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Estimation of High-Frequency Volatility: An
Autoregressive Conditional Duration Approach

Yiu-Kuen TSE
School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903
(yktse@smu.edu.sg)

Thomas Tao YANG
Department of Economics, Boston College, Chestnut Hill, MA 02467 (yangta@bc.edu)

We propose a method to estimate the intraday volatility of a stock by integrating the instantaneous
conditional return variance per unit time obtained from the autoregressive conditional duration (ACD)
model, called the ACD-ICV method. We compare the daily volatility estimated using the ACD-ICV
method against several versions of the realized volatility (RV) method, including the bipower variation RV
with subsampling, the realized kernel estimate, and the duration-based RV. Our Monte Carlo results show
that the ACD-ICV method has lower root mean-squared error than the RV methods in almost all cases
considered. This article has online supplementary material.

KEY WORDS: Market microstructure; Realized volatility; Semiparametric method; Transaction data.

1. INTRODUCTION

Since the seminal work by Andersen et al. (2001a, 2001b),
the realized volatility (RV) method has been widely used for
the estimation of daily volatility. The object of interest in the
RV literature is the estimation of the integrated volatility (IV)
of asset returns. Suppose the logarithmic asset price follows a
diffusion process with instantaneous variance per unit time at
time t being σ 2(t). The IV of the asset return over the time
interval (0, t) is defined as

IVt =
∫ t

0
σ 2(u) du. (1)

In the RV literature, σ 2(t) is typically assumed to be stochastic.
The basic RV method makes use of asset-price data sampled
at very high frequency, such as every 5 min or higher, and is
computed as the sum of the squared differenced logarithmic
asset prices. However, as the efficient prices may be contam-
inated by market microstructure noise and price jumps, other
RV methods incorporating various improvements and modifi-
cations have been proposed. An advantage of the RV methods
is that no specific functional form of the instantaneous variance
σ 2(t) is assumed and the method is sometimes described as
nonparametric.

In this article, we propose to estimate high-frequency (daily)
or ultra-high-frequency (intraday) return volatility parametri-
cally. The object of interest in this approach is the price du-
ration, which is defined as the time taken for the cumulative
change in the logarithmic transaction price to reach or exceed a
given threshold δ, called the price range. The occurrence of this
incident is called a price event. As shown by Engle and Russell
(1998), the instantaneous conditional return variance per unit
time depends on δ and the conditional hazard rate function of
the duration distribution. We model the price-duration process
parametrically using an extended version of the autoregressive
conditional duration (ACD) model by Engle and Russell (1998),
namely, the augmented ACD (AACD) model by Fernandes and

Grammig (2006). The variance over a given intraday time inter-
val is estimated by calculating the integrated conditional vari-
ance (ICV) over the interval, and we call this the ACD-ICV
method.

An important difference between the RV estimate and the
ACD-ICV estimate of volatility is that the former estimates the
integrated volatility over a time interval while the latter esti-
mates the integrated instantaneous conditional variance. While
instantaneous variance in the RV framework is stochastic, the
instantaneous conditional variance in our approach is determin-
istic. This comparison is analogous to the stochastic volatility
approach versus the conditional heteroscedasticity approach in
the literature of volatility modeling.

The ACD-ICV method has several advantages over the RV
approach. First, the RV approach is based on the asset prices,
which may be affected by market microstructure noise, price dis-
creteness, and price jumps. On the other hand, price data are used
in the ACD-ICV method only for the determination of the price
events, and their numerical values are not used in computation.
This feature introduces some robustness in the ACD-ICV esti-
mate, which is shared by the Andersen, Dobrev, and Schaumburg
(2008) method. Second, unlike the RV methods, which sample
data over regular time intervals, the ACD-ICV method samples
data randomly, depending on the price movements. More data
are used in periods of active trading, resulting in more efficient
sampling. Third, the RV methods use only local data for the
period of interest (daily or intraday). In contrast, the ACD-ICV
method makes use of data outside the period of interest, based
on the assumption that the transaction durations in the sample
follow an autoregressive process. As empirical studies in the lit-
erature support this regularity in transaction duration, using data
outside the local interval may improve the volatility estimation.
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Finally, to invoke the consistency of the RV estimates, a large
amount of infill data must be used. For short intraday intervals
such as an hour or 15 min, it is doubtful if the infill sample size
is large enough to justify the applicability of the asymptotics of
the RV estimates. In contrast, the ACD-ICV method depends on
the conditional expected duration, which can be consistently es-
timated by the maximum likelihood method with data extended
beyond the period of interest. Thus, the ACD-ICV method
may produce better estimates of volatility over short intraday
intervals.

The balance of this article is as follows. In Section 2, we re-
view the ACD model and its estimation. We then outline the use
of the ACD model for the estimation of high-frequency volatil-
ity. In Section 3, we report some Monte Carlo (MC) results for
comparing the performance of the RV methods and the ACD-
ICV method. Our results show that the ACD-ICV method has
smaller root mean-squared error (RMSE) than the RV estimates
in almost all cases considered. Section 4 reports some results
on out-of-sample one-day ahead volatility forecast and ultra-
high-frequency (intraday) volatility estimation. Some empirical
results using New York Stock Exchange (NYSE) data are pre-
sented in Section 5. Finally, Section 6 concludes. Supplementary
materials can be found in the online Appendix, posted on the
journal web site.

2. ACD MODEL AND HIGH-FREQUENCY VOLATILITY

The ACD model was proposed by Engle and Russell (1998) to
analyze the duration of transactions of financial assets. A recent
review of the literature on the ACD model and its applications
to finance can be found in the article by Pacurar (2008). As the
instantaneous conditional variance per unit time derived from
the ACD model can be integrated over a given time interval
(between two trades or over a day) to obtain a measure of the
volatility over the interval, we propose to estimate the integral
parametrically to obtain an estimate of high-frequency volatility.

2.1 ACD Model

Let s(t) be the price of a stock at time t and s̃(t) be its
logarithmic price. Consider a sequence of times t0, t1, . . . , tN
with t0 < t1 < · · · < tN , for which ti denotes the time of occur-
rence of the ith price event of the stock. A price event occurs
if the cumulative change in s̃(t) reaches or exceeds an amount
δ, called the price range, whether upward or downward. Thus,
xi = ti − ti−1, for i = 1, 2, . . . , N , are the intervals between
consecutive price events, called the price durations, and are the
data for analysis in the ACD model. Unlike the RV methods,
which assume the transaction price follows a Brownian semi-
martingale (BSM) with possible contamination due to market
microstructure noise and/or price jumps, our object of analysis
is the price duration xi .

Let �i denote the information set upon the price event at
time ti , which may include lagged price duration, volume, and
order flow. In this article, however, we only consider lagged
price durations. We denote ψi+1 = E(xi+1 |�i) as the condi-
tional expectation of the price duration, and assume that the
standardized durations εi = xi/ψi , i = 1, . . . , N , are iid posi-
tive random variables with mean 1 and density function f (·).

Thus, the hazard function of εi is λ(·) = f (·)/S(·), where S(·)
is the survival function of εi . Assuming ψi+1 to be known given
�i , the conditional hazard function (also called the conditional
intensity) of x = t − ti , for t > ti , denoted by λx(x |�i), is

λx(x |�i) = λ

(
t − ti

ψi+1

)
1

ψi+1
. (2)

A popular model for the conditional durationψi is the ACD(1, 1)
model defined by

ψi = ω + αxi−1 + βψi−1, (3)

with the restrictions α, β, andw ≥ 0, and α + β < 1. Recently,
Fernandes and Grammig (2006) proposed an extension called
the AACD model, which is defined by

ψλ
i = ω + αψλ

i−1 [|εi−1 − b| + c(εi−1 − b)]v + βψλ
i−1. (4)

The parameters λ and v determine the shape of the transfor-
mation. Asymmetric responses in duration shocks are permitted
through the shift parameter b and the rotation parameter c. As
in the case of the ACD(1, 1) model, the parameters α, β, and w
are assumed to be nonnegative. The empirical study reported by
Fernandes and Grammig (2006) showed that the AACD model
performs better than the ACD(1, 1) model and provides a good
fit for the data. Due to its flexibility, we adopt the AACD model
as our operating ACD model (generically defined) for price
duration.

Given the density function f (·) of the standardized duration
εi , the maximum likelihood estimates (MLE) of the parameters
of the ACD equation can be computed. A simple case is when
εi are assumed to be standard exponential, giving rise to the
quasi MLE (QMLE) method. As discussed by Drost and Werker
(2004), provided the conditional expected-duration equation is
correctly specified, the QMLE is consistent for the parameters
of the equation regardless of the true distribution of εi . How-
ever, misspecification in the conditional expected duration may
induce inconsistency in the QMLE if the wrong density function
f (·) is used. To resolve this problem, the semiparametric (SP)
method may be adopted. This method was proposed by Engle
and Gonzalez-Rivera (1991) to estimate the autoregressive con-
ditional heteroscedasticity (ARCH) model. Drost and Werker
(2004) discussed the conditions under which the SP method for
estimating conditional-duration models is adaptive and efficient.
In the Appendix (posted online), we report some MC results for
comparing the performance of the MLE, QMLE, and SP meth-
ods for the ACD model. Our results support the consistency of
these estimates when the ACD equation is correctly specified
and demonstrate the relative efficiency of the SP method over
the QMLE method.

2.2 Estimation of High-Frequency Volatility Using the
ACD Model

Given the information �i at time ti , the conditional inten-
sity function λx(x |�i) determines the probability that the next
price event will occur at time t > ti . Specifically, given �i ,
λx(x |�i)
x is the probability that the next price event after
time ti occurs in the interval (ti + x, ti + x +
x), for x > 0.
The conditional instantaneous return variance per unit time at
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time t is defined as

σ 2(t |�i) = lim

t→0

{
1


t
var [s̃(t +
t) − s̃(t)|�i]

}
, t > ti,

(5)

where s̃(t +
t) − s̃(t) takes possible values −δ, 0, and δ. In
particular, |s̃(t +
t) − s̃(t)| is δ with probability λx(x |�i)
x
and 0 with probability 1 − λx(x |�i)
x. Thus, Equation (5)
can be evaluated as

σ 2(t |�i) = δ2λx(x |�i), (6)

where x = t − ti , t > ti . Using Equation (2), we have

σ 2(t |�i) = δ2

ψi+1
λ

(
t − ti

ψi+1

)
, t > ti . (7)

Hence, the ICV over the interval (ti , ti+1), denoted by ICVi , is

ICVi =
∫ ti+1

ti

σ 2(t |�i) dt

= δ2

ψi+1

∫ ti+1

ti

λ

(
t − ti

ψi+1

)
dt. (8)

If εi are iid standard exponential, λ(·) ≡ 1 and we have

ICVi = δ2

[
ti+1 − ti

ψi+1

]
. (9)

Furthermore, if t0 < t1 < · · · < tN denote the price events in a
day, the ICV of the day is

ICV = δ2
N−1∑
i=0

ti+1 − ti

ψi+1
. (10)

Under the exponential assumption for εi we can estimate the
parameters of the ACD model by the QMLE, from which we
obtain the estimated conditional expected duration ψ̂i+1. The
ACD-ICV estimate, denoted by VA, is then computed as

VA = δ2
N−1∑
i=0

ti+1 − ti

ψ̂i+1
. (11)

In the case when no specific distribution is assumed for εi , we
may compute the SP estimate of ψi+1, denoted by ψ∗

i+1, and

Table 1. Monte Carlo results for stochastic volatility models with NSR = 0.25

Volatility model

Heston Heston with jumps LV LV with jumps

Estimation method ME SE RMSE ME SE RMSE ME SE RMSE ME SE RMSE

Panel A: Transaction price with white noise
V ∗
A −0.063 0.934 0.936 −0.206 1.147 1.166 −0.096 0.790 0.796 −0.094 0.787 0.792
VA −0.862 0.967 1.296 −1.238 1.173 1.705 −0.913 0.773 1.196 −0.910 0.770 1.192
VB −0.160 1.251 1.261 −0.230 1.667 1.683 −0.163 1.316 1.326 −0.177 1.311 1.322
VD −0.811 1.458 1.668 −1.460 1.868 2.371 −0.891 1.490 1.736 −0.828 1.493 1.708
VK −0.056 1.354 1.355 −0.083 1.806 1.808 −0.046 1.426 1.426 −0.064 1.420 1.422
VR −0.265 2.285 2.301 −0.376 3.050 3.073 −0.278 2.383 2.399 −0.277 2.405 2.421

Panel B: Transaction price with autocorrelated noise
V ∗
A −0.057 0.933 0.935 −0.200 1.144 1.162 −0.084 0.792 0.796 −0.085 0.785 0.790
VA −0.861 0.966 1.294 −1.236 1.171 1.702 −0.903 0.774 1.189 −0.903 0.769 1.186
VB −0.165 1.247 1.258 −0.222 1.680 1.694 −0.163 1.316 1.326 −0.177 1.311 1.322
VD −0.812 1.465 1.675 −1.462 1.873 2.377 −0.882 1.492 1.733 −0.826 1.494 1.707
VK −0.050 1.347 1.347 −0.093 1.808 1.810 −0.047 1.426 1.426 −0.064 1.420 1.422
VR −0.264 2.288 2.303 −0.381 3.066 3.090 −0.268 2.402 2.417 −0.289 2.387 2.404

Panel C: Transaction price with noise correlated with efficient price
V ∗
A −0.068 0.939 0.941 −0.211 1.137 1.156 −0.103 0.796 0.803 −0.096 0.781 0.787
VA −0.869 0.971 1.304 −1.241 1.164 1.701 −0.918 0.778 1.203 −0.913 0.764 1.190
VB −0.165 1.250 1.261 −0.219 1.670 1.684 −0.163 1.316 1.326 −0.178 1.311 1.323
VD −0.814 1.458 1.670 −1.460 1.873 2.375 −0.912 1.497 1.753 −0.845 1.490 1.713
VK −0.052 1.354 1.355 −0.075 1.799 1.800 −0.047 1.426 1.426 −0.065 1.420 1.422
VR −0.276 2.282 2.298 −0.359 3.038 3.059 −0.299 2.394 2.413 −0.268 2.404 2.419

Panel D: Transaction price with autocorrelated noise correlated with efficient price
V ∗
A −0.065 0.951 0.954 −0.205 1.156 1.174 −0.094 0.783 0.789 −0.095 0.788 0.793
VA −0.871 0.983 1.314 −1.236 1.182 1.711 −0.911 0.766 1.191 −0.912 0.771 1.194
VB −0.167 1.253 1.264 −0.232 1.669 1.685 −0.169 1.313 1.324 −0.177 1.318 1.330
VD −0.816 1.468 1.679 −1.454 1.875 2.372 −0.897 1.502 1.749 −0.836 1.496 1.714
VK −0.062 1.347 1.348 −0.078 1.805 1.807 −0.046 1.423 1.424 −0.057 1.417 1.418
VR −0.278 2.291 2.308 −0.366 3.059 3.081 −0.284 2.386 2.403 −0.277 2.405 2.421

NOTES: ME = mean error; SE = standard error (standard deviation of MC samples); RMSE = root mean-squared error. The results are based on 1000 MC replications of 60-day daily
volatility estimates. All figures are in percentage. V ∗

A is computed using Equation (11) with δ being the average price range conditional on a price event being observed, which is defined
as the cumulative change in the logarithmic price exceeding the threshold. VA is computed from Equation (11) with δ being the threshold price range. The Heston model with jumps is
the Heston diffusion model with jumps in the volatility, while the LV model with jumps is the LV model with jumps in the price.
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estimate ICV by

VA = δ2
N−1∑
i=0

1

ψ∗
i+1

∫ ti+1

ti

λ̂

(
t − ti

ψ∗
i+1

)
dt, (12)

where λ̂(·) is the base hazard function calculated using the
empirical density function f̂ (·) of the estimated standardized
duration obtained from the QMLE. The computation of λ̂(·) re-
quires the numerical integration of f̂ (·) (to obtain the estimated
survival function). Another round of numerical integration is
then required to compute the integrals in Equation (12).

While the SP estimates of ψi are theoretically superior to the
QMLE, they are computationally very demanding. On the other
hand, our results for the ACD-ICV estimates using the QMLE
and SP methods are found to be quite similar in both the MC
experiments and empirical applications. Thus, we shall only
report the results based on the QMLE method in this article.
Some results based on the SP method, however, can be found in
the online Appendix.

Stock prices may have jumps and market frictions may induce
price discreteness. Thus, price events may occur with the actual
price range exceeding the threshold. To estimate the intraday
volatility, we may replace δ in Equations (11) and (12) by the
average price range of the sample observations conditional on
the threshold being exceeded. We shall denote this estimate of
the ICV by V ∗

A .

3. MONTE CARLO COMPARISON OF ACD-ICV AND
RV ESTIMATES

We perform some MC experiments to compare the ACD-ICV
estimates against various RV estimates. As the two methods are
based on different notions of volatility, we consider both de-
terministic and stochastic volatility models. In the online Ap-
pendix, we report the MC results of a deterministic volatility
set-up. In this section, we focus on the estimation results for
stochastic volatility models. Our MC study for the stochastic
volatility models follows closely the experiments designed by
Aı̈t-Sahalia and Mancini (2008).

Table 2. Monte Carlo results for stochastic volatility models with NSR = 0.6

Volatility model

Heston Heston with jumps LV LV with jumps

Estimation method ME SE RMSE ME SE RMSE ME SE RMSE ME SE RMSE

Panel A: Transaction price with white noise
V ∗
A 0.056 1.154 1.155 −0.230 1.523 1.541 −0.031 0.934 0.934 −0.019 0.943 0.943
VA −0.525 1.159 1.273 −1.021 1.525 1.835 −0.637 0.917 1.117 −0.625 0.927 1.118
VB −0.118 1.206 1.211 −0.210 1.716 1.728 −0.144 1.304 1.312 −0.138 1.316 1.323
VD −0.576 1.425 1.537 −1.354 1.929 2.357 −0.700 1.498 1.654 −0.698 1.500 1.654
VK 0.020 1.303 1.303 −0.040 1.852 1.853 0.015 1.420 1.420 0.008 1.418 1.418
VR −0.244 2.209 2.222 −0.382 3.126 3.149 −0.264 2.384 2.399 −0.268 2.406 2.421

Panel B: Transaction price with autocorrelated noise
V ∗
A 0.089 1.142 1.145 −0.209 1.526 1.541 0.000 0.923 0.923 −0.004 0.931 0.931
VA −0.498 1.148 1.251 −1.004 1.528 1.828 −0.613 0.906 1.094 −0.616 0.914 1.102
VB −0.121 1.195 1.201 −0.216 1.711 1.724 −0.142 1.308 1.316 −0.154 1.305 1.314
VD −0.564 1.433 1.540 −1.341 1.935 2.354 −0.688 1.510 1.660 −0.706 1.504 1.662
VK 0.017 1.301 1.301 −0.047 1.852 1.853 0.020 1.416 1.416 −0.006 1.416 1.416
VR −0.251 2.203 2.218 −0.387 3.125 3.149 −0.263 2.396 2.411 −0.285 2.393 2.410

Panel C: Transaction price with noise correlated with efficient price
V ∗
A 0.044 1.146 1.147 −0.243 1.522 1.541 −0.042 0.955 0.956 −0.032 0.941 0.942
VA −0.534 1.152 1.269 −1.029 1.525 1.839 −0.646 0.938 1.139 −0.637 0.924 1.123
VB −0.120 1.210 1.216 −0.202 1.710 1.722 −0.154 1.307 1.316 −0.141 1.314 1.322
VD −0.570 1.433 1.542 −1.352 1.925 2.353 −0.729 1.503 1.670 −0.716 1.510 1.671
VK 0.027 1.311 1.311 −0.027 1.845 1.846 −0.009 1.416 1.416 0.013 1.428 1.428
VR −0.250 2.207 2.221 −0.364 3.107 3.129 −0.295 2.398 2.416 −0.261 2.411 2.425

Panel D: Transaction price with autocorrelated noise correlated with efficient price
V ∗
A 0.059 1.150 1.152 −0.229 1.523 1.540 −0.011 0.933 0.933 −0.009 0.933 0.933
VA −0.526 1.156 1.270 −1.021 1.525 1.835 −0.620 0.917 1.107 −0.617 0.916 1.105
VB −0.129 1.207 1.214 −0.216 1.713 1.727 −0.133 1.306 1.312 −0.137 1.306 1.313
VD −0.565 1.430 1.538 −1.350 1.939 2.362 −0.696 1.496 1.651 −0.691 1.506 1.657
VK 0.018 1.302 1.302 −0.034 1.852 1.852 0.007 1.419 1.419 0.017 1.418 1.418
VR −0.251 2.205 2.219 −0.375 3.137 3.160 −0.263 2.394 2.408 −0.255 2.396 2.409

NOTES: ME = mean error; SE = standard error (standard deviation of MC samples); RMSE = root mean-squared error. The results are based on 1000 MC replications of 60-day daily
volatility estimates. All figures are in percentage. V ∗

A is computed using Equation (11) with δ being the average price range conditional on a price event being observed, which is defined
as the cumulative change in the logarithmic price exceeding the threshold. VA is computed from Equation (11) with δ being the threshold price range. The Heston model with jumps is
the Heston diffusion model with jumps in the volatility, while the LV model with jumps is the LV model with jumps in the price.
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Table 3. Monte Carlo results for stochastic volatility models with NSR = 1.00

Volatility model

Heston Heston with jumps LV LV with jumps

Estimation method ME SE RMSE ME SE RMSE ME SE RMSE ME SE RMSE

Panel A: Transaction price with white noise
V ∗
A 0.443 1.216 1.294 0.088 1.474 1.476 0.409 0.888 0.978 0.414 0.888 0.979
VA −0.146 1.214 1.223 −0.639 1.469 1.602 −0.209 0.872 0.896 −0.205 0.870 0.894
VB −0.050 1.240 1.241 −0.138 1.628 1.634 −0.074 1.300 1.302 −0.067 1.312 1.313
VD −0.248 1.480 1.501 −0.827 1.864 2.039 −0.319 1.513 1.547 −0.319 1.519 1.552
VK 0.171 1.351 1.362 0.092 1.761 1.764 0.157 1.423 1.432 0.150 1.421 1.429
VR −0.229 2.286 2.298 −0.330 2.989 3.007 −0.237 2.387 2.398 −0.240 2.409 2.420

Panel B: Transaction price with autocorrelated noise
V ∗
A 0.485 1.210 1.304 0.145 1.462 1.469 0.456 0.886 0.996 0.442 0.882 0.987
VA −0.114 1.208 1.214 −0.590 1.459 1.574 −0.172 0.868 0.885 −0.186 0.865 0.885
VB −0.045 1.236 1.237 −0.142 1.637 1.643 −0.071 1.304 1.306 −0.083 1.300 1.303
VD −0.222 1.478 1.495 −0.792 1.852 2.015 −0.299 1.528 1.557 −0.317 1.522 1.555
VK 0.175 1.345 1.357 0.082 1.771 1.773 0.162 1.420 1.429 0.136 1.419 1.426
VR −0.217 2.274 2.284 −0.346 3.006 3.025 −0.235 2.398 2.410 −0.257 2.395 2.409

Panel C: Transaction price with noise correlated with efficient price
V ∗
A 0.402 1.214 1.279 0.061 1.463 1.464 0.368 0.891 0.963 0.367 0.881 0.954
VA −0.185 1.212 1.226 −0.664 1.461 1.605 −0.247 0.873 0.907 −0.246 0.864 0.898
VB −0.053 1.234 1.235 −0.147 1.636 1.643 −0.086 1.302 1.305 −0.073 1.310 1.312
VD −0.264 1.473 1.497 −0.852 1.863 2.049 −0.366 1.520 1.563 −0.353 1.527 1.567
VK 0.167 1.355 1.365 0.077 1.773 1.775 0.127 1.419 1.425 0.149 1.432 1.439
VR −0.229 2.263 2.274 −0.343 2.987 3.007 −0.268 2.400 2.415 −0.235 2.413 2.424

Panel D: Transaction price with autocorrelated noise correlated with efficient price
V ∗
A 0.458 1.210 1.294 0.102 1.467 1.471 0.425 0.884 0.981 0.421 0.885 0.980
VA −0.137 1.209 1.217 −0.629 1.464 1.593 −0.196 0.867 0.889 −0.200 0.868 0.891
VB −0.052 1.240 1.241 −0.142 1.635 1.641 −0.064 1.301 1.303 −0.067 1.302 1.304
VD −0.236 1.482 1.501 −0.819 1.863 2.035 −0.318 1.517 1.550 −0.316 1.520 1.552
VK 0.167 1.348 1.359 0.084 1.764 1.766 0.145 1.422 1.429 0.155 1.421 1.430
VR −0.226 2.277 2.289 −0.321 2.984 3.001 −0.235 2.396 2.407 −0.228 2.398 2.409

NOTES: ME = mean error; SE = standard error (standard deviation of MC samples); RMSE = root mean-squared error. The results are based on 1000 MC replications of 60-day daily
volatility estimates. All figures are in percentage. V ∗

A is computed using Equation (11) with δ being the average price range conditional on a price event being observed, which is defined
as the cumulative change in the logarithmic price exceeding the threshold. VA is computed from Equation (11) with δ being the threshold price range. The Heston model with jumps is
the Heston diffusion model with jumps in the volatility, while the LV model with jumps is the LV model with jumps in the price.

3.1 Heston Model

We assume the following price generation process by Heston
(1993):

d log s(t) =
(
µ− σ 2(t)

2

)
dt + σ (t) dW1(t), (13)

dσ 2(t) = κ
(
α − σ 2(t)

)
dt + γ σ (t) dW2(t), (14)

with µ = 0.05, κ = 5, α = 0.04, and γ = 0.5. The correlation
coefficient between the two Brownian motionsW1(t) andW2(t)
is −0.5. We generate second-by-second data with initial value
of σ (0) equaling 0.3. We also incorporate the inclusion of a
jump component into the volatility process with a Poisson jump
intensity of 2/(6.5 × 3600) and an exponential jump size with
a mean of 0.0007.

3.2 Log-Volatility (LV) Model

Let Vt denote the integrated variance for day t and

l(t) = log(V
1
2
t ), which follows the process

l(t) = φ0 +
5∑
i=1

φi l(t − i) + u(t), (15)

where u(t) is a white noise. The logarithmic return over each

1-sec interval in day t is generated randomly as V
1
2
t z, where

z is normal with mean 0 and standard deviation 1/(3600 ×
6.5 × 252)

1
2 . The parameter set is {φ0, φ1, φ2, φ3, φ4, φ5} =

{−0.0161,−0.35, 0.25, 0.20, 0.10, 0.09}, and the standard de-
viation ofu(t) is 0.02. Similar to the Heston model with volatility
jumps, we also consider a LV model with a jump component.

3.3 Noise Structure

Given the logarithmic efficient price s̃(t) generated from
Equation (13), we add a noise component ε(t) to obtain the log-
arithmic transaction price. The following noise structures are
considered. First, we assume a white noise, so that ε(t) are iid
normal variates. Second, we consider the case where ε(t) follows
an AR(1) process with a correlation coefficient of −0.2. Third,
we generate serially uncorrelated ε(t), which are correlated with
the return, with corr{ε(t), s̃(t) − s̃(t −
t)} = −0.2. Fourth,
we consider noises that are autocorrelated as well as correlated
with the return, where the correlation coefficients are as given in
the second and third cases above. Finally, we consider the case
where there is a jump in the price process for the LV model, with
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0.4 jump per 5 min and jump sizes of −0.05, −0.03, 0.03, and
0.05 with equal probabilities. Based on the model specification,
the annualized volatility is around 25%–30%. The noise-to-
signal ratio (NSR) given by NSR = [var{ε(t)}/var{σ (t)}] 1

2 is
set to 0.25, 0.6, and 1.0 for the main experiments (see the set-up
by Andersen, Dobrev, and Schaumburg 2008).

3.4 RV Estimates

We consider the basic RV estimate, denoted by VR , sampled
at 5-min intervals. We also compute the bipower variation RV
estimate (Barndorff-Nielsen and Shephard 2004), denoted by
VB . For this method, we sample the price data over 2-min
intervals and apply the subsampling method proposed by
Zhang, Mykland, and Aı̈t-Sahalia (2005) using subsampling
intervals of 5 sec. Next, we consider the realized kernel estimate
VK proposed by Barndorff-Nielsen et al. (2008) using the
Tukey-Hanning weighting function. Finally, we calculate the
duration-based estimate, denoted by VD , which was proposed
by Andersen, Dobrev, and Schaumburg (2008). We adopt
the event of price exiting a range δ for the definition of the
passage-time duration, for which VD is computed as

VD =
N−1∑
i=0

σ̂ 2
δ (ti)(ti+1 − ti), (16)

where σ̂ 2
δ (ti) is the local variance estimate given by Andersen,

Dobrev, and Schaumburg (2008). The similarity between
Equations (11) and (16) should be noted. While the grid points
t0, t1, . . . , tN in VD are fixed, these values are the observed
price-event times in VA. In VD the logarithmic stock price is
assumed to follow a local Brownian motion with σ̂ 2

δ (ti) being
an estimate of the local variance, whereas in VA we use δ2/ψ̂i+1

to estimate the instantaneous conditional variance per unit time
within the interval (ti , ti+1). To compute VD , we set δ = 0.24%,
which is three times a presumed log spread of 0.08%.

3.5 Monte Carlo Results

In our MC study, we consider the performance of both VA
and V ∗

A . We target the average price duration to be 2 min, 4 min,
and 5 min for models with NSR of 0.25, 0.6, and 1.0, respec-
tively, so that the average price duration increases with NSR.
In each MC replication, δ is determined so as to obtain the ap-
proximate desired average duration. The results for the Heston
model, Heston model with volatility jumps, LV model, and LV
model with price jumps are summarized in Tables 1–3. For the
Heston, LV, and LV-with-jumps models, the average value of δ
is about 0.15%, 0.17%, and 0.2% for NSR of 0.25, 0.6, and 1.0,
respectively. For the Heston model with volatility jumps, the
average value of δ is larger at about 0.2%, 0.24%, and 0.26%.
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Figure 1. A sample path of daily stochastic volatility (Heston model) and its estimates. The online version of this figure is in color.
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The mean error (ME), standard error (SE), and RMSE of the
daily volatility estimates (annualized standard deviation in per-
cent) calculated using MC experiments of 1000 replications are
summarized.

Among the RV methods, VB gives the best performance, hav-
ing the lowest RMSE in all cases considered, followed by VK .
Generally, VK has smaller absolute ME than VB but larger SE,
with the final result that it is inferior to VB in RMSE. V ∗

A (with
δ defined as the conditional mean price range exceeding the
threshold) gives lower RMSE than VB in all cases except for
the Heston model without volatility jumps with NSR = 1. On
the other hand, VA (with δ defined as the threshold) outper-
forms VB for all models except for the Heston models with and
without volatility jumps with lower NSR of 0.25 and 0.6. In
addition, both VA and V ∗

A outperform VK in all cases. Among
the two ACD-ICV estimates, V ∗

A gives better results than VA
when NSR = 0.25 and 0.6 for all models, as well as for the
Heston model with volatility jumps when NSR = 1. However,
the over-estimation of V ∗

A becomes more serious when NSR is
large.

By construction, VA is always smaller than V ∗
A . Since empir-

ically price moves in discrete amounts, it may be theoretically
more appropriate to apply the conditional mean price range to
compute the ACD-ICV estimate, thus using V ∗

A . However, when
the microstructure noise and/or price jumps are large, the excess

amount in δ in computing V ∗
A is mainly due to the noise. The

MC results demonstrate this effect clearly, as we can see that
when NSR is large the upward bias in V ∗

A is large. We should
note that as transaction price is used to obtain the price duration,
the ACD-ICV method estimates the volatility of the transaction
price and not the efficient price. Thus, the positive bias in V ∗

A

is magnified when NSR is large, because the volatility of the
transaction price exceeds that of the efficient price by a larger
amount. On the other hand, our MC results also show that when
NSR is small V ∗

A performs better than VA. This is because when
the microstructure noise is small, the theoretical justification for
using V ∗

A dominates. Overall, we recommend the use of VA,
which is less contaminated by microstructure noise and/or price
jumps. Further MC results for robustness check can be found in
the online Appendix.

Figure 1 presents an example of a daily volatility plot over
a 60-day period for the Heston model with white noise. It can
be seen that all estimates trace the true volatility quite closely,
although the RV estimates appear to have larger fluctuations.
Figure 2 illustrates a sample of one-day instantaneous volatility
path and its intraday volatility estimates. The true instantaneous
variance is generated from the Heston model with an intraday
periodicity function superimposed to describe the stylistic fact
of intraday variation in volatility, with the details provided in
the online Appendix. Estimates of 1-hr and 15-min integrated

Figure 2. A sample path of intraday volatility and its estimates. The online version of this figure is in color.
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volatility using VA and VB are presented. It can be seen that both
estimates track the true volatility path and exhibit an intraday
volatility smile.VB , however, has clearly larger fluctuations than
VA. This demonstrates the advantage of the ACD-ICV method
over the RV method in estimating integrated volatility over ultra-
short (intraday) intervals. We will pursue the investigation of this
issue in the next section in a MC study.

4. FORECAST PERFORMANCE AND INTRADAY
VOLATILITY ESTIMATION

We now consider the performance of the out-of-sample one-
day ahead forecast of daily volatility using the ACD-ICV and RV
estimates, following the MC design by Aı̈t-Sahalia and Mancini
(2008). We generate 61 × 23,400 second-by-second (61 days)

stochastic volatility and stock-price data using the stochastic
volatility models (Heston diffusion model and LV model). The
first 60 days of data are used to estimate daily volatility using
the ACD-ICV and RV methods. We fit AR(1) models to the
time series of daily volatility estimates and use these models to
forecast the volatility of the 61st day. We run the MC experiment
withM = 1000 replications and follow Aı̈t-Sahalia and Mancini
(2008) to assess the performance of the volatility forecasts by
running the following regressions

yj = b0 + b1 x1j + b2 x2j , j = 1, . . . ,M, (17)

where yj is the integrated volatility of the 61st day, x1j is the
one-day ahead forecast of the volatility using VA, and x2j is the
one-day ahead forecast of the volatility using the RV method. As
VB and VK are found to have good performance in estimation,

Table 4. Performance of out-of-sample one-day ahead forecasts of daily volatility

Regressor(s) b0 b1 b2 R2 b0 b1 b2 R2

Panel A: NSR = 0.6
Heston diffusion model Heston diffusion model with volatility jumps

VA −0.005 (0.003) 1.010 (0.010) 0.903 0.007 (0.004) 1.001 (0.009) 0.925
VB −0.008 (0.003) 1.011 (0.011) 0.894 0.010 (0.004) 0.994 (0.010) 0.906
VK −0.017 (0.004) 1.045 (0.014) 0.841 0.010 (0.005) 1.004 (0.012) 0.871
VA + VB −0.006 (0.002) 0.433 (0.040) 0.586 (0.040) 0.913 0.008 (0.003) 0.765 (0.035) 0.245 (0.035) 0.950
VA + VK −0.007 (0.002) 0.513 (0.037) 0.509 (0.038) 0.913 0.009 (0.003) 0.845 (0.029) 0.164 (0.030) 0.949

LV Model LV Model with price jumps
VA 0.008 (0.001) 0.960 (0.007) 0.956 0.005 (0.001) 0.974 (0.006) 0.960
VB 0.013 (0.002) 0.932 (0.007) 0.946 0.009 (0.002) 0.954 (0.007) 0.950
VK 0.024 (0.002) 0.890 (0.010) 0.893 0.021 (0.002) 0.900 (0.010) 0.891
VA + VB 0.003 (0.001) 0.795 (0.018) 0.199 (0.018) 0.985 0.000 (0.001) 0.774 (0.018) 0.231 (0.018) 0.986
VA + VK 0.003 (0.001) 0.826 (0.016) 0.165 (0.016) 0.985 0.000 (0.001) 0.791 (0.015) 0.213 (0.015) 0.986

Panel B: NSR = 1.0

Heston diffusion model Heston diffusion model with volatility jumps
VA −0.017 (0.003) 1.053 (0.011) 0.899 0.005 (0.003) 1.002 (0.009) 0.931
VB −0.021 (0.003) 1.058 (0.012) 0.886 0.005 (0.004) 1.001 (0.010) 0.910
VK −0.033 (0.004) 1.107 (0.016) 0.835 0.010 (0.005) 1.002 (0.012) 0.867
VA + VB −0.018 (0.003) 0.390 (0.041) 0.670 (0.041) 0.908 0.005 (0.003) 0.674 (0.033) 0.335 (0.033) 0.951
VA + VK −0.020 (0.003) 0.502 (0.038) 0.562 (0.039) 0.906 0.005 (0.003) 0.785 (0.028) 0.225 (0.029) 0.951

LV Model LV Model with price jumps
VA 0.008 (0.001) 0.957 (0.006) 0.963 0.008 (0.001) 0.955 (0.006) 0.962
VB 0.011 (0.002) 0.939 (0.007) 0.949 0.007 (0.002) 0.953 (0.007) 0.950
VK 0.018 (0.002) 0.912 (0.009) 0.905 0.023 (0.002) 0.890 (0.010) 0.895
VA + VB 0.003 (0.001) 0.765 (0.019) 0.213 (0.018) 0.986 0.003 (0.001) 0.715 (0.020) 0.263 (0.019) 0.984
VA + VK 0.003 (0.001) 0.817 (0.016) 0.159 (0.016) 0.986 0.002 (0.001) 0.759 (0.017) 0.222 (0.016) 0.984

Panel C: NSR = 1.5

Heston diffusion model Heston diffusion model with volatility jumps
VA −0.014 (0.003) 1.031 (0.011) 0.902 0.006 (0.003) 0.997 (0.008) 0.936
VB −0.023 (0.003) 1.047 (0.011) 0.895 0.003 (0.004) 0.997 (0.009) 0.928
VK −0.026 (0.004) 1.073 (0.016) 0.825 0.013 (0.005) 0.995 (0.012) 0.873
VA + VB −0.015 (0.003) 0.261 (0.041) 0.772 (0.042) 0.906 0.001 (0.003) 0.598 (0.035) 0.410 (0.035) 0.950
VA + VK −0.022 (0.003) 0.341 (0.039) 0.704 (0.041) 0.902 −0.000 (0.003) 0.658 (0.032) 0.352 (0.032) 0.950

LV Model LV Model with price jumps
VA 0.007 (0.001) 0.949 (0.005) 0.970 0.006 (0.001) 0.953 (0.005) 0.969
VB 0.008 (0.001) 0.934 (0.006) 0.966 0.006 (0.001) 0.946 (0.005) 0.968
VK 0.020 (0.002) 0.893 (0.009) 0.910 0.021 (0.002) 0.889 (0.009) 0.902
VA + VB 0.004 (0.001) 0.694 (0.021) 0.260 (0.021) 0.986 0.003 (0.001) 0.657 (0.020) 0.301 (0.020) 0.985
VA + VK 0.004 (0.001) 0.688 (0.017) 0.263 (0.017) 0.986 0.003 (0.001) 0.645 (0.018) 0.312 (0.018) 0.985

NOTES: The results are based on 1000 Monte Carlo replications of 61-day daily volatility estimates. The first 60 days of data are used to estimate the AR(1) model for the daily volatility,
and the 61st day is used for forecasting. The parameters b0, b1, b2 are defined in Equation (17). Values in parentheses are standard errors. All results are for models with stock prices
following BSM with white noise.
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Table 5. Results for ultra-high-frequency intraday volatility estimation

Volatility model

Heston Heston with volatility jumps LV LV with price jumps

NSR Method ME SE RMSE ME SE RMSE ME SE RMSE ME SE RMSE

Panel A: Estimates over 15-min intervals, 9:45–15:45
0.6 VA −0.689 1.686 1.822 −1.064 2.139 2.389 −0.723 1.351 1.533 −0.726 1.353 1.535

VB −0.051 5.462 5.462 −0.212 7.726 7.729 −0.051 5.893 5.893 −0.053 5.881 5.881
VK −1.411 9.670 9.772 −3.631 11.860 12.403 −0.740 7.247 7.284 −0.744 7.229 7.267

1.0 VA −0.230 2.008 2.021 −0.575 2.432 2.499 −0.241 1.648 1.666 −0.248 1.626 1.645
VB 0.048 5.578 5.578 −0.093 7.347 7.348 0.050 5.868 5.869 0.048 5.856 5.856
VK −1.950 9.743 9.937 −1.798 11.599 11.737 −0.599 7.260 7.285 −0.601 7.246 7.271

1.5 VA 0.439 2.385 2.425 −0.038 2.728 2.728 0.460 1.876 1.931 0.415 1.852 1.898
VB 0.281 5.425 5.432 0.040 7.489 7.489 0.257 5.815 5.821 0.225 5.821 5.826
VK −1.065 9.601 9.660 −2.401 11.596 11.842 −0.325 7.289 7.297 −0.359 7.248 7.257

Panel B: Estimates over 30-min intervals, 9:45–15:45
0.6 VA −0.689 1.508 1.658 −1.064 1.895 2.173 −0.723 1.130 1.342 −0.726 1.127 1.340

VB 0.133 4.589 4.591 0.032 6.450 6.450 0.152 4.927 4.929 0.141 4.908 4.910
VK −1.022 8.547 8.608 −3.097 10.124 10.587 −0.294 5.113 5.122 −0.299 5.099 5.108

1.0 VA −0.230 1.697 1.712 −0.575 2.046 2.125 −0.241 1.319 1.341 −0.248 1.290 1.314
VB 0.205 4.683 4.687 0.118 6.163 6.164 0.226 4.911 4.916 0.215 4.892 4.897
VK −1.561 8.621 8.761 −1.264 9.809 9.890 −0.153 5.123 5.126 −0.156 5.112 5.114

1.5 VA 0.439 1.925 1.974 −0.038 2.242 2.242 0.460 1.464 1.535 0.415 1.438 1.497
VB 0.381 4.568 4.584 0.210 6.272 6.276 0.386 4.875 4.891 0.344 4.863 4.875
VK −0.675 8.443 8.470 −1.867 9.792 9.969 0.121 5.144 5.146 0.082 5.114 5.115

Panel C: Estimates over 60-min intervals, 9:45–15:45
0.6 VA −0.689 1.404 1.564 −1.064 1.757 2.054 −0.723 1.003 1.237 −0.726 0.998 1.234

VB 0.133 3.311 3.314 0.032 4.630 4.630 0.152 3.502 3.505 0.141 3.502 3.505
VK −0.830 7.925 7.968 −2.830 9.122 9.551 −0.077 3.635 3.635 −0.081 3.604 3.605

1.0 VA −0.230 1.525 1.542 −0.575 1.832 1.920 −0.241 1.133 1.158 −0.248 1.098 1.126
VB 0.205 3.394 3.400 0.118 4.414 4.415 0.226 3.490 3.498 0.215 3.491 3.498
VK −1.369 8.002 8.118 −0.997 8.766 8.822 0.064 3.641 3.641 0.062 3.613 3.614

1.5 VA 0.439 1.666 1.723 −0.038 1.976 1.977 0.460 1.229 1.312 0.415 1.198 1.268
VB 0.381 3.308 3.330 0.210 4.503 4.508 0.386 3.481 3.502 0.344 3.475 3.493
VK −0.483 7.800 7.815 −1.600 8.739 8.884 0.338 3.655 3.670 0.300 3.612 3.624

NOTES: ME = mean error; SE = standard error (standard deviation of MC samples); RMSE = root mean-squared error. The results are based on 1000 Monte Carlo replications of 60-day
intraday (15-min, 30-min, or 60-min) volatility estimates. Intraday volatility is computed as annualized standard deviation in percentage. Stock prices follow BSM with white noise.

they are considered for the forecasting study. We only present
the results for the case of stock prices following a BSM with
white noise, as results for other pricing errors are similar. The
results are summarized in Table 4. It can be seen that when a
single forecast is considered VA provides the best performance,
giving the highestR2 in the evaluation regression for all models.
The performance of VB comes in the second, followed by VK .
Using two forecasts does not improve the performance in terms
of the incremental R2.

We further consider the performance of the volatility esti-
mates for ultra-high-frequency (intraday) integrated volatility.
We divide the interval 9:45 through 15:45 into subintervals of
15 min, 30 min, and 60 min. Integrated stochastic volatility
over each subinterval is computed and compared against the
estimates VA, VB , and VK . The results based on 1000 MC repli-
cations over 60 days are summarized in Table 5. It can be seen
that VA provides estimates with the lowest RMSE, followed by
VB and then VK , and this ranking is consistent over all mod-
els. While VB provides the lowest ME in most cases it has a
higher SE than VA, thus resulting in a higher RMSE. Indeed,

the RMSE of VA is less than half of those of VB and VK in all
cases. As expected, VB and VK improve in giving lower RMSE
when the intraday interval increases. For intraday intervals of
15 min, the RMSE of VB and VK are generally larger than 5
percentage points, with some cases exceeding 10 percentage
points. In contrast, the RMSE of VA are less than 3 percent-
age points for all cases. Overall, the superior performance of
the ACD-ICV method in estimating intraday volatility is very
clear.

The stochastic volatilities generated in the MC experiments
above do not have intraday periodicity. As a robustness check we
consider the case when there is an intraday periodicity function
superimposed onto the stochastic volatility process. The results
are reported in Table 6. Although the RMSE of the estimators
generally increases (except for VK ), the RMSE of VA remains
the lowest. The performance of VK , however, is now better than
that of VB . In the MC experiments without imposing intraday
periodicity, the true volatility process is relatively flat. In this
case, VB with subsampling increases the estimation efficiency
significantly. On the other hand, due to the small number of
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Table 6. Results for ultra-high-frequency intraday volatility estimation with intraday periodicity

Volatility model

Heston Heston with jumps LV LV with jumps

NSR Method ME SE RMSE ME SE RMSE ME SE RMSE ME SE RMSE

Panel A: Estimates over 15-min intervals, 9:45–15:45
0.6 VA 0.346 3.813 3.829 0.279 5.493 5.500 0.328 4.020 4.033 0.319 4.036 4.049

VB 0.204 9.697 9.700 0.190 14.779 14.780 0.200 10.882 10.884 0.204 10.875 10.877
VK −0.954 7.927 7.984 −1.432 11.257 11.347 −1.086 8.713 8.780 −1.075 8.724 8.790

1.0 VA 0.514 4.505 4.578 0.512 5.784 5.828 0.437 4.546 4.623 0.463 4.580 4.660
VB 0.357 10.052 10.058 0.236 13.928 13.930 0.312 10.858 10.862 0.314 10.850 10.855
VK −0.867 8.240 8.286 −1.298 10.716 10.794 −0.986 8.726 8.782 −0.974 8.741 8.795

1.5 VA 0.830 4.523 4.674 0.810 6.033 6.073 0.912 4.667 4.706 0.881 4.604 4.737
VB 0.592 10.001 10.019 0.415 13.890 13.896 0.526 10.810 10.823 0.528 10.802 10.815
VK −0.647 8.272 8.297 −1.132 10.740 10.799 −0.788 8.757 8.792 −0.776 8.773 8.808

Panel B: Estimates over 30-min intervals, 9:45–15:45
0.6 VA 0.346 3.437 3.455 0.279 4.983 4.991 0.328 3.619 3.634 0.319 3.634 3.648

VB 0.452 9.680 9.690 0.534 14.797 14.807 0.476 10.890 10.901 0.471 10.877 10.887
VK −0.361 5.564 5.576 −0.579 7.858 7.879 −0.419 6.089 6.103 −0.405 6.088 6.102

1.0 VA 0.514 4.055 4.135 0.512 5.194 5.243 0.437 4.105 4.190 0.463 4.142 4.230
VB 0.588 10.058 10.075 0.538 13.954 13.964 0.557 10.873 10.888 0.552 10.860 10.874
VK −0.250 5.784 5.790 −0.491 7.497 7.513 −0.320 6.098 6.106 −0.303 6.098 6.106

1.5 VA 0.830 4.020 4.101 0.810 5.413 5.500 0.912 4.189 4.354 0.881 4.118 4.276
VB 0.760 10.023 10.052 0.669 13.928 13.944 0.714 10.841 10.865 0.709 10.827 10.850
VK −0.030 5.807 5.807 −0.324 7.513 7.520 −0.122 6.119 6.120 −0.104 6.119 6.120

Panel C: Estimates over 60-min intervals, 9:45–15:45
0.6 VA 0.346 2.962 2.982 0.279 4.340 4.349 0.328 3.105 3.123 0.319 3.116 3.133

VB 0.452 8.526 8.538 0.534 13.256 13.267 0.476 9.661 9.673 0.471 9.654 9.665
VK −0.038 3.948 3.949 −0.126 5.596 5.598 −0.066 4.340 4.341 −0.050 4.337 4.337

1.0 VA 0.514 3.508 3.602 0.512 4.474 4.530 0.437 3.558 3.656 0.463 3.593 3.696
VB 0.588 8.890 8.909 0.538 12.489 12.501 0.557 9.647 9.663 0.552 9.641 9.656
VK 0.085 4.099 4.100 −0.057 5.336 5.336 0.033 4.343 4.343 0.052 4.342 4.343

1.5 VA 0.830 3.419 3.746 0.810 4.667 4.747 0.912 3.611 3.815 0.881 3.516 3.715
VB 0.760 8.862 8.894 0.669 12.469 12.486 0.714 9.621 9.648 0.709 9.615 9.641
VK 0.304 4.114 4.125 0.109 5.346 5.347 0.231 4.357 4.363 0.250 4.355 4.362

NOTES: ME = mean error; SE = standard error (standard deviation of MC samples); RMSE = root mean-squared error. The results are based on 1000 Monte Carlo replications of
60-day intraday (15-min, 30-min, and 60-min) volatility estimates. Volatility is computed as annualized standard deviation in percentage. Stock prices follow BSM with white noise. An
intraday periodicity function is superimposed on the stochastic volatility process. The Heston model with jumps is the Heston diffusion model with jumps in the volatility, while the LV
model with jumps is the LV model with jumps in the price.

lagged terms taken over short intervals, VK is adversely affected
by some negative values, which are forced to be zero. For the
experiments with intraday periodicity, the intraday volatility
paths exhibit far more variability, which reduces the efficiency
of subsampling in VB . In contrast, the relative magnitude of the
lagged terms in VK is smaller, thus alleviating the problem of
negative values in the estimates.

5. EMPIRICAL ESTIMATES USING NYSE DATA

We consider the use of the ACD-ICV method for the estima-
tion of daily volatility with empirical data from the NYSE. Our
data consist of 30 stocks, with 10 stocks each classified as large,
medium, and small (all are component stocks of the S&P500),
sampled over three different periods in 2006 and 2007, ranging
from 25 days to 58 days in each period. Period 1 is a side-
ways market, Period 2 is an upward market, and Period 3 is
a downward market. Some statistics of the sample periods are
given in Table 7. To account for intraday periodicity, we es-

timate diurnal factors by applying a smoothing spline to the
average duration over different periods of the day, and compute
the mean-diurnally adjusted duration for use in calibrating the
ACD models.

We estimate the daily volatility using VA (QMLE with δ

being the threshold price range) and various RV methods. To
target an average price duration of 4–5 min, we set δ to 0.1%
in Periods 1 and 2, and 0.2% in Period 3. The annualized return
standard deviations, which are the square root of 252 multiplied
by the daily variance estimates, are compared across different
methods. To save space, we select the results of two stocks
for presentation, with the full set of results for all stocks over
the three different periods summarized in the online Appendix.
Figures 3 and 4 exhibit the results for JP Morgan and Moody’s.

It can be seen that VB and VK track each other very closely,
while VD appears to have more fluctuations, especially in Period
2. VA frequently moderates between the RV estimates and ex-
hibits smaller fluctuations. It is remarkable that the estimates are
quite similar in some turbulent periods. For example, in Period 2,
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Figure 3. Volatility estimates of JP Morgan. The online version of this figure is in color.
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Figure 4. Volatility estimates of Moody’s. The online version of this figure is in color.
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Table 7. Sample period and summary of empirical data

Period 1 2 3

Dates 2006: 01/11–03/31 2007: 03/13–06/04 2007: 07/13–08/16
Number of days 56 58 25
Begin and end S&P500 1294.18–1294.87 1377.95–1539.18 1552.5–1411.27
Index return in period 0.05% 11.70% −9.1%
Annualized standard deviation 9.01% 9.85% 21.76%
of daily index return

all volatility estimates of Moody’s give very similar results on
several very volatile days. On the other hand, VD appears to
be quite erratic for JP Morgan in this period. In Period 3, the
volatilities of both stocks clearly trend upward, with Moody’s
reaching over 80% toward the end of the period. Again, it is
quite clear that all estimates follow the upward trend and track
each other closely.

6. CONCLUSION

In this article, we propose a method to estimate high-
frequency (daily) or ultra-high-frequency (intraday) volatility
by integrating the instantaneous conditional return variance per
unit time obtained from the ACD model, called the ACD-ICV
method. Adopting the exponential-distribution assumption for
the standardized duration, the ACD-ICV method can be com-
puted easily using the QMLE of the ACD model. We compare
the performance of this method against several RV methods
using MC experiments. Our results show that the ACD-ICV es-
timates provide the smallest RMSE over a range of stochastic
volatility models. Our MC results support the superior perfor-
mance of the ACD-ICV method over the RV methods in estimat-
ing volatility over short intraday intervals. The accuracy of the
RV estimates over short intraday intervals is clearly adversely
affected by the lack of infill data.

Our evaluation of the out-of-sample one-day ahead forecast
performance shows that the ACD-ICV method provides better
forecasts than the RV methods. Empirical results using the data
of 30 NYSE stocks show that the ACD-ICV estimates and the
RV estimates generally track each other quite well, although
there are larger fluctuations in the RV estimates across time.
Overall, our results show that the ACD-ICV method is a useful
tool for estimating high-frequency volatility.

ACKNOWLEDGMENT

The authors gratefully acknowledge research support from
the Singapore Ministry of Education Tier 2 research grant

T206B4301-RS. They are indebted to the referees, the asso-
ciate editor, and the editor, Jonathan Wright, for their helpful
and insightful comments and suggestions.

[Received May 2010. Revised April 2012.]

REFERENCES

Aı̈t-Sahalia, Y., and Mancini, L. (2008), “Out of Sample Forecasts of Quadratic
Variation,” Journal of Econometrics, 147, 17–33. [536,540]

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001a), “The
Distribution of Realized Stock Return Volatility,” Journal of Financial Eco-
nomics, 61, 43–76. [533]

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001b), “The Dis-
tribution of Exchange Rate Volatility,” Journal of the American Statistical
Association, 96, 42–55. (Correction: 2003, 98, 501.) [533]

Andersen, T. G., Dobrev, D., and Schaumburg, E. (2008), “Duration-
Based Volatility Estimation,” working paper, available online at
http://www.devsmith.umd.edu/finance/pdfs_docs/SeminarFall2008/Dobrev
Dobrislav.pdf. [533,538]

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2008),
“Designing Realized Kernels to Measure the Ex-Post Variation of Equity
Prices in the Presence of Noise,” Econometrica, 76, 1481–1536. [538]

Barndorff-Nielsen, O. E., and Shephard, N. (2004), “Power and Bipower Varia-
tion With Stochastic Volatility and Jumps,” Journal of Financial Economet-
rics, 2, 1–37. [538]

Drost, F. C., and Werker, B. J. M. (2004), “Semiparametric Duration Models,”
Journal of Business and Economic Statistics, 22, 40–50. [534]

Engle, R., and Gonzalez-Rivera, G. (1991), “Semiparametric ARCH Models,”
Journal of Business and Economic Statistics, 9, 345–359. [534]

Engle R., and Russell, J. R. (1998), “Autoregressive Conditional Duration: A
New Model for Irregularly Spaced Transaction Data,” Econometrica, 66,
1127–1162. [533,534]

Fernandes, M., and Grammig, J. (2006), “A Family of Autoregressive Condi-
tional Duration Models,” Journal of Econometrics, 130, 1–23. [533,534]

Heston, S. L. (1993), “A Closed-Form Solution for Options With Stochastic
Volatility With Application to Bond and Currency Options,” Review of Fi-
nancial Studies, 6, 327–343. [537]

Pacurar, M. (2008), “Autoregressive Conditional Duration Models in Finance:
A Survey of the Theoretical and Empirical Literature,” Journal of Economic
Surveys, 22, 711–751. [534]

Zhang, L., Mykland, P. A., and Aı̈t-Sahalia, Y. (2005), “A Tale of
Two Time Scales: Determining Integrated Volatility With Noisy High-
Frequency Data,” Journal of the American Statistical Association, 100,
1394–1411. [538]

http://www.devsmith.umd.edu/finance/pdfs_docs/SeminarFall2008/DobrevDobrislav.pdf
http://www.devsmith.umd.edu/finance/pdfs_docs/SeminarFall2008/DobrevDobrislav.pdf

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2012

	Estimation of High-Frequency Volatility: An Autoregressive Conditional Duration Approach
	Yiu Kuen TSE
	Thomas Tao YANG
	Citation


	Estimation of High-Frequency Volatility: An Autoregressive Conditional Duration Approach
	INTRODUCTION
	ACD MODEL AND HIGH-FREQUENCY VOLATILITY
	ACD Model
	Estimation of High-Frequency Volatility Using the ACD Model

	MONTE CARLO COMPARISON OF ACD-ICV AND RV ESTIMATES
	Heston Model
	Log-Volatility (LV)
Model
	Noise Structure
	RV Estimates
	Monte Carlo Results

	FORECAST PERFORMANCE AND INTRADAY VOLATILITY ESTIMATION
	EMPIRICAL ESTIMATES USING NYSE DATA
	CONCLUSION
	ACKNOWLEDGMENT


