni) − fni) = fni − fni, it is straightforward to show that sup0≤π≤1 |An12c (π)| =

sup0≤π≤1 |n−3/2
Pdnπc

i=1 (fni−fni)fnivniεni| = op (1) . Hence sup0≤π≤1 |An12 (π)| = op (1) . Next,

by Lemma B.1(i) and Assumptions A1 and A3, sup0≤π≤1 kA13 (π)k ≤ n1/2 sup1≤i≤n | bfni−fni|2
n−1

Pn
i=1 kvniεnik = Op(n

1/2ν2n) = op (1) . By Lemma B.3(ii)-(iii), A14 (π) = n−3/2
Pdnπc

i=1

Pn
j 6=i

Khij [gnj (znj)− gni (zni)] fniεni + n−3/2
Pdnπc

i=1

Pn
j 6=i Khijvnjfniεni = op (1) + op (1) = op (1)

uniformly in π. Now, by Lemma B.1(i)-(ii) and Assumptions A1 and A3, sup0≤π≤1 kA15 (π)k ≤
n1/2max1≤j≤n ||(bxnj−gnj (znj)) bfnj ||max1≤k≤n | bfnk −fnk|n−1Pn

i=1 |εni|= Op(n
1/2(νn+αgn)νn)

= op (1) .

Step 2. We show that An2 (π) = Φ (π)Φ (1)
−1 (n−1/2

Pn
i=1 f

2
nivniεni+n

−1Pn
i=1 f

2
nivnix

0
ni

δ1 (i/n)) + op (1) uniformly in π ∈ [0, 1] . By Lemma B.2 and eq. (A.18) we can write

An2 (π) = n−1
dnπcX
i=1

bf 2ni (xni − bxni) (xni − bxni)0√n (bγ − γ0) + n−1
dnπcX
i=1

bf 2ni (xni − bxni) bx0ni√n (bγ − γ0)

= Φ (π)Φ (1)−1
(
n−1/2

nX
i=1

f
2
nivniεni + n−1

nX
i=1

f
2
nivnix

0
niδ1 (i/n)

)
+An2 (π)

√
n (bγ − γ0) + op (1) ,

where An2 (π) = n−1
Pdnπc

i=1
bf 2ni (xni − bxni) bx0ni. It suffices to show sup0≤π≤1 ¯̄An2 (π)

¯̄
= op (1) ,
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as
√
n (bγ − γ0) = Op (1) . Write

An2 (π) = n−1
dnπcX
i=1

bfni (xni − bxni) gni (zni) fni + n−1
dnπcX
i=1

bfni (xni − bxni) h bfnibxni − gni (zni) fni

i

= n−1
dnπcX
i=1

nbfni [gni (zni)− bxni] gni (zni) fni + ³ bfni − fni

´
vnigni (zni) fni + f

2
nivnigni (zni)

+ bfni (xni − bxni) h bfnibxni − gni (zni) fni

io
≡ An21 (π) +An22 (π) +An23 (π) +An24 (π) , say.

By Lemma B.1(i)-(ii), it is straightforward to show that sup0≤π≤1 kAn21 (π)k = Op(νn+αgn),

sup0≤π≤1 kAn22 (π)k = Op(νn), and sup0≤π≤1 kAn24 (π)k = Op(νn+αgn). sup0≤π≤1 kAn23 (π)k =
Op

¡
n−1/2

¢
by the invariance principle for (heterogeneous) strong mixing processes (e.g., Her-

rndorf (1985)). It follows that sup0≤π≤1
°°An2 (π)

°° = op (1) .

Step 3. We show that An3 (π) = op (1) uniformly in π ∈ [0, 1] . Write An3 (π) =

n−1/2
Pdnπc

i=1
bf 2ni[gni −bxni][em (zni)−mni]+n

−1/2Pdnπc
i=1

bfni( bfni−fni)vni[em (zni)−mni]+n
−1/2Pdnπc

i=1bfnifnivni[em (zni) −mni] ≡ An31 (π) + An32 (π) + An33 (π) , say. It suffices to show that each

of these terms is op (1) . First, by Lemma B.1(ii)-(iii) and Assumptions A1(vii) and A3,

sup0≤π≤1 kAn31 (π)k = Op(n
1/2(νn+αgn) (νn+αmn)) = op (1) . Similarly, sup0≤π≤1 kAn32 (π)k =

op (1) . By (2.1) and (2.10),

em (zni) bfni = n−1
nX
j 6=i

Khij [mnj (znj) + εnj − x0nj(bγ − γnj)].

Under H1a,n : γnj = γ0 + n−1/2δ1 (j/n), we have

An33 (π) = n−3/2
dnπcX
i=1

nX
j 6=i

Khijfnivni [mnj −mni] + n−3/2
dnπcX
i=1

nX
j 6=i

Khijfnivniεnj

− n−3/2
dnπcX
i=1

nX
j 6=i

Khijfnivnix
0
nj (bγ − γ0) + n−2

dnπcX
i=1

nX
j 6=i

bfnifnivnix0njδ1 (j/n)
≡ An33a (π) +An33b (π)−An33c (π) +An33d (π) , say.

By Lemmas B.3(iv)-(v), sup0≤π≤1 kAn33a (π)k = op (1) and sup0≤π≤1 kAn33b (π)k = op (1) . For

An33c (π) , it is easy to show that each element of the p×1 vector n−3/2
Pdnπc

i=1

Pn
j 6=iKhijfnivnixnj

is Op (1) , implying that sup0≤π≤1 kAn33c (π)k = Op(kbγ − γ0k) = op (1) . It is straightforward

to show sup0≤π≤1 kAn33d (π)k = op (1) . Hence sup0≤π≤1 kAn33 (π)k = op (1) .
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Step 4. We show that An4 (π) = n−1
Pdnπc

i=1 f
2
nivnix

0
niδ1 (i/n) + op (1) uniformly in π ∈

[0, 1] . WriteAn4 (π) = n−1
Pdnπc

i=1 f
2
nivnix

0
niδ1 (i/n)+n

−1Pdnπc
i=1

bf 2ni (gni (zni)− bxni)x0niδ1 (i/n)+
n−1

Pdnπc
i=1 ( bf2ni − f

2
ni)vnix

0
niδ1 (i/n) . By Lemma B.1, one can show that the last two terms

are op (1) uniformly in π. The result follows.

Combining (A.19) with the results in Steps 1-4 yields

bΨ1/2Γna (π) =
⎧⎨⎩n−1/2

dnπcX
i=1

f
2
nivniεni − Φ (π)Φ (1)−1 n−1/2

nX
i=1

f
2
nivniεni

⎫⎬⎭
+

⎧⎨⎩n−1
dnπcX
i=1

f
2
nivnix

0
niδ1 (i/n)−Φ (π)Φ (1)−1 n−1

nX
i=1

f
2
nivnix

0
niδ1 (i/n)

⎫⎬⎭+ op (1)

≡ an0 (π) + an1 (π) + op (1) uniformly in π.

By Assumption A1(viii), an0(·) ⇒ N (·) − Φ (·)Φ (1)−1N (1) . By extending Lemma 4 of
Krämer, Ploberger and Alt (1988) (see also Bai, 1996), we can show that an1 (π)

p→ R π
0 Φ

(1) (s)

δ1 (s) ds −Φ (π)Φ (1)−1
R 1
0 Φ

(1) (s) δ1 (s) ds, where Φ(1) (s) = (∂/∂s)Φ (s) . Under H1a,n, we

can similarly show that bΨ = Ψ (1) + op (1) . Consequently, Γna(·)⇒ Γa (·) +∆a (·) as desired.
¥

Proof of Theorems 4.1 and 4.2

By (2.1) and (2.11), euni = εni − x0ni (bγ − γni)− [em (zni)−mni (zni)]. By (2.1) and (2.10),em (zni) = n−1 bf−1ni

Pn
j 6=iKhij [εnj − x0nj(bγ − γnj) + mnj (znj)]. Under H1b,n, we have euni =

(εni − bεni)− (xni − bxni)0 (bγ−γ0)−{bm0 (zni)−m0 (zni)}+{n−1/2x0niδ1 (i/n)−n−3/2 bf−1ni

Pn
j 6=iKhij

×x0njδ1 (j/n)}+{n−1/2δ2 (zni, i/n)−n−3/2 bf−1ni

Pn
j 6=iKhijδ2 (znj , j/n)}, where bm0 (zni) = n−1 bf−1niPn

j 6=iKhijm0 (znj) . It follows that under H1b,n,

bσΓnb (π) = Bn1 (π)−Bn2 (π)−Bn3 (π) +Bn4 (π) +Bn5 (π) , (A.20)

where Bn1 (π) = n−1/2
Pdnπc

i=1
bfni[εni − bεni], Bn2 (π) = n−1/2

Pdnπc
i=1

bfni[xni − bxni]0[bγ − γ0],

Bn3 (π) = n−1/2
Pdnπc

i=1
bfni[bm0 (zni)−m0 (zni)], Bn4 (π) = n−1

Pdnπc
i=1

bfnix0niδ1 (i/n)−n−2Pdnπc
i=1Pn

j 6=iKhijx
0
nj δ1 (j/n) , andBn5 (π) = n−1

Pdnπc
i=1

bfniδ2 (zni, i/n)−n−2Pdnπc
i=1

Pn
j 6=iKhijδ2 (znj , j/n) .

Note that under H0b, Bn4 (π) and Bn5 (π) vanish in (A.20). The proof of Theorem 4.1 is thus

a special case of that of Theorem 4.2.

First, write Bn1 (π) = n−1/2
Pdnπc

i=1 fniεni−n−3/2
Pdnπc

i=1

Pn
j 6=iKhijεnj+n−1/2

Pdnπc
i=1 (

bfni−
fni) εni ≡ Bn11 (π) − Bn12 (π) + Bn13 (π) , say. By Assumption A1 and analogously to the
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proof of Lemma B.3(ii), we can show Bn12 (π) = n−3/2
Pdnπc

i=1

Pn
j=1 fni (znj) εnj + op (1) . Ob-

serve that Bn13 (π) = n−3/2
Pdnπc

i=1

Pn
j 6=i[Khij −Ej (Khij)]εni +n

−3/2Pdnπc
i=1

Pn
j 6=i[Ej (Khij)−

fnj (zni)]εni +n
−3/2Pdnπc

i=1

Pn
j 6=i[fnj (zni)−fni]εni ≡ Bn13a (π)+Bn13b (π)+Bn13c (π) . By ar-

guments similar to the proof of Lemma B.3(i), sup0≤π≤1 |Bn13a (π)| = op (1) . It is easy to show

that sup0≤π≤1 |Bn13b (π)| = Op (h
r) = op (1) . Noting that

Pn
j 6=i(fnj (zni)−fni) = fni−fni, we

have sup0≤π≤1 |Bn13c (π)| = sup0≤π≤1 |n−3/2
Pdnπc

i=1 (fni − fni)εni| = Op(n
−1). Consequently

Bn1 (π) = n−1/2
dnπcX
i=1

fniεni − n−3/2
dnπcX
i=1

nX
j=1

fni (znj) εnj + op (1) uniformly in π. (A.21)

Next, writeBn2 (π) = n−1/2
Pdnπc

i=1 { bfni[gni−bxni]0(bγ−γ0)+( bfni−fni)v0ni(bγ−γ0) +fniv0ni(bγ−
γ0)} ≡ Bn21 (π) + Bn22 (π) + Bn23 (π) , say. By Lemma B.1(i)-(ii) and the fact that

√
n(bγ −

γ0) = Op (1) under eitherH0b orH1b,n, sup0≤π≤1 |Bn21 (π)|= Op(νn+αgn) and sup0≤π≤1 |Bn22 (π)|
= Op(νn). By the invariance principle for {n−1/2

Pdnπc
i=1 fnivni} and the fact that

√
n(bγ−γ0) =

Op (1) , sup0≤π≤1 |Bn23 (π)| = Op

¡
n−1/2

¢
. Hence

sup
0≤π≤1

|Bn2 (π)| = Op(νn + αgn) = op (1) . (A.22)

Using Lemma C.4 we can show that uniformly in z, |n−1Pn
j=1Kh (z − znj) (m0 (znj) −

m0 (z))| ' |n−1
Pn

j=1E [Kh (z − znj) (m0 (znj)−m0 (z))] | ≤ hrDm0 (z) . Hence, with proba-

bility approaching 1 as n→∞

sup
0≤π≤1

|Bn3 (π)| ≤ Cn−1/2hr
nX
i=1

Dm0 (zni) = Op(n
1/2hr) = op (1) . (A.23)

Next, by Lemma B.1(i), n−1
Pdnπc

i=1
bfnix0niδ1 (i/n) = n−1

Pdnπc
i=1 fnix

0
niδ1 (i/n)+ op (1) uni-

formly in π. One can also show n−2
Pdnπc

i=1

Pn
j 6=iKhijx

0
njδ1 (j/n) = n−2

Pdnπc
i=1

Pn
j=1 fni (znj)

×x0njδ1 (j/n) + op (1) . It follows that

Bn4 (π) = n−1
dnπcX
i=1

fnix
0
niδ1 (i/n)− n−2

dnπcX
i=1

nX
j=1

fni (znj)x
0
njδ1 (j/n) + op (1) . (A.24)

Now writeBn5 (π) = n−1
Pdnπc

i=1
bfniδ2 (zni, i/n)−n−2Pdnπc

i=1

Pn
j 6=iKhijδ2 (znj , j/n) ≡ Bn51 (π)−

Bn52 (π) . By Lemma B.1(i), it is easy to show that Bn51 (π) = n−1
Pdnπc

i=1 fniδ2 (zni, i/n)

+op (1) uniformly in π.One can also show thatBn52 (π) = n−2
Pdnπc

i=1

Pn
j=1 fni (znj) δ2 (znj , j/n)+

op (1) uniformly in π. Hence

Bn5 (π) = n−1
dnπcX
i=1

fniδ2 (zni, i/n)− n−2
dnπcX
i=1

nX
j=1

fni (znj) δ2 (znj , j/n) + op (1) . (A.25)
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Combining (A.20)-(A.25) yields

bσΓnb (π) =

⎧⎨⎩n−1/2
dnπcX
i=1

fniεni − n−3/2
dnπcX
i=1

nX
j=1

fni (znj) εnj

⎫⎬⎭
+

⎧⎨⎩n−1
dnπcX
i=1

fnix
0
niδ1 (i/n)− n−2

dnπcX
i=1

nX
j=1

fni (znj)x
0
njδ1 (j/n)

⎫⎬⎭
+

⎧⎨⎩n−1
dnπcX
i=1

fniδ2 (zni, i/n)− n−2
dnπcX
i=1

nX
j=1

fni (znj) δ2 (znj , j/n)

⎫⎬⎭+ op (1)

≡ bn0 (π) + bn1 (π) + bn2 (π) + op (1) uniformly in π,

where bn1 (π) and bn2 (π) obviously vanish under H0b. Clearly, bnl (π)
p→ σ0∆bl (π) uniformly

in π for l = 1, 2, where ∆b1 (·) and ∆b2 (·) are as defined in Theorem 4.2. Under either H0b or

H1b,n, it is straightforward to show that bσ2 = σ20 + op (1) . It remains to show that

bn0 (·)⇒ σ0Γb (·) . (A.26)

We prove (A.26) in three steps. First, we show convergence of the sample covariance kernel

to the specified covariance kernel. Then we establish the convergence of finite dimensional

distributions. Finally, we prove the tightness of {bn0 (π)} .
First,

E [bn0 (π1) bn0 (π2)]

= n−1
dn(π1∧π2)cX

i=1

E(f
2
niε

2
ni) + n−3

dnπ1cX
i=1

nX
j=1

dnπ2cX
k=1

E
£
fni (znj) fnk (znj) ε

2
nj

¤
−n−2

dnπ1cX
i=1

dnπ2cX
j=1

E
£
fnifnj (zni) ε

2
ni

¤− n−2
dnπ2cX
i=1

dnπ1cX
j=1

E
£
fnifnj (zni) ε

2
ni

¤
→ S11 (π1, π2) + S22 (π1, π2)− S12 (π1, π2)− S21 (π1, π2) .

Next, write bn0 (π) = n−1/2
Pn

i=1

h
fn (zni) 1 (i ≤ dnπc)− f dnπc (zni)

i
εni. Fix k ≥ 1, ω ≡

(ω1, · · · , ωk) ∈ Rk with kωk = 1, and (π1, · · · , πk) ∈ [0, 1]k . Let ςni =
Pk

j=1 ωj [fn (zni) 1 (i ≤ dnπjc)
−fdnπjc (zni)]. By Assumption A1 (iii), the ςni’s are bounded constants, i.e., supn≥1max1≤i≤n |ςni| ≤
c <∞. By the Cramér-Wold device, it suffices to show that

Pk
j=1 ωjbn0 (πj) = n−1/2

Pn
i=1 ςniεni

is asymptotically normally distributed. Because the degenerate case is trivial, we assume that

limn→∞Var(
Pk

j=1 ωjbn0 (πj)) > 0 if the limit exists. This implies that n
−1s2n → c > 0 where
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s2n ≡
Pn

i=1E
¡
ς2niε

2
ni

¢
. In view of the above covariance results, it remains to verify the Linde-

berg condition. That is, for each > 0,

Ln ( ) ≡ s−2n
nX
i=1

E
£
ς2niε

2
ni1 (|ςniεni| ≥ sn)

¤→ 0.

Since supn≥1max1≤i≤n |ςni| ≤ c and n/s2n → 1/c < ∞, we have by the Cauchy-Schwarz and

Markov inequalities that

Ln ( ) ≤ c2

s2n

nX
i=1

E
h
ε2ni1

³
|εni| ≥ sn

c

´i
≤ c2

s2n

nX
i=1

[E(ε4ni)]
1/2
h
P
³
|εni| ≥ sn

c

´i1/2 ≤ c4

2s4n

nX
i=1

E
¡
ε4ni
¢→ 0.

Now, we show the tightness of {bn0 (π)} . Let 0 ≤ π1 < π < π2 ≤ 1. Then by the Cauchy-
Schwarz inequality, E{[bn0 (π)− bn0 (π1)]

2 [bn0 (π2)− bn0 (π)]
2} ≤P4

l=1 bnl, where

bn1 = 4n−2E

⎧⎨⎩
⎡⎣ dnπcX
i=dnπ1c+1

fniεni

⎤⎦2 ⎡⎣ dnπ2cX
i=dnπc+1

fniεni

⎤⎦2⎫⎬⎭ ,

bn2 = 4n−6E

⎧⎨⎩
⎡⎣ dnπcX
i=dnπ1c+1

nX
j=1

fni (znj) εnj

⎤⎦2 ⎡⎣ dnπ2cX
i=dnπc+1

nX
j=1

fni (znj) εnj

⎤⎦2⎫⎬⎭ ,

bn3 = 4n−4E

⎧⎨⎩
⎡⎣ dnπcX
i=dnπ1c+1

fniεni

⎤⎦2 ⎡⎣ dnπ2cX
i=dnπc+1

nX
j=1

fni (znj) εnj

⎤⎦2⎫⎬⎭ , and

bn4 = 4n−4E

⎧⎨⎩
⎡⎣ dnπcX
i=dnπ1c+1

nX
j=1

fni (znj) εnj

⎤⎦2 ⎡⎣ dnπ2cX
i=dnπc+1

fniεni

⎤⎦2⎫⎬⎭ .

By Assumptions 1(i)-(ii) and Davydov’s inequality (e.g., Bosq (1996), p.19),

bn1 = 4n−2E
dnπcX

i=dnπ1c+1

dnπ2cX
k=dnπc+1

E
³
f
2
niε

2
nif

2
nkε

2
nk

´

+8n−2
X

dnπ1c+1≤i<j≤dnπc

dnπ2cX
k=dnπc+1

Cov
³
fniεnifnjεnj , f

2
nkε

2
nk

´

≤ 4c1
dnπc− dnπ1c

n

dnπ2c− dnπc
n

+ 8c2n
−1 dnπ2c− dnπc

n

dnπcX
i=dnπ1c+1

dnπc−dnπ1cX
τ=1

α (τ)η/(4+η)

≤ C (π − π1) (π2 − π) ≤ C (π2 − π1)
2 for some large constant C
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where c1 ≡ supn≥1max1≤i≤n f4niE(ε4ni), and c2 = (2 + 8/η) 2η/(4+η) supn≥1max1≤i≤n fni kεnik44+η ,
where kξks ≡ {E |ξ|s}1/s for s ≥ 1. To find an upper bound for bn2, we first apply the Cauchy-
Schwarz inequality to obtain

¡
bn2
¢2 ≤ bn21bn22, where bn21 = 4n−6E[

Pdnπc
i=dnπ1c+1

Pn
j=1 fni (znj) εnj ]

4

and bn22 = 4n
−6E[

Pdnπ2c
i=dnπc+1

Pn
j=1 fni (znj) εnj ]

4. Let ξj =
Pdnπ2c

i=dnπc+1 fni (znj) εnj , where we

suppress the dependence of ξj on n, π and π2. Then by Assumptions A1(i)-(ii), (iv), the

Davydov inequality, and the Hölder inequality, we have

bn22 = 4n−6
nX

j1=1

nX
j2=1

nX
j3=1

nX
j4=1

E
£
ξj1ξj2ξj3ξj4

¤
≤ 96n−6

nX
1≤j1≤j2≤j3≤j4≤n

¯̄
E
£
ξj1ξj2ξj3ξj4

¤¯̄
= 96n−6

nX
1≤j1≤j2≤j3≤n

¯̄
E
£
ξj1ξj2ξ

2
j3

¤¯̄
≤ Cn−6

nX
1≤j1≤j2≤j3≤n

°°ξj1°°4+η °°ξj2ξ2j3°°(4+η)/3 α (j2 − j1)
η/(4+η)

≤ Cn−4 sup
n≥1

max
1≤j≤n

°°ξj°°44+η ∞X
τ=0

α (τ)η/(4+η) ≤ Cn−4 sup
n≥1

max
1≤j≤n

°°ξj°°44+η .
Then by Assumption A1(iii), the definition of ξj , and the triangle inequality, we have bn22 ≤
C{supn≥1max1≤j≤n n−1

Pdnπ2c
i=dnπc+1 ||εnj ||4+η}4 ≤ C (π2 − π)4. Analogously, we can show

that bn21 ≤ C (π − π1)
4 . Then bn2 ≤ C (π2 − π1)

4 . Similarly, one can show that bnl ≤
C (π2 − π1)

3, l = 3, 4. It follows thatE{[bn0 (π)− bn0 (π1)]
2 [bn0 (π2)− bn0 (π)]

2}≤ C (π2 − π1)
2 .

By Theorem 13.5 of Billingsley (1999), the weak convergence result follows. ¥

Proof of Theorem 5.1

We only prove Γ∗nb (·)
p⇒ Γb (·) , as the proof for the other case is similar. Let P ∗ denote

the probability conditional on the original sample Wn ≡ {(ynt, xnt, znt)}nt=1 and E∗ denote

the expectation with respect to P ∗. Let Op∗ (1) and op∗ (1) denote the probability order under

the bootstrap, e.g., bn = op∗ (1) if for any > 0, P ∗ (kbnk > ) = op (1) . Note that bn = op (1)

implies that bn = op∗ (1) . We prove the theorem by showing that conditional on Wn, (i)bσ∗Γ∗nb (·) p⇒ σ0B1 (·) , and (ii) bσ∗2 = σ20 + op∗ (1) .

We show (ii) first. By the law of large numbers for independent but non-identically

distributed (INID) sequences, bσ∗2 = σ∗2 + op∗ (1) , where σ∗2 = n−1
Pn

i=1
bf 2nieu2ni. Now write

σ∗2 = n−1
Pn

i=1
bf 2niε2ni +n−1Pn

i=1
bf 2ni (euni − εni)

2 +2n−1
Pn

i=1
bf 2niεni (euni − εni) ≡ dn1+dn2+

2dn3, say. By Lemma B.1(i), it is easy to show that dn1 = n−1
Pn

i=1 f
2

niε
2
ni + op (1) =

σ20 + op (1) . By Assumption A4(ii), dn2 = op (1) . By the Cauchy-Schwarz inequality, dn3 ≤
{dn1}1/2{dn2}1/2 = op (1) . Hence bσ∗2 = σ20 + op∗ (1) .
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Now, as in the proof of Theorem 4.2, we prove (i) in three steps. First, we demonstrate

that the covariance kernel of bσ∗eΓ∗nb converges to that of σ0Γb. Then we investigate the finite-
dimensional distribution of bσ∗eΓ∗nb conditional on Wn. Finally we show the tightness of bσ∗eΓ∗nb.
First, by the independence of {ηi} , we have

E∗
hbσ∗eΓ∗nb (π1) bσ∗eΓ∗nb (π2)i

= n−1
dn(π1∧π2)cX

i=1

bf2nieu2ni + n−3
dnπ1cX
i=1

nX
j=1

dnπ2cX
k=1

Khijeu2njKhkj

−n−2
dnπ1cX
i=1

dnπ2cX
j=1

bfnieu2niKhji − n−2
dnπ2cX
i=1

dnπ1cX
j=1

bfnieu2niKhjk

≡ S∗n11 (π1, π2) + S∗n22 (π1, π2)− S∗n12 (π1, π2)− S∗n21 (π1, π2) .

Let S
∗
n11 (π) = n−1

Pdnπc
i=1

bf2nieu2ni. Then we can write S∗n11 (π) = n−1
Pdnπc

i=1
bf2niε2ni+n−1Pdnπc

i=1
bf2ni

(euni − εni)
2 +2n−1

Pdnπc
i=1

bf2ni (euni − εni) εni ≡ S
∗
n11a (π) + S

∗
n11b (π) + 2S

∗
n11c (π) . It is easy to

show that S
∗
n11a (π) = n−1

Pdnπc
i=1 f

2
niε

2
ni + op (1)

p→ n−1
Pdnπc

i=1 E(f
2
niε

2
ni). By Assumption

A4(ii),S
∗
n11b (π) = op (1) , and by the Cauchy-Schwarz inequality S

∗
n11c (π) = op (1) . It follows

that S∗n11 (π1, π2)
p→ S11 (π1, π2) . Let bfdnπc (zni) = n−1

Pdnπc
j=1 Khij . Then

S∗n22 (π1, π2) = n−1
nX
i=1

bfdnπ1c (zni) bfdnπ2c (zni) ε2ni + n−1
nX
i=1

bfdnπ1c (zni) bfdnπ2c (zni) (euni − εni)
2

+2n−1
nX
i=1

bfdnπ1c (zni) bfdnπ2c (zni) (euni − εni) εni

≡ S∗n22a + S∗n22b + 2S
∗
n22c,

where we suppress the dependence of S∗0n22s on π1 and π2. Similarly to the proof of Lemma

B.1(i), one can show that bfdnπc (zni) = f dnπc (zni) +Op (νn) . With this, it is straightforward

to show that S∗n22a
p→ S22 (π1, π2) . By the Cauchy-Schwarz inequality and Assumption A4(ii),

S∗n22b ≤ {n−1
Pn

i=1
bfdnπ1c (zni) (euni − εni)

2}1/2 {n−1Pn
i=1

bfdnπ2c (zni) (euni − εni)
2}1/2 = op (1) ,

and S∗n22c ≤ {S∗n22a}1/2{S∗n22b}1/2 = op (1) . Hence S∗n22 (π1, π2)
p→ S22 (π1, π2) . Similarly, one

can show that S∗n12 (π1, π2)
p→ S12 (π1, π2) . By symmetry, S∗n21 (π1, π2)

p→ S21 (π1, π2).

We now show the finite dimensional convergence. Write bσ∗eΓ∗nb (π) = n−1/2
Pn

i=1[
bfn (zni) 1(i

≤ dnπc)− bfdnπc (zni)]euniηi. Fix k ≥ 1, ω ≡ (ω1, · · · , ωk) ∈ Rk with kωk = 1, and (π1, · · · , πk) ∈
[0, 1]k . Let bςni = Pk

j=1 ωj [
bfn (zni) 1(i ≤ dnπjc) − bfdnπjc (zni)]. By the Cramér-Wold de-

vice, it suffices to show that Fn ≡
Pk

j=1 ωjbσ∗eΓ∗nb (πj) = n−1/2
Pn

i=1bςnieuniηi is asymptoti-
cally normally distributed given Wn. Write Fn = n−1/2

Pn
i=1 ςniεniηi + n−1/2

Pn
i=1(bςnieuni
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−ςniεniηi) ≡ Fn1 + Fn2, where ςni ≡
Pk

j=1 ωj [fn (zni) 1(i ≤ dnπjc) − f dnπjc (zni)]. We prove

the claim by showing first that conditional on Wn, Fn1 is asymptotically normally distrib-

uted, and then that Fn2 = op∗ (1). Conditional on Wn, {ςniεniηi} is a mean-zero inde-
pendent sequence. It remains to verify the Lindeberg or Liapounov condition. The latter

holds if 1
n

Pn
i=1E

∗ |ςniεniηi|4 p→ c < ∞. By the boundedness of ςni, Assumptions A4(i)

and A1(iv), 1
n

Pn
i=1E

∗ |ςniεniηi|4 ≤ C 1
n

Pn
i=1 ε

4
ni

p→ C limn→∞ 1
n

Pn
i=1E

¡
ε4ni
¢
< ∞. Now

E∗ (Fn2) = 0 and Var∗ (Fn2) ≤ 2n−1
Pn

i=1bς2ni (euni − εni)
2 + 2n−1

Pn
i=1 (bςni − ςni)

2 ε2ni. The

first term on the right hand side (r.h.s.) is bounded by Cmax1≤j≤k n−1
Pn

i=1[
bf2ni+ bf2dnπjc (zni)]

(euni − εni)
2 = op (1) by Assumption A4(ii). The second term is op (1) by the consistency ofbfdnπc (zni) with f dnπc (zni) for each π. Hence Var∗ (Fn2) = op (1) and Fn2 = op∗ (1) by the

conditional Chebyshev inequality.

Finally, the proof of the tightness of {bσ∗eΓ∗nb (π)} is analogous to that of {bn0 (π)} in Theo-
rem 4.2 so we only sketch some of the differences. For example, now bn1 in the proof of Theorem

4.2 becomes b
∗
n1 ≡ 4n−2

Pdnπc
i=dnπ1c+1

Pdnπ2c
j=dnπc+1 bf2nieu2ni bf2njeu2njE ³η2i η2j´≤ 4[n−1Pdnπ2c

i=dnπ1c+1
bf 2nieu2ni]2

= 4 |Hn (π2)−Hn (π1)|2 , whereHn (π) ≡ n−1
Pdnπc

i=1
bf2nieu2ni.Note thatHn (π) = n−1

Pdnπc
i=1

bf2niε2ni+
n−1

Pdnπc
i=1

bf2ni(euni− εni)
2+2n−1

Pdnπc
i=1

bf2ni(euni− εni)ε
2
ni = n−1

Pdnπc
i=1 f

2
niε

2
ni+ op (1)

p→ σ2 (π)

by Assumptions A4(ii) and A1(viii), and σ2 (·) is a nondecreasing and continuous function on
[0, 1] . The proof is complete by Theorem 13.5 of Billingsley (1999). ¥

Proof of Corollary 5.2

Similarly to the proof of Theorem 5.1, we only prove Γ∗nb (·)
p⇒ B1 (·) by showing that condi-

tional onWn, (i) bσ∗Γ∗nb (·) p⇒ σB1 (·) , and (ii) bσ∗2 = σ2+op∗ (1) , where σ2 = limn→∞ n−1
Pn

i=1

E{f2ni[εni + v0ni (γni − γ)]2}, γ = Ψ−1Ψγ and Ψγ = limn→∞ n−1
Pn

i=1 E (f
2
nivniv

0
ni) γni.

To proceed, we first show that

bγ = S−1
(X−X)fS(X−X)f,(Y−Y )f = γ + op (1) , and (A.27)bfnieuni = fni
£
εni + v0ni (γni − γ)

¤
+ op (1) uniformly in i. (A.28)

S
(X−X)f = Ψ+ op (1) holds under both the null and alternative hypotheses. Noting that yni

−E (yni|zni) = v0niγni+εni, we have S(X−X)f,(Y−Y )f = n−1
Pn

i=1
bf 2nivniv0niγni+n−1Pn

i=1
bf 2nivniεni+

n−1
Pn

i=1
bf 2nivni (E (yni|zni)− byni) +n−1Pn

i=1
bf 2ni [gni − bxni] [v0niγni + εni]+n

−1Pn
i=1

bf 2ni [gni − bxni]
[E (yni|zni)− byni] ≡ Tn1 + Tn2 + Tn3 + Tn4 + Tn5, say. By Lemma B.1(i)-(ii), sup1≤i≤n | bfni −
fni| = Op (νn) , and sup1≤i≤n ||(bxi − gni) bfni|| = Op (νn + αgn) . Using Lemmas C.4 and C.5,

one can also show that sup1≤i≤n |(byni−E (yni|zni)) bfni| = Op(νn+αgn +αmn). With these, it
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is straightforward to show that Tn1 = n−1
Pn

i=1 f
2
nivniv

0
niγni + op (1) = Ψγ + op (1) , and

Tnj = op (1) for j = 2, 3, 4, 5. Similarly, by (2.10) and (2.11), uniformly in i, bfnieuni =bfni [εni + v0ni (γni − bγ)] + bfni [E (yni|zni)− byni] − bfni [gni − bxni]0 bγ = fni [εni + v0ni (γni − γ)] +

Op(νn + αgn + αmn).

To show (i), let M∗
n (π) ≡ n−1/2

Pdnπc
i=1

bfniu∗ni. Conditionally on W, M∗
n (

.) is a mean-zero

Gaussian process with independent increments and covariance kernel E∗[M∗
n (π1)M

∗
n (π2)] =

n−1
Pdn(π1∧π2)c

i=1
bf2nieu2ni (see, e.g., Cavaliere and Taylor, 2006). Now, by (A.28) and for fixed π,

n−1
Pdnπc

i=1
bf2nieu2ni = n−1

Pdnπc
t=1 f2ni [εni + v0ni (γni − γ)]2 +op (1)

p→ πσ2. Since n−1
Pdnπc

i=1
bf2nieu2ni

is monotonically increasing in π and the limit function is continuous in π, the above conver-

gence holds uniformly in π by the proof of Lemma A.10 in Hansen (2000b). Hence, M∗
n (·) p⇒

σB (·) , where B (·) is the standard Brownian motion on [0, 1] . An obvious implication is thatbσ∗Γ∗nb (·) =M∗
n (·)−·M∗

n (1)
p⇒ σB1 (·) . Finally, bσ∗2 = n−1

Pn
i=1

bf 2nieu2ni+op∗ (1) = σ2+op∗ (1) ,

where the first equality follows from the law of large numbers for INID sequences. ¥

B Some Technical Lemmas

Recall fni = fni (zni) , fni = fn (zni) , mni = mni (zni) , gni = gni (zni) , and νn ≡ n−1/2h−q/2
√
logn

+hr. We prove the following lemmas under Assumptions A1-A3 without imposing any null

hypotheses.

Lemma B.1 (i) sup1≤i≤n | bfni−fni| = Op (νn) ; (ii) sup1≤i≤n ||(bxni−gni (zni)) bfni|| = Op (νn + αgn) ;

(iii) sup1≤i≤n | (em (zni)−mni (zni)) bfni| = Op (νn + αmn) .

Proof. By the triangle inequality, sup1≤i≤n | bfni−fni| ≤ sup1≤i≤n | 1nPn
j 6=i [Khij −Ej (Khij)] |

+sup1≤i≤n | 1n
Pn

j 6=i [Ej (Khij)− fnj (zni)] |+ 1
n sup1≤i≤n fni. By Lemmas C.5 and C.4 the first

and second terms areOp(n
−1/2h−q/2

√
logn) andOp (h

r) , respectively. By Assumption A1(iii),

the last term isOp

¡
n−1

¢
.Hence (i) follows. Next, write (bxni − gni (zni)) bfni (zni) = n−1

Pn
j 6=iKhij

[gnj (znj) − gni (zni)] + n−1
Pn

j 6=iKhijvnj ≡ G1 (zni) + G2 (zni) . By the triangle inequal-

ity, sup1≤i≤n |G1 (zni)| ≤ sup1≤i≤n |G1 (zni)−E [G1 (zni)]| +sup1≤i≤n |E [G1 (zni)]| . The first
term is Op(n

−1/2h−q/2
√
logn) by Lemma C.5. Next, by the triangle inequality, Assumption
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A1, and Lemma C.4,

sup
1≤i≤n

|E [G1 (zni)]|

≤ sup
1≤i≤n

n−1
nX
j 6=i
|EEj {Khij [gnj (znj)− gnj (zni)]}|+ sup

1≤i≤n
n−1

nX
j 6=i
|E {Khij [gnj (zni)− gni (zni)]}|

≤ sup
1≤i≤n

hrE [Dg (zni)] + sup
1≤i≤n

2αgnn
−1

nX
j 6=i
|E {Kh (znj − zni) cgn (zni)}| = O(hr) +O(αgn),

where αgn and cgn (.) are defined in Assumption A1(vii) andDg (
.) is as defined in Lemma C.4.

Hence sup1≤i≤n |G1 (zni)| = Op(νn + αgn). By Lemma C.5, supz∈Rq |G2 (z)| = Op(n
−1/2h−q/2

√
logn). Hence (ii) follows. Note that (em (zni)−mni (zni)) bfni = n−1

Pn
j 6=iKhij [mnj (znj)−

mni (zni)] + n−1
Pn

j 6=i Khijεnj − n−1
Pn

j 6=iKhijx
0
nj (bγ − γ0) . Uniformly in i, the first term is

Op (νn) by the same arguments as in the proof of (ii); the second term is Op(n
−1/2h−q/2

√
logn)

by Lemma C.5; and the last term is Op

¡
n−1/2

¢
, because

√
n (bγ − γ0) = Op (1) by Theorem

3.1. Then (iii) follows.

Lemma B.2 n−1
Pdnπc

i=1
bf 2ni (xni − bxni) (xni − bxni)0 = Φ (π) + op (1) uniformly in π ∈ [0, 1] .

Proof. We only consider the case p = 1, as the other cases follows from this case and the

Cauchy-Schwarz inequality. Noting that xni = vni+gni, we have n−1
Pdnπc

i=1
bf 2ni (xni − bxni)2 =

n−1
Pdnπc

i=1
bf 2niv2ni+n−1Pdnπc

i=1
bf 2ni (gni − bxni)2 +2n−1Pdnπc

i=1
bf 2nivni (gni − bxni) ≡ Tn1 (π)+Tn2 (π)+

2Tn3 (π) . Write Tn1 (π) = n−1
Pdnπc

i=1 f
2
niv

2
ni + n−1

Pdnπc
i=1 (

bf 2ni − f
2
ni)v

2
ni. The first term con-

verges in probability to Φ (π) uniformly in π by Assumption A1(viii). By Lemma B.1(i)

and Assumption A1, the second term is sup0≤π≤1 n−1
Pdnπc

i=1 (
bf2ni − f

2
ni)v

2
ni ≤ max1≤i≤n | bf2ni −

f
2
ni|n−1

Pn
i=1 v

2
ni = op (1) . Similarly, sup0≤π≤1 |Tn2 (π)| ≤ max1≤i≤n | (gni − bxni) bfni|2 = op (1)

by Lemma B.1(ii). By the Cauchy-Schwarz inequality, sup0≤π≤1 |Tn3 (π)| = op (1) .

Lemma B.3 (i) An1 (π) ≡ n−3/2
Pdnπc

i=1

Pn
j 6=i (Khij −EjKhij) vnifniεni = op (1) uniformly

in π ∈ [0, 1];
(ii) An2 (π) ≡ n−3/2

Pdnπc
i=1

Pn
j 6=iKhij(gnj − gni)fniεni = op (1) uniformly in π ∈ [0, 1];

(iii)An3 (π) ≡ n−3/2
Pdnπc

i=1

Pn
j 6=iKhijvnjfniεni = op (1) uniformly in π ∈ [0, 1];

(iv)An4 (π) ≡ n−3/2
Pdnπc

i=1

Pn
j 6=iKhij(mnj −mni)fniεni = op (1) uniformly in π ∈ [0, 1];

(v) An5 (π) ≡ n−3/2
Pdnπc

i=1

Pn
j 6=iKhijvnifniεnj = op (1) uniformly in π ∈ [0, 1].

Proof. We only prove (i) and (ii), as the other cases are similar. To prove (i), let wi =

(εni, v
0
ni, z

0
ni)

0 and φ (wj , wi) = (Khij −EjKhij) vnifniεni.ThenAn1 (π) = n−3/2
P
1≤j<i≤dnsc φ (wj , wi)
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+n−3/2
P
1≤i<j≤n φ (wj , wi) −n−3/2

Pn
dnsc+1≤i<j≤n φ (wj , wi) ≡ An11 (π) + An12 − An13 (π) .

It suffices to show sup0≤π≤1 |An11 (π)| = op (1) , and sup0≤π≤1 |An13 (π)| = op (1) . Write

E [An11 (π)]
4 = n−6

X
1≤i1<i2≤dnπc

X
1≤i3<i4≤dnπc

X
1≤i5<i6≤dnπc

X
1≤i7<i8≤dnπc

φ (wi1 , wi2)φ (wi3 , wi4)

× φ (wi5 , wi6)φ (wi7 , wi8) . (B.1)

It is easy to show that the dominating terms in the above summation constitute two cases:

(a) i1, ..., i8 are distinct integers; (b) {i1, i2} , {i3, i4} , {i5, i6} and {i7, i8} form two identical

pairs (e.g., {i1, i2} = {i3, i4} and {i5, i6} = {i7, i8}).We will use EAn11(l) to denote these two

cases (l = a, b).

For case (a), let i1, ..., i8 be distinct integers with 1 ≤ ij ≤ dnπc. Let 1 ≤ k1 < ... < k8 ≤
dnπc be the permutation of i1, ..., i8 in ascending order and let dc be the c-th largest differ-
ence among kj+1 − kj , j = 1, ..., 7. Define H (k1, ..., k8) = φ (wi1 , wi2)φ (wi3 , wi4)φ (wi5 , wi6)

φ (wi7 , wi8) . For any 1 ≤ j ≤ 7, put P (8)0
¡
E(8)

¢
= P

¡
(wi1 , .., wi8) ∈ E(8)

¢
, and P (8)j

¡
E(j) ×E(8−j)

¢
= P ((wi1 , .., wij ) ∈ E(j))P ((wij+1 , .., wi8) ∈ E(8−j)), where E(j) is a Borel set in Rjd and d is

the dimension of wi. It is easy to verify that for any 0 ≤ j ≤ 7, R |H (k1, ..., k8)|1+η/4 dP (8)j ≤
Ch−qη. By Lemma C.1 with eη = η/4,

|E [H (k1, ..., k8)]| ≤
⎧⎨⎩ Ch−4qη/(4+η)α

η
4+η (k2 − k1) if k2 − k1 = d1

Ch−4qη/(4+η)α
η

4+η (k8 − k7) if k8 − k7 = d1.

ThereforeX
1≤k1<...<k8≤n

k2−k1=d1

|E [H (k1, ..., k8)]|

≤ Ch−4qη/(4+η)
n−7X
k1=1

n−6X
k2=k1+maxj≥3{kj−kj−1}

n−5X
k3=k2+1

· · ·
nX

k8=k7+1

α
η

4+η (k2 − k1)

≤ Ch−4qη/(4+η)
n−7X
k1=1

n−6X
k2=k1+1

(k2 − k1)
6 α

η
4+η (k2 − k1) ≤ Cnh−4qη/(4+η)

nX
j=1

j6α
η

4+η (j) . (B.2)

Similarly, we have X
1≤k1<...<k8≤n

k8−k7=d1

|E [H (k1, ..., k8)]| ≤ Cnh−4qη/(4+η)
nX

j=1

j6α
η

4+η (j) , (B.3)

X
1≤k1<...<k8≤n

k2−k1=d2 or k8−k7=d2

|E [H (k1, ..., k8)]| ≤ Cn2h−4qη/(4+η)
nX

j=1

j5α
η

4+η (j) , (B.4)
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X
1≤k1<...<k8≤n

k2−k1=d3 or k8−k7=d3

|E [H (k1, ..., k8)]| ≤ Cn3h−4qη/(4+η)
nX

j=1

j4α
η

4+η (j) , (B.5)

and for all other subcases (k2 − k1 = dc and k8 − k7 = dc0 for c, c0 ≥ 4) we haveX
1≤k1<...<k8≤n
other subcases

|E [H (k1, ..., k8)]| ≤ Cn4h−4qη/(4+η)
nX

j=1

j3α
η

4+η (j) . (B.6)

By (B.2)-(B.6), Assumption A3, and the fact that η/ (4 + η) < 1/2, we have

EAn11(a) ≤ n−6
X

1≤k1<...<k8≤n
|E [H (k1, ..., k8)]|

≤ Cn−2h−4qη/(4+η)
nX

j=1

j3α
η

4+η (j) = O
³
n−2h−4qη/(4+η)

´
= o

¡
n−1

¢
. (B.7)

Now for case (b), some calculations show that

EAn11(b) = O
¡
n−2h−2q

¢
= o

¡
n−1

¢
. (B.8)

Hence E [An11 (π)]
4 = o

¡
n−1

¢
by (B.7)-(B.8) and the remark after (B.1). Let > 0 be arbi-

trary. Then by the implication rule and the Chebyshev inequality, P (sup0≤π≤1 ||An11 (π)|| >
) ≤Pn

l=1 P (An11 (l/n) > ) ≤ −4Pn
l=1E |An11 (l/n)|4 = o (1) . It follows that

sup
0≤π≤1

|An11 (π)| = op (1) . (B.9)

Now let eφ (wi, wj) = φ (wj , wi) and ewi = wn−i+1 for 1 ≤ i, j,≤ n. Then

sup
1≤l≤n

|
X

l≤i<j≤n
φ (wj , wi) | = sup

1≤l≤n
|

X
1≤i<j≤n−l+1

φ (wn−j+1, wn−i+1) | = sup
1≤l≤n

|
X

1≤i<j≤l
eφ ( ewi, ewj) |.

We can thus apply the above method to { ewi} to obtain sup0≤π≤1 |An13 (π)| = op (1) .

To prove (ii), let wi = (εni, z
0
ni)

0 , ϕ0 (wj , wi) = Khij (gnj − gni) fniεni, and ϕ (wj , wi) =

ϕ0 (wj , wi) −Ej [ϕ0 (wj , wi)]. Then An2 (π) = n−3/2
Pdnπc

i=1

Pn
j 6=i ϕ (wj , wi)+n

−3/2Pdnπc
i=1

Pn
j 6=i

Ejϕ0 (wj , wi) ≡ An21 (π)+An22 (π) .Analogously to the proof of (i), we can show sup0≤π≤1 |An21 (π)|
= op (1) . ForA22 (π) , letA22,j (π) ≡ n−1/2

Pdnπc
i=1 {

R
K (z) [gnj (zni + hz)− gni (zni)] fnj (zni + hz) dz}

fniεni. Obviously E[A22,j (π)] = 0, and by Assumptions A1 and A2 we can easily show that

E[A22,j (π)]
4 = O(h4r+α4gn). By the implication rule, the Chebyshev inequality, and Assump-

tion A3, sup0≤π≤1 |A22,j (π)|= Op(n(h
4r+α4gn)) = op (1) . It follows that sup0≤π≤1 |An22 (π)| ≤

n−1
Pn

j=1 sup0≤π≤1 |A22,j (π)| = op (1) . Hence sup0≤π≤1 |An2 (π)| = op (1) .
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C Additional Technical Lemmas

This appendix presents some technical lemmas that are used in proving the main results.

Lemma C.1 Let {Wi} be a strong mixing process with mixing coefficient α (i) . For any in-
teger d > 1 and integers (i1, ..., id) such that 1 ≤ i1 < i2 < · · · < id, let θ be a Borel measurable

function such that max{
R |θ (w1, ..., wd)|1+η dF (w1, ..., wd) ,

R |θ (w1, ..., wp)|1+η dF (1) (w1, ..., wj)

dF (2) (wj+1, ..., wd)} ≤ M for some eη > 0 and M > 0, where F = Fi1,...,id , F
(1) = Fi1,...,ij ,

F (2) = Fij+1,,...,id are the distribution functions of (Wi1 , ...,Wid), (Wi1 , ...,Wij ), and (Wij+1 , ...,Wid),

respectively. Then

|
Z

θ (w1, ..., wd) dF (w1, ..., wd)−
Z

θ (w1, ..., wd) dF
(1) (w1, ..., wj) dF

(2) (wj+1, ..., wd) |

≤ 4M1/(1+η)α (ij+1 − ij)
η/(1+η) .

Proof. See Lemma 2.1 of Sun and Chiang (1997).

Lemma C.2 Let {Wi} be a strong mixing process with mixing coefficient α (i) and taking val-
ues in Ra. Let φ (.,. ,. ) be a symmetric Borel measurable function defined on Ra×Ra×Ra such

thatMn12 ≡ max1≤i<j<l≤nmax {
R
R3a |φ (wi, wj , wl)|1+η dFi (wi) dFjl (wj , wl) ,

R
R3a |φ (wi, wj , wl)|1+η

dFi (wi) dFj (wj) dFl (wl)}, andMn3 ≡ max1≤i<j<l≤nmax{
R
R3a |φ (wi, wj , wl)|1+η dFi (wi) dFjl (wj , wl) ,R

R3a |φ (wi, wj , wl)|1+η dFijl (wi, wj , wl)}, where Fi (.) , Fij (.,. ) and Fijl (.,. ,. ) are the distribu-
tions of Wi, (Wi,Wj), and (Wi,Wj ,Wl), respectively. Then

E

⎡⎣XXX
1≤i<j<l≤n

φ (Wi,Wj ,Wl)

⎤⎦ = O
³
n3E

h
φ(
−→
W i,
−→
W j ,
−→
W l)

i´
+O

³
n2M

1/(1+η)
n12

´
+O

³
nM

1/(1+η)
n3

´
,

where {−→W i} denotes an independent process that has the same marginal distribution as the
dependent process {Wi}.

Proof. The proof follows from a modification of that of Lemma B.2 in Fan and Li (1999).

The following definition is adopted from Robinson (1988).

Definition C.3 Gαμ , α > 0, μ > 0, is the class of functions ϑ : Rd → R satisfying: ϑ is (m−1)-
times partially differentiable, form−1 ≤ μ ≤ m; for some ρ > 0, supy∈φzρ |ϑ (y)− ϑ (z)| / |y − z|μ
≤ Dϑ (z) for all z, where φzρ = {y : |y − z| < ρ} ; Qϑ = 0 when m = 1; Qϑ is an (m− 1)th
degree homogeneous polynomial in y − z with coefficients the partial derivatives of ϑ at z of

orders 1 through m− 1 when m > 1; and ϑ (z) , its partial derivatives of order m− 1 and less,
and Dϑ (z) have finite αth moments.
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Lemma C.4 Suppose K satisfies Assumption A2, fnj ∈ Gαr , and ϑnj ∈ Gαr . Let z ∈ Rq, and

h → 0 as n → ∞. Then (i) |E [K ((znj − z) /h)− hqfnj (z)]| ≤ hq+rDfnj (z) uniformly in

z, and (ii) |E {[ϑnj (znj)− ϑnj (z)]K ((znj − z) /h)}| ≤ hq+rDϑnj (z) uniformly in z, where

fnj(·) denotes the density function of znj , and both Dfnj (znj) and Dϑnj (znj) have finite αth

moments.

Proof. See Lemmas 4-5 of Robinson (1988).

To apply Lemma C.4, we will suppress the dependence of Dfnj (
.) and Dϑnj (

.) on j ∈
{1, 2, ..., n} by assuming that they are dominated respectively by functions Df (

.) and Dϑ (
.)

that have finite αth moments.

Lemma C.5 Under Assumptions A1-A3, supz∈Rq |Ψ (z)−EΨ (z)| = Op(n
−1/2h−q/2

√
logn),

where Ψ (z) = n−1h−q
Pn

i=1 ξniK ((zni − z) /h) and ξni = 1, vni, εni or mni.

Proof. The proof follows from Lemma D6 of Su and Xiao (2008).
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