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a b s t r a c t

It is common in clinical studies for several treatments to be compared to a control. Most of
the related statistical techniques have been developed to accommodate inferential families
in which all hypotheses are either one- or two-sided such that the familywise error rate is
controlled at a specified level. Several multiple testing procedures were recently proposed
to perform multiple comparisons with a control in direction-mixed families that contain
a mixture of one- and two-sided inferences. Of these procedures, the p-value consistent
step-up procedure is found to be superior in terms of its power and p-value consistent
property. In this paper,we examine the techniques for computing the all-pairs power of this
testing procedure. We also provide the means to obtain the optimal design when a desired
level of all-pairs power is given. Compared to the conservative method of treating all
hypotheses as two-sided, the proposed procedure requires a substantially smaller sample,
as all useful information on the direction of the alternatives is utilized in an optimal way.
The computation of the optimal design relies on an efficient algorithm, which is also
discussed in this paper. A clinical study example is employed to illustrate the proposed
procedure.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Multiple comparisons with a control are frequently encountered in clinical trials. For continuous responses, the Dunnett
(1955) procedure is a well-known single-step approach for comparing the efficacy of treatments to that of a control while
the familywise error rate (FWE), the probability of rejecting at least one true null hypothesis, is maintained at level α. In
addition to this single-step procedure, several stepwisemultiple comparisonprocedures have also beenproposed to increase
the power of the tests, such as those proposed by Dunnett and Tamhane (1991, 1992, 1995). However these procedures are
designed only for situations in which all of the hypotheses in the family are either one- or two-sided.

As Cheung et al. (2004) noted, in some clinical studies comparing several treatments with a control, some of the
hypotheses in the inferential families should actually be tested as one-sided, whereas the others are regarded as two-
sided. Families that contain a mixture of one- and two-sided tests are called direction-mixed families. Because of a lack
of statistical tools, multiple comparison procedures that treat all of the hypotheses considered as two-sided inferences have
been employed in direction-mixed families. Although this conservative approach is easy to implement, it may substantially
reduce the overall power of the tests, as the direction information of the one-sided tests is ignored.

Kwong et al. (2007) noted that the choice between one- and two-sided tests should not be post-hoc, but must be well
justified. Therefore, direction-mixed family inferences should be employed only after careful consideration and thorough
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justification. For instance, direction-mixed family inferencesmay not be a good choice for highly regulatory environments in
which one-sided hypothesis testing is requiredwith a half significance level. More detailed discussion of the choice between
one- and two-sided tests is given in Kwong et al. (2007) and the references therein.

For multiple comparisons with a control in direction-mixed families, Cheung et al. (2004) developed a single-step
multiple testing procedure for many-to-one comparisons. This procedure effectively incorporates the direction information
into the multiple hypothesis testing procedure, and is found to be more powerful than the two-sided Dunnett procedure,
particularly when the proportion of one-sided hypotheses in the direction-mixed family is large. The procedure is
constructed on the basis of the objective to minimize the expected average width of the confidence intervals.

However, there is a chance that the testing conclusion in themethod proposed by Cheung et al. (2004) will not be p-value
consistent; that is, when a particular hypothesis in the inferential family with a given p-value, say p∗, is rejected, there is
a chance that some of the other hypotheses with p-values less than p∗ will not be rejected. This is an undesirable property
in multiple testing because, Westfall (1997) noted, a smaller p-value intuitively indicates stronger evidence against the null
hypothesis, which therefore should be rejected if another hypothesis with a larger p-value has been rejected. Note that the
most popular multiple comparison procedures, such as those proposed by Dunnett (1955), Holm (1979), Hommel (1988),
Hochberg (1988), Dunnett and Tamhane (1991, 1992, 1995), and Kwong (2001), are p-value consistent. Nevertheless, if the
objective is to construct simultaneous confidence intervals but not tests, then p-value consistency is a minor consideration.

To take the p-value consistency requirement into consideration, Kwong et al. (2007) proposed a new single-step
procedure and two stepwise procedures for multiple comparisons with a control in direction-mixed families. As expected,
the average power study revealed the p-value consistent step-up procedure to be uniformly more powerful than the other
procedures in all of the cases they considered. However, in direction-mixed family inferences, there is no discussion of the
strategy employed to determine the optimal total sample size before the onset of a clinical study.

The objective of this paper is to propose a new algorithm for determining the optimal design for the p-value consistent
step-up procedure when a desired power level is given in a direction-mixed family. Section 2 is devoted to a brief discussion
of existing testing procedures for multiple comparisons with a control in direction-mixed families. Various definitions of
power are presented in Section 3. An efficient algorithm for enhancing the search for the optimal design for the p-value
consistent step-up procedure is provided in Section 4. The application of the new procedure in a clinical study is presented
in Section 5, and concluding remarks are made in Section 6.

2. Overview of procedures in direction-mixed families

2.1. Notation and model

Consider a one-way fixed effects model withm + 1 treatments:

Yij = µi + ϵij, i = 0, 1, . . . ,m, j = 1, . . . , ni,

where Yij represents the jth observation on the ith treatment, µi is the ith treatment mean, and ϵij is the random error
component. The sample sizes of the m treatments and the control are ni (for i = 1, . . . ,m) and n0, respectively, and i = 0

denotes the control. Hence, the total sample size, denoted by N , is
m

i=0 ni. Assume that ϵij
ind
∼ N(0, σ 2), where σ 2 is the

unknown common variance. Let Ȳi be the sample mean of the ith treatment and σ̂ 2 be the pooled sample variance, which
is an unbiased estimator of σ 2 and also independent of Ȳi. Let θi = µi − µ0 be the efficacy differences between the ith
treatment and the control for i = 1, . . . ,m. Assume that θi > 0 implies that treatment i is better than the control. To
compare them treatments with the control in a direction-mixed family, we simultaneously test them null hypotheses:

Hi : µ0 = µi

for i = 1, . . . ,m versus r one-sided alternative hypotheses

H ′

i : µ0 < µi

for i = 1, . . . , r and (m − r) two-sided alternative hypotheses

H ′

j : µ0 ≠ µj

for j = r + 1, . . . ,m. With respect to the family of null hypotheses {H1, . . . ,Hm}, a subset {H1, . . . ,Hr} (r ≤ m) is tested
against the one-sided alternatives, and the remaining null hypotheses {Hr+1, . . . ,Hm} are tested against the two-sided
alternatives.

To test the m null hypotheses simultaneously in a direction-mixed family, the test statistics are T1, . . . , Tr , |Tr+1|, . . . ,
|Tm|, respectively, where

Ti =
Ȳi − Ȳ0

σ̂
√
1/ni + 1/n0

for i = 1, . . . ,m. The variates T1, T2, . . . , Tm have a multivariate t-distribution with f = N −m− 1 degrees of freedom and
a m × m correlation matrix {ρ

(m)
ij = ρiρj}, where ρ

(m)
ij = 1 for i = j and ρ

(m)
ij = ρiρj for i ≠ j, with ρi =

√
ni/(n0 + ni)
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for i = 1, . . . ,m. Note that the balanced designs in mixed-direction families have the restrictions n1 = · · · = nr = nI ,
nr+1 = · · · = nm = nII and N = n0 + nIr + nII(m − r). The correlation structure of the balanced designs reduces to
ρ

(m)
ij = ρiρj for i ≠ j, with ρi = ρI for i = 1, . . . , r and ρi = ρII for i = r + 1, . . . ,m, where ρI =

√
nI/(n0 + nI) and

ρII =
√
nII/(n0 + nII). To control the FWE at α, the following condition is required

FWE = P(reject any true hypothesis) ≤ α

under any configuration of the parameters θi, i = 1, . . . ,m.
We next provide a brief overview of several testing procedures that could be employed to conduct multiple comparisons

with a control in a direction-mixed family.

2.2. Single-step procedures

The single-step procedure proposed by Cheung et al. (2004) is based on the criterion that the expected average width
of the simultaneous confidence intervals of θi, i = 1, . . . ,m is minimized in direction-mixed families. However, as Kwong
et al. (2007) point out, this procedure is not p-value consistent. For instance, the procedure may possibly reject only the
two-sided hypothesis, not the one-sided hypothesis, even though the p-value of the latter is in fact smaller than that of the
former. As most of the popular multiple comparison procedures are all p-value consistent, Kwong et al. (2007) proposed a
single-step p-value consistent procedure, denoted by SS hereafter, for constructing the simultaneous confidence intervals
of θi, i = 1, . . . ,m in direction-mixed families.

The SS procedure involves computation of two positive critical values, c+

1,α,m,r and c+

2,α,m,r , in the direction-mixed families
for one- and two-sided inferences, respectively, such that

G(c+

1,α,m,r , c
+

2,α,m,r) = 1 − α, (1)

where

P(Ti > c+

1,α,m,r) = P(|Tj| > c+

2,α,m,r) = pm,α,r (2)

for any i and j. As the marginal distributions of Ti and Tj for any i, j have an identical t-distribution, the aforementioned
relationship between c+

1,α,m,r and c+

2,α,m,r obviously guarantees that the critical cutoff points are identical in terms of the
p-value, pm,α,r , for any one- and two-sided inferences. Because any hypothesis with a corresponding p-value less than pm,α,r
is rejected, regardless of whether it is one- or two-sided, the SS procedure is a p-value consistent procedure.

The critical constants in (1) can be solved using constraint (2). Computation can be completed using the algorithm of
either Dunnett (1989) or Cheung and Holland (1991, 1992), and details can be found in Cheung et al. (2004). Selected critical
values for various value combinations of α,m, r, f , and ρ are tabulated in Kwong et al. (2007).

2.3. Stepwise procedures

If the primary objective of a statistical inference is to detect significant differences in treatment efficacy, then stepwise
multiple comparison procedures are oftenmore appropriate than their single-step counterparts because they are, in general,
more powerful. A typical step-down procedure tests hypotheses sequentially, from that with the smallest p-value to that
with the largest.

The p-value consistent step-down procedure, denoted by SD hereafter, requires a determination of m sets of critical
p-values for comparisons with m ordered p-values. The SD procedure requires only one of the critical p-values in each set
for comparison with the corresponding ordered observed p-value. The selection of an appropriate critical p-value in each
step depends on how many one-sided hypotheses have been rejected previously. The derivation and evaluation of these m
sets of critical p-values can be found in Kwong et al. (2007).

In contrast to step-downprocedures, a typical step-up procedure tests hypotheses sequentially from thatwith the largest
p-value to that with the smallest. The p-value consistent step-up procedure, denoted by SU hereafter, for direction-mixed
families requires a determination of the m critical p-values, pum ≥ pum−1 ≥ · · · ≥ pu1, for comparisons with m ordered
observed p-values. The derivation and evaluation of these critical p-values are outlined in Kwong et al. (2007). The algorithm
of the SU procedure is as follows.

1. Obtain the set of ordered observed p-values, p(1) ≤ · · · ≤ p(m), with the corresponding null hypotheses H(1), . . . ,H(m).
2. Compare p(m) with pum. If p(m) < pum, then reject all null hypotheses and terminate the procedure; otherwise, accept H(m)

and proceed to the next step of comparing p(m−1) with pum−1.
3. The testing procedure continues until the first occurrence of p(i) < pui , say i = s ≤ m. Then,H(s+1), . . . ,H(m) are accepted,

and the remaining H(1), . . . ,H(s) are rejected. If p(i) ≥ pui for i = 1, . . . ,m, then all of the null hypotheses are accepted.
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Step-up procedures are generally more powerful than their step-down counterparts (see Dunnett and Tamhane (1992)
for details). The simulation study in Kwong et al. (2007) suggests that the SU procedure is also more powerful than the
other p-value consistent procedures in direction-mixed families. Hence, the remainder of this paper focuses on sample size
determination for the SU procedure.

In fact, when the inferential family comprises all two-sided hypotheses (r = 0) or all one-sided hypotheses (r = m),
the aforementioned SU procedures reduce to the Dunnett and Tamhane (1992) two- and one-sided step-up procedures,
respectively. The algorithmgiven inKwong et al. (2010) can be employed to obtain the required sample sizes for the balanced
designs of the SU procedures in these two cases. Therefore, this paper focuses only on the method used to evaluate the
required sample size for the SU procedure for r = 1, . . . ,m − 1 in direction-mixed families.

3. Power definitions

There are numerous ways to conceptualize power inmultiple testing scenarios. It is important to clarify which definition
of power is being employed in the search for the required sample size because different definitions may yield very different
required sample sizes. As noted by Westfall and Young (1993), the decision to apply a certain type of power is governed
by the needs and objectives of the experiment and therefore should not be an ad-hoc decision. Let F ⊂ {1, . . . , k} denote
the family of all true hypotheses and F c denote a set that contains all of the remaining hypotheses, which are false. Three
popular concepts of power (see Horn and Dunnett (2004)) are introduced here:

• all-pairs power Pall = P(reject all Hi ∈ F c);
• any-pair power Pany = P(reject at least one Hi ∈ F c); and
• per-pair power Pper = P(reject a particular Hi ∈ F c).

Note that if there is only one false hypothesis, then the three definitions are equivalent. For cases of more than one false
hypothesis, Westfall and Young (1993) provided a number of ways to choose among the foregoing definitions of power in
different practical settings.

Of the three, all-pairs power is the most stringent requirement and yields the largest sample size. Any-pair power, in
contrast, is the least stringent and requires the smallest sample size to meet a pre-specified power level. The latter should
be employed if the objective of the multiple test is to determine whether there is any significant treatment difference in
the family of inferences considered. In cases in which one individual hypothesis is considered in advance to be much more
important than the others, and the researcher would definitely want to reject it if it were false, per-pair power is the most
appropriate choice for determining the sample size requirement. Several papers, including those of Dunnett et al. (2001),
Horn and Dunnett (2004), and Kwong et al. (2010), compare the effects of these three power definitions on sample size
requirements and different sample size allocation methods when all of the hypotheses are either one- or two-sided.

In the absence of a specific reason not to, most researchers would prefer to reject all false hypotheses in a multiple
testing environment. This paper thus focuses on the determination of optimal designs for the SU procedure under the all-
pairs power definition. However, a straightforward generalization (see the details in Kwong et al. (2010)) can be applied
when other definitions of power are employed, and hence is not reported here.

4. Optimal designs

Assume that the SU procedure is used in a clinical study to detect any treatment differences of practical importance,
1 > 0. Without loss of generality, let θs,v,t ⊂ θr

m = (θl1 , . . . , θlr , θg1 , . . . , θgm−r ) be a vector with elements

θi =


1 for i = l1, . . . , ls, g1, . . . , gv

−1 for i = gv+1, . . . , gt
0 for i = ls+1, . . . , lr , gt+1, . . . , gm−r ,

i.e., the s one-sided hypotheses (Hl1 , . . . ,Hls) and the t two-sided hypotheses (Hg1 , . . . ,Hgt ) are false, and the remainder
are true, where 0 ≤ s ≤ r , 0 ≤ v ≤ t ≤ m − r and s + t ≥ 1. For any given parameter vectors θs,v,t in the direction-mixed
families, it is necessary to determine the following probability.

P(R = s + t| θs,v,t) = P(Reject Hl1 , . . . ,Hls ,Hg1 , . . . ,Hgt | θs,v,t),

where R is the number of false hypotheses rejected in the SU procedure. The evaluation of probability is discussed in the
Appendix.

For all possible values of s, v, t , the all-pairs power function is the onewith the least favorable configuration set of (s, v, t),
say (s∗, v∗, t∗), such that

Pall(θr
m) = P(R = s∗ + t∗| θs∗,v∗,t∗) ≤ P(R = s + t| θs,v,t).

We also need to find the best way to allocate the total sample size N to n0, nI and nII in the balanced designs. In other words,
the optimal design has the configuration, say (N∗, n∗

0, n
∗

I , n
∗

II), in which N∗ is the smallest value of all possible N , and the
combination (n∗

0, n
∗

I , n
∗

II) must have the largest value Pall(θr
m) among all combinations of (n0, nI , nII) under the constraint

N∗
= n0 + rnI + (m − r)nII , such that the specified power level is achieved.
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Although an analytical determination of the combination (n∗

0, n
∗

I , n
∗

II) seems infeasible, Hayter and Tamhane’s (1991)
max–min approach, which combines the least favorable configuration of (s, v, t) and the maximum power configuration
of (N, n0, nI , nII), can be used to search numerically for the optimal design. According to Kwong et al. (2010), square-root
allocation provides a good initial numerical search for the optimal design when r = 0 and r = m. Hence, for a specific
all-pairs power level 1 − β , the following algorithm is proposed to search for the optimal design for r = 1, . . . ,m − 1.

(a) Use square-root allocation to obtain the initial total sample size, say N ′, under the assumption r = 0.
(b) Apply the max–min power approach to identify the maximum power combination (n′

0, n
′

I , n
′

II) with (s∗, v∗, t∗) for N ′,
and then evaluate its corresponding power level, say P ′.

(c) Set N ′
= N ′

− 1 and repeat (b) if P ′ > 1 − β . Otherwise, the optimal design configuration (N∗, n∗

0, n
∗

I , n
∗

II) =

(N ′, n′

0, n
′

I , n
′

II).

The proposed algorithm provides a very efficient way of obtaining the optimal balanced design for the p-value consistent
SU procedure, particularly when 1/σ is large. As the difference between N ′ in step (a) and N∗ is relatively large for a small
1/σ , a simple linear interpolation can be employed in step (c) to speed up the search for N∗. Table 1 presents the design
configurations and sample size requirements for the p-value consistent SU procedure under the all-pairs power definition
for α = 0.05,m = 3, 4, 5, r = 0, . . . ,m − 1, and 1/σ = 0.5, 1, 1.5, 2. Table 1 reveals several important patterns that can
be summarized as follows.

1. The total sample size N∗ decreases as r increases. For a given parameter configuration, the benefit of the savings realized
in the required total sample size represents the required total sample size difference between the SU procedure and the
procedure that treats all hypotheses as two-sided, i.e., that assumes r = 0. Note that this benefit is more significant
for a large r when the value of 1/σ is small. For example, when (α,m, 1 − β, 1/σ) = (0.05, 5, 0.9, 0.5), treating all
hypotheses as two-sided requires 2.3% and 10.9% more in terms of the total sample size than does using the optimal
design with r = 1 and r = 4, respectively. As a result, the proposed algorithm for constructing the balanced optimal
design for the SU proceduremay reduce the total sample size requirement considerably, particularly when r is very close
to m.

2. As expected, the sample size n∗

I for the treatment with a one-sided inference is always smaller than the sample size n∗

II
for that with a two-sided inference due to the direction information of the one-sided alternatives in direction-mixed
families.

3. For r ≥ 1 and large values of1/σ , say those greater than 1, there are not large differences between n∗

I and n∗

II because n
∗

I
is already quite small, and any further reduction in n∗

I inflates the variance of the test statistics for multiple comparisons
to a large extent.

4. For a given parameter configuration, required sample sizes n∗

0 , n
∗

I and n∗

II remain quite stable for different values of r .
The small variations in each can be attributed to the maximization process over a multi-dimensional space of positive
integers.

5. As 1 − β increases for a given parameter configuration, the impacts on n∗

0 , n
∗

I , and n∗

II are very similar for decreasing
values of 1/σ .

5. Example

An example given in Cheung et al. (2004) provides a suitable scenario for application of the SU procedure. A clinical
study reported by Schwartz et al. (2002) was carried out to compare the renal effects of rofecoxib and celecoxib with those
of naproxen in elderly subjects on a normal-salt diet. The response variable was the change from baseline in daily urinary
sodium excretion during the first 72 h of treatment. Four treatmentswere considered: rofecoxib, celecoxib, naproxen (active
control), and a placebo (no treatment). Naproxen was identified as the ‘‘control’’ treatment to be compared with the other
three treatments, including the placebo. A placebo was included to ensure a valid clinical trial if naproxen’s superiority to
the placebo were demonstrated in hypothesis testing. As naproxen’s superiority to a placebo has a long research history, a
one-sided hypothesis test of naproxen and the placebo is appropriate. However, without any such forceful justification, the
comparisons between celecoxib, rofecoxib and naproxen should have been two-sided inferences.

For this example, m = 3 and r = 1, and we let the required all-pairs power be 0.8, α = 0.05, and 1/σ = 1.0. From
Table 1, we can see that the optimal total sample size is 88, and the number of subjects allocated to rofecoxib, celecoxib,
naproxen, and the placebo is thus 21, 21, 30, and 16, respectively. Based on the Dunnett and Tamhane (1992) step-up
procedure, and assuming that all hypotheses are two-sided inferences, the total required sample size is 92, which is about
4.5% more than the optimal design when the direction information of the one-sided alternative is ignored.

6. Conclusion and final remarks

In this paper, we discuss a method for determining the optimal design for the p-value consistent step-up procedure in
direction-mixed families, such that a specified level of all-pairs power is achieved. An efficient algorithm is proposed only for
all-pairs power, which is the desirable option for practical purposes. However, the approach can also be generalized to other
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Table 1
Optimal designs (N∗, n∗

0, n
∗

I , n
∗

II ) of the p-value consistent step-up procedure under all-pairs power definition.

Parameters 1/σ

α m 1 − β r 0.5 1.0 1.5 2.0

0.05 3 0.6 0 (275, 101, 0, 58) (69, 27, 0, 14) (31, 13, 0, 6) (18, 6, 0, 4)
1 (260, 96, 44, 60) (65, 24, 11, 15) (30, 11, 5, 7) (17, 6, 3, 4)
2 (244, 97, 43, 61) (61, 24, 11, 15) (28, 11, 5, 7) (16, 6, 3, 4)

0.7 0 (314, 116, 0, 66) (79, 28, 0, 17) (35, 14, 0, 7) (20, 8, 0, 4)
1 (298, 111, 51, 68) (75, 28, 13, 17) (34, 12, 6, 8) (19, 8, 3, 4)
2 (281, 109, 51, 70) (71, 28, 13, 17) (32, 12, 6, 8) (18, 8, 3, 4)

0.8 0 (365, 134, 0, 77) (92, 35, 0, 19) (41, 14, 0, 9) (23, 8, 0, 5)
1 (348, 127, 61, 80) (88, 30, 16, 21) (39, 14, 7, 9) (22, 8, 4, 5)
2 (328, 126, 60, 82) (83, 33, 15, 20) (37, 14, 7, 9) (21, 8, 4, 5)

0.9 0 (445, 160, 0, 95) (112, 40, 0, 24) (50, 17, 0, 11) (28, 10, 0, 6)
1 (426, 156, 76, 97) (107, 40, 19, 24) (48, 17, 9, 11) (27, 10, 5, 6)
2 (404, 153, 75, 101) (101, 38, 19, 25) (46, 17, 9, 11) (26, 10, 5, 6)

4 0.6 0 (379, 123, 0, 64) (95, 31, 0, 16) (43, 15, 0, 7) (24, 8, 0, 4)
1 (365, 120, 50, 65) (92, 32, 12, 16) (42, 12, 6, 8) (23, 8, 3, 4)
2 (350, 114, 51, 67) (88, 28, 13, 17) (40, 12, 6, 8) (23, 9, 3, 4)
3 (334, 115, 51, 66) (84, 29, 13, 16) (38, 13, 6, 7) (22, 9, 3, 4)

0.7 0 (427, 129, 0, 72) (107, 35, 0, 18) (48, 16, 0, 8) (28, 8, 0, 5)
1 (412, 136, 57, 73) (103, 35, 14, 18) (46, 16, 6, 8) (27, 8, 4, 5)
2 (396, 130, 58, 75) (100, 32, 15, 19) (45, 13, 7, 9) (26, 8, 4, 5)
3 (379, 130, 58, 75) (95, 31, 15, 19) (43, 14, 7, 8) (25, 8, 4, 5)

0.8 0 (488, 160, 0, 82) (123, 39, 0, 21) (55, 19, 0, 9) (31, 11, 0, 5)
1 (472, 154, 66, 84) (119, 40, 16, 21) (53, 19, 7, 9) (30, 11, 4, 5)
2 (455, 149, 67, 86) (114, 36, 17, 22) (51, 15, 8, 10) (29, 11, 4, 5)
3 (437, 149, 67, 87) (110, 37, 17, 22) (49, 16, 8, 9) (28, 11, 4, 5)

0.9 0 (585, 189, 0, 99) (147, 47, 0, 25) (65, 21, 0, 11) (37, 13, 0, 6)
1 (568, 188, 80, 100) (142, 47, 20, 25) (64, 22, 9, 11) (36, 13, 5, 6)
2 (549, 179, 82, 103) (138, 48, 20, 25) (62, 22, 9, 11) (35, 13, 5, 6)
3 (529, 178, 82, 105) (133, 44, 21, 26) (59, 21, 9, 11) (34, 13, 5, 6)

5 0.6 0 (486, 146, 0, 68) (122, 37, 0, 17) (55, 15, 0, 8) (31, 11, 0, 4)
1 (472, 142, 54, 69) (119, 38, 13, 17) (53, 15, 6, 8) (31, 12, 3, 4)
2 (457, 142, 54, 69) (115, 33, 14, 18) (52, 16, 6, 8) (30, 7, 4, 5)
3 (441, 134, 55, 71) (111, 33, 14, 18) (50, 16, 6, 8) (29, 9, 4, 4)
4 (425, 139, 54, 70) (107, 34, 14, 17) (48, 16, 6, 8) (28, 8, 4, 4)

0.7 0 (541, 161, 0, 76) (136, 41, 0, 19) (61, 16, 0, 9) (34, 9, 0, 5)
1 (527, 162, 61, 76) (132, 41, 15, 19) (59, 16, 7, 9) (34, 10, 4, 5)
2 (512, 157, 62, 77) (129, 37, 16, 20) (58, 17, 7, 9) (33, 10, 4, 5)
3 (496, 149, 63, 79) (125, 37, 16, 20) (56, 17, 7, 9) (32, 10, 4, 5)
4 (479, 156, 61, 79) (120, 40, 15, 20) (54, 17, 7, 9) (30, 9, 4, 5)

0.8 0 (615, 185, 0, 86) (154, 44, 0, 22) (69, 19, 0,10) (39, 14, 0, 5)
1 (600, 186, 70, 86) (151, 45, 18, 22) (67, 19, 8,10) (39, 10, 5, 6)
2 (584, 173, 72, 89) (147, 45, 18, 22) (66, 20, 8,10) (38, 10, 5, 6)
3 (568, 174, 72, 89) (142, 44, 18, 22) (64, 20, 8,10) (37, 10, 5, 6)
4 (549, 174, 71, 91) (138, 43, 18, 23) (62, 20, 8,10) (36, 10, 5, 6)

0.9 0 (732, 222, 0, 102) (184, 54, 0, 26) (82, 27, 0, 11) (47, 12, 0, 7)
1 (716, 219, 85, 103) (180, 55, 21, 26) (80, 22, 10, 12) (46, 12, 6, 7)
2 (699, 215, 86, 104) (175, 50, 22, 27) (78, 22, 10, 12) (45, 12, 6, 7)
3 (680, 202, 88, 107) (171, 51, 22, 27) (76, 22, 10, 12) (44, 12, 6, 7)
4 (660, 206, 86, 110) (166, 51, 22, 27) (74, 22, 10, 12) (42, 11, 6, 7)

definitions of power. As expected, the new sample size determination procedure, which incorporates useful information on
the direction of the one-sided alternatives, requires a smaller sample size for treatments with one-sided inferences than
those with two-sided inferences. The results of our extensive numerical study suggest that, compared with the step-up
method that treats all hypotheses as two-sided, our approach results in a total sample size reduction of 2%–11% in direction-
mixed families, depending on the value of r .

The discussion in this paper applies to specific settings in which several treatments are compared to a control, and all-
pairs power is specified. Further research is required to explore other scenarios such as all possible contrasts in direction-
mixed families, as discussed in Braat et al. (2008), and the other definitions of power given in Horn and Dunnett (2004).
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Appendix. Evaluation of P(R = s + t|θs,v,t)

Let (a1, . . . , am) > (b1, . . . , bm) denote a(i) > b(i) for i = 1, . . . ,m, where a(1) ≤ · · · ≤ a(m) and b(1) ≤ · · · ≤ b(m).
Under the p-value consistent SU procedure with parameter vector θs,v,t in direction-mixed families, we obtain

P(Reject Hl1 , . . . ,Hls ,Hg1 , . . . ,Hgt | θs,v,t)

=

r−s
i=0

m−r−t
j=0


r − s

i

 
m − r − t

j


P


(Plr−i+1 , . . . , Plr , Pgm−r−j+1 , . . . , Pgm−r ) > (pum−i−j+1, . . . , p

u
m)


max(Pl1 , . . . , Plr−i , Pg1 , . . . , Pgm−r−j) < pum−i−j


, (3)

where Pi is the p-value corresponding to hypothesis Hi for i = l1, . . . , lr , g1, . . . , gm−r . To deal with the event
max(Pl1 , . . . , Plr−i , Pg1 , . . . , Pgm−r−j) < pum−i−j in (3), we can simply invert the p-values Pi to the corresponding test statistics:

Ti =




1 − ρ2

I Zi − ρI(Z0 +
√
n01/σ)

 
U for i = l1, . . . , ls

1 − ρ2
I Zi − ρIZ0

 
U for i = ls+1, . . . , lr

1 − ρ2
IIZi − ρII(Z0 +

√
n01/σ)

 
U for i = g1, . . . , gv

1 − ρ2
IIZi − ρII(Z0 −

√
n01/σ)

 
U for i = gv+1, . . . , gt

1 − ρ2
IIZi − ρIIZ0

 
U for i = gt+1, . . . , gm−r

for i = l1, . . . , lr , g1, . . . , gm−r , where Zi for i = 0, l1, . . . , lr , g1, . . . , gm−r are mutually independent standard normal

random variables, andU is a


χ2
f /f random variable that is independent of all Zi. However, directly inverting the p-values to

the corresponding test statistics is not straightforward for event (Plr−i+1 , . . . , Plr , Pgm−r−j+1 , . . . , Pgm−r ) > (pum−i−j+1, . . . , p
u
m)

in (3), and we thus have to modify the event before applying the procedure of inversion.
For ease of exposition, we now illustrate the procedure for modifying the probability of event (Pls+1 , . . . , Plr , Pgt+1 , . . . ,

Pgm−r ) > (pum−s−t+1, . . . , p
u
m). Similar to the approach presented in Kwong et al. (2007), applying the law of total probability

to Pls+1 which has to fall into one of the intervals (pum−s−t+1, p
u
m−s−t+2), . . . , (p

u
m, ∞), allows us to obtain

P

(Pls+1 , . . . , Plr , Pgt+1 , . . . , Pgm−r ) > (pum−s−t+1, . . . , p

u
m)


= P


(Pls+2 , . . . , Plr , Pgt+1 , . . . , Pgm−r ) > (pum−s−t+2, . . . , p

u
m)


(pum−s−t+1 < Pls+1 < pum−s−t+2)


+ P


(Pls+2 , . . . , Plr , Pgt+1 , . . . , Pgm−r ) > (pum−s−t+1, p

u
m−s−t+3, . . . , p

u
m)

(pum−s−t+2 < Pls+1 < pum−s−t+3)


+ · · ·

+ P

(Pls+2 , . . . , Plr , Pgt+1 , . . . , Pgm−r ) > (pum−s−t+1, . . . , p

u
m−1)


(pum < Pls+1)


. (4)

After successively applying the law of total probability from Pls+1 to Pgm−r in (4), we can then invert the p-values to the
corresponding test statistics, i.e., the event {a < Pi < b} for i = ls+1, . . . , lr , gt+1, . . . , gm−r becomes {F−1(1 − b) < Ti <
F−1(1 − a)} for i = ls+1, . . . , lr and {F−1(1 − b/2) < Ti < F−1(1 − a/2)} for i = gt+1, . . . , gm−r , respectively, where F−1

is the inverse cumulative function of the t-distribution with f degrees of freedom. As a result, the probability in (3) can be
evaluated with a simple modification of the algorithm given in Kwong and Liu (2000) or Kwong and Chan (2008).
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