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SUMMARY

The method of generalized estimating equations (GEEs) provides consistent estimates of the regression
parameters in a marginal regression model for longitudinal data, even when the working correlation model
is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously
affected by the choice of the working correlation model. This study addresses this problem by proposing
a hybrid method that combines multiple GEEs based on different working correlation models, using the
empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more
efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working
correlation structures correctly models the within-subject correlations, then this hybrid method provides
the most efficient parameter estimates. In simulations, the hybrid method’s finite-sample performance
is superior to a GEE under any of the commonly used working correlation models and is almost fully
efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of
the respiratory infection rates in 275 Indonesian children.

Keywords: Empirical likelihood; Generalized estimating equations; Longitudinal data.

1. INTRODUCTION

Generalized estimating equations (GEEs) have been found to be very useful in analysis of correlated
and longitudinal outcomes using marginal regression models. Following Liang and Zeger (1986), many
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aspects of GEE have been explored. Reviews of GEE include Pendergast and others (1996) and Desmond
(1997).

In a marginal regression model, the primary interest is in the regression parameters, which character-
ize the expectations of the subject’s response over time. However, in order to make proper inference about
the regression parameters, the within-subject covariance (correlation) structures must be taken into con-
sideration. The GEE approach has been popular because estimates of mean parameters remain consistent
even if the correlation or the covariance structure is misspecified. On the other hand, accurate modeling of
the correlation structure generally improves statistical inference on means (Albert and McShane, 1995;
Fitzmaurice, 1995; Hall and Severini, 1998). Wang and Carey (2003) analyzed how efficiency can be
affected by (i) the choice of the working correlation structure, (ii) the method by which the working
correlation parameters are estimated, and (iii) the layout of the design matrix. Higher moments can be
incorporated into estimation using a generalized version of GEE called GEE2 (Liang and others, 1992).
However, bias or efficiency losses may be introduced if higher moment assumptions of GEE2 are incor-
rectly specified. For this reason, GEE2 has yet to receive wide application.

In GEE modeling, the most commonly used working correlation models are the exchangeable, AR(1)
and MA(1). Wang and Carey (2003) found that among the 3, AR(1) is the most robust. However, they also
demonstrated scenarios where the exchangeable and MA(1) models give better results than the AR(1)
model. Therefore, it remains an issue of how to choose a working correlation model in a particular GEE
analysis. The AR(1) and MA(1) working correlation models appear to be favored by users of GEE be-
cause (i) in most situations, they are sufficient as an approximation to the true correlation structure and
(ii) they represent sensible compromises between the independence model (which ignores within-subject
correlations) and the completely unstructured model (which requires the estimation of large number of
nuisance parameters). These considerations lead us to propose a method that incorporates all 3 work-
ing correlation models in a single framework, yielding a method that is efficient if one of these 3 working
correlation models correctly captures the true correlation structure, and robust even if none of the
working correlation models is correct. The proposed method can be generalized to combining any number
of GEEs with working correlation models other than the exchangeable, AR(1) and MA(1) models.

Each GEE with a particular working correlation model is a mean-zero estimating equation under the
true parameters. When we are interested in combining multiple GEEs, then there are more estimating
equations than the number of parameters. In situations involving independent data where the number of
estimating equations may be larger than the number of parameters, Qin and Lawless (1994) showed how
to combine efficiently the estimation equations using an empirical likelihood (EL) (Owen, 1988). We
exploit this attribute of the EL technique to combine GEEs. The individual GEEs using different working
correlations are used as constraints in an EL for the parameters of interest. The parameter estimates are
then obtained by maximizing the EL. Other than its role as a tool for combining estimating equations,
EL also inherits a number of desirable properties from its parametric counterparts, as described in Owen
(2001).

The rest of this paper is organized as follows. Section 2 presents the basic problem, the modeling
framework of the proposed method, and its large-sample properties. The results of a simulation study are
summarized in Section 3. In Section 4, the method is illustrated using a real data set. Section 5 concludes
the paper with a discussion. Detailed simulation results and proofs are given as supplementary material
available at Biostatistics online, http://biostatistics.oxfordjournals.org.

2. COMBINING GEES

Consider a longitudinal study in which there are n subjects, each of whom is measured at K time points.
Let yi = (yi1, . . . , yi K )T denote the underlying outcome for the i th subject, xi an associated vector of
r × 1 covariates, and xik the value of the covariate at time k. Denote the marginal mean outcome at the
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kth measurement for the i th subject by µik(β) = g(xT
ikβ), for a vector of unknown parameters, β. For

conciseness, we suppress the explicit association of µik with β if there is no confusion.
Following Liang and Zeger (1986), a GEE can be used to estimate the regression parameters, β,

n∑
i=1

DT
i V −1

i {yi − µi } = 0, (2.1)

where µi = (µi1, . . . , µik)
T , Di = ∂µi/∂β

T , and Vi is the covariance matrix of yi . The matrix Vi is
often modeled as φ A1/2

i R(α)A1/2
i , where Ai is a diagonal matrix representing the variances of yik , R(α)

is a “working correlation” depending on a set of unknown parameters α, and φ is a scale parameter used
to model over-dispersion or under-dispersion. Liang and Zeger (1986) showed that, whether or not Vi is
correctly specified, the estimators of β obtained from (2.1) remain consistent. In addition, if Vi = Cov(yi )
can be consistently estimated up to n−1/2, then the estimator of β is fully efficient. On the other hand, an
incorrectly specified Vi will lead to a loss of efficiency (Wang and Carey, 2003).

As Liang and Zeger (1986) pointed out, (2.1) can be re-expressed as a function of β by writing
α ≡ α(β, φ) and φ ≡ φ(β). An iterative algorithm can then be used to estimate β, α, and φ, start-
ing with initial estimates of α and φ. For suggested methods for estimating α and φ, see Liang and
Zeger (1986), Chaganty (1997), and Chaganty and Shults (1999). For ease of exposition, we assume
φ = 1. Liang and Zeger (1986, pp 17–18) discussed choices for R(α), while Wang and Carey (2003)
studied their relative efficiencies. For any chosen working correlation matrix R ≡ R(α), write Si (β) ≡
DT

i A−1/2
i R−1 A−1/2

i (yi − µi ). Then, the GEE (2.1) estimates are solutions of

S(β) ≡
n∑

i=1

Si (β) = 0. (2.2)

Now, consider different, linearly independent choices of R(α), say R j (α), j = 1, . . . , J , and write

S j (β) ≡
n∑

i=1

S j
i (β) = 0, (2.3)

for the estimating equation (2.2) but using working correlation matrix R j (α). Let hi (β) ≡ (S1
i (β)T , . . . ,

S j
i (β)T , . . . , S J

i (β)T )T , and note that hi ≡ hi (β) is a function of β only. In general, the dimension
of hi is higher than the dimension of β. Our propose is to use EL to combine the estimating equations
S1

i ,. . . ,S J
i . If one of the S1

i ,. . . ,S J
i is the optimal estimating equation, in the sense that it solves (2.2) with

A−1/2
i {R(α)}−1 A−1/2

i = V −1
i , then the EL estimate will be optimal. If none of them is optimal, then the

EL estimate is still consistent and combines optimally the information in S1
i ,. . . ,S J

i . In practice, a few
popular choices of R(α) may be used; for example, exchangeable, AR(1) and MA(1).

We now describe how to use an EL framework to combine the GEEs in hi . Let F be the distribution
function associated with the observations {(yi , xi )}n

i=1. Denote pi = dF(yi |xi ) as the jump size of F at
(yi , xi ). Then, the nonparametric likelihood of the data can be written as

∏n
i=1 dF(yi |xi ) ≡ ∏n

i=1 pi ,
subject to the constraints 0 � pi � 1, i = 1, . . . , n, and

∑n
i=1 pi = 1. Without any other information,

the maximum nonparametric likelihood estimate of F is the empirical distribution function Fn(yi |xi ) =∑n
i=1 I (yi � y|xi ), which corresponds to pi = 1/n. However, suppose we know that E(hi (β)) = 0

under F . Then, the empirical distribution function is no longer desirable because E(hi (β)) �= 0 under
dFn ≡ pi = 1/n. Instead, we can use the (empirical) likelihood

L(β) =
n∏

i=1

pi (2.4)
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subject to the constraints

0 � pi � 1, i = 1, . . . , n;
n∑

i=1

pi = 1,

n∑
i=1

pi{S1
i (β)T , . . . , S j

i (β)T , . . . , S J
i (β)T }T ≡

n∑
i=1

pi hi (β) = 0.

In this formulation, maximizing the EL gives a set of pi s such that E(hi (β)) = 0 under {pi }n
i=1. Since

the resulting values of {pi }n
i=1 depend on the extra conditions E(hi (β)) = 0, which in turn depend on the

value of β, the EL estimate of F is sensitive to the value of β.
The EL (2.4) can be maximized as a constrained maximization problem. By introducing Lagrange

multipliers η, λ = (λT
1 , . . . , λT

j , . . . , λT
J )T , where each λ j is r × 1, the log-EL can be written as

log L(β) =
n∑

i=1

log pi + η

(
1 −

n∑
i=1

pi

)
− nλT

n∑
i=1

pi hi (β). (2.5)

The values of {pi }n
i=1 can be profiled out by differentiating (2.5) with respect to pi to give

1

pi
− η − nλT hi (β) = 0 ⇒ n − η = 0 ⇒ η = n. (2.6)

Equation (2.6) implies that the optimal values of {pi }n
i=1 are

pi = 1

n{1 + λT hi (β)} . (2.7)

Furthermore, the constraint
∑n

i=1 pi hi (β) = 0 implies that λ satisfies the equation

n∑
i=1

hi (β)

1 + λT hi (β)
= 0. (2.8)

Using (2.7) and (2.8), η and {pi }n
i=1 can be profiled out in the negative log-EL to give

�(β) ≡ − log L(β) =
n∑

i=1

log{1 + λT hi (β)} − n log(n). (2.9)

Let hβ
i (β) = ∂hi (β)/∂βT . Differentiating (2.9) with respect to β leads to

n∑
i=1

λT hβ
i (β)

1 + λT hi (β)
= 0. (2.10)

The maximum EL estimates (β̂, λ̂) are the solutions to (2.8) and (2.10). Note that (2.8) consists of J
equations for each parameter and (2.10) consists of r equations, so in total there are (J +1)r simultaneous
equations to solve. We now give the results for the large-sample behavior of the parameter estimates using
the proposed method.
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THEOREM 2.1 Under the conditions given in the supplementary material available at Biostatistics online,
as n → ∞,

n1/2(β̂ − β∗)
d→ MVN(0, (�T

12�
−1
22 �12)

−1), (2.11)

where �12 and �22 are defined in the supplementary material available at Biostatistics online.

THEOREM 2.2 If one of the S1
i ,. . . ,S J

i is the optimal estimating equation, then the EL estimate will be
optimal in the sense that it will be equivalent to the GEE estimate with the correct specification of R(α).
In that case, as n → ∞,

n1/2(β̂ − β∗)
d→ MVN

⎛⎝0,

(
lim

n→∞
∑

i

D−1
i V −1

i DT
i

)−1
⎞⎠ . (2.12)

In Theorem 2.2, S1
i ,. . . ,S J

i refer to the researcher’s “guesses” of the optimal estimating equation.
In practice, it is possible that none of the guesses correspond to the optimal estimating equation. We
demonstrate that even in that case, the EL method is still optimal in the sense that it optimally combines
the guesses S1

i , . . . , S J
i . This fact can be established by considering the following. Expand the left-hand

side of (2.8) in a Taylor expansion around λ = 0 to give

0 =
n∑

i=1

hi (β)

1 + λT hi (β)
=

n∑
i=1

hi (β) −
n∑

i=1

hi (β)hi (β)T λ + op(1)

⇒ λ =
∑n

i=1 hi (β)∑n
i=1 hi (β)hi (β)T

+ op(1). (2.13)

Substitute (2.13) back into the left-hand side of (2.10) to give

n∑
i=1

{
n∑

i=1

pi h
β
i (β)

}{
n∑

i=1

hi (β)hi (β)T

}−1

hi (β) = op(1)

⇒ n−1
n∑

i=1

{
n−1

n∑
i=1

hβ
i (β)

}{
n−1

n∑
i=1

hi (β)hi (β)T

}−1

hi (β) = 0 (2.14)

asymptotically. Expression (2.14) is in the form of the optimal combination of S1
i ,. . . ,S J

i (Small and
McLeish, 1994, p 94).

In practice, finding the solution to the maximum EL via (2.8) and (2.10) may encounter numerical
problems. Furthermore, solving (2.10) requires finding hβ

i (β), which is not straightforward analytically.
Therefore, we follow the method of Mittelhammer and others (2003) by profiling out the Lagrange mul-
tipliers as well, so that for fixed β, the Lagrange multipliers are λ(β) = (λT

1 (β), . . . , λT
J (β))T . Given β,

the first and second derivatives of (2.9) with respect to λ are

n∑
i=1

hi (β)

1 + λT hi (β)
and

n∑
i=1

−hi (β)hi (β)T

{1 + λT hi (β)}2
. (2.15)
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Therefore, with some abuse of notation, for given β and a starting value λ0, the following Newton–
Raphson procedure can be used:

λk = λk−1 +
n∑

i=1

{
hi (β)

1 + (λk−1)T hi (β)

}−1
{

hi (β)hi (β)T

(1 + (λk−1)T hi (β))2

}
, (2.16)

and the solution used as λ(β). Substituting λ(β) back into (2.9) then gives

�(β) =
n∑

i=1

log{1 + λT (β)hi (β)} − n log(n) (2.17)

which can be maximized with respect to β. Hence, the algorithm can be seen as a nested algorithm
with an outside loop that involves maximizing (2.17) with respect to β, while for each β, the inside
loop evaluates λ(β) using (2.16). The overall maximum gives the maximum EL estimate β̂. Therefore,
instead of solving (J + 1)r simultaneous equations, only a function of r parameters needs to be maxi-
mized. This method becomes especially useful when the number of estimating equations, J , is large. In
our simulations, we used a simple modification of Owen’s S program for the inside loop (http://www-
stat.stanford.edu/∼owen/empirical/). The outside loop was performed using the optim function in R.
Details of the program can be found in the supplementary material available at Biostatistics online.

As an example, let µik = β0 + xikβ1, i = 1, . . . , n, k = 1, . . . , K , and β = (β0, β1). Furthermore,
suppose 2 different choices of R(α) are used, namely, the AR(1) with αi j = α|i− j | and the exchangeable
with αi j = α, for all i �= j . Then,

hi (β) = (S1
i (β)T , S2

i (β)T )T =

⎛⎜⎜⎜⎜⎜⎜⎝
1˜T A−1/2

i {R1
i (α)}−1 A−1/2

i {yi − (β01˜ + β1xi )}
xT

i A−1/2
i {R1

i (α)}−1 A−1/2
i {yi − (β01˜ + β1xi )}

1˜T A−1/2
i {R2

i (α)}−1 A−1/2
i {yi − (β01˜ + β1xi )}

xT
i A−1/2

i {R2
i (α)}−1 A−1/2

i {yi − (β01˜ + β1xi )}

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where 1˜ = (1, . . . , 1)T . Furthermore, λ = (λT
1 , λT

2 )T ≡ (λ11, λ12, λ21, λ22)
T and

λT hi (β) = λ111˜T A−1/2
i {(R1

i (α)}−1 A−1/2
i {yi − (β01˜ + β1xi )}

+λ12xT
i A−1/2

i ((R1
i (α))−1 A−1/2

i {yi − (β01˜ + β1xi )}

+λ211˜T A−1/2
i {(R2

i (α)}−1 A−1/2
i {yi − (β01˜ + β1xi )}

+λ22xT
i A−1/2

i {(R2
i (α)}−1 A−1/2

i {yi − (β01˜ + β1xi )}.

3. SIMULATIONS

We carried out a simulation study to evaluate the moderate sample properties of the proposed method.
Two sets of simulations were used:
Set A: xik, i = 1, . . . , n, k = 1, . . . , 10, are independent and identically distributed as N (1, σ 2

x ) with
σx = 1. In this setup, xiks are subject-specific covariates that may change over time and are different
between subjects but there is no time trend.
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Set B: xi = (xi1, . . . , xik) followed MVN(0, σ 2
x R) with R a 10 × 10 matrix with unit diagonal and

off-diagonal elements equal to 0.2 and σx = 0.5. In this setup, the intrasubject covariates are correlated
over time.

Each set of simulations was based on 1000 runs. Samples sizes were n = 100 and 200. The following
model was used for the mean response at time k for the i th subject, E(yik) ≡ µik = β0 − β1xik ,
k = 1, . . . , 10, i = 1, . . . , n. The true values of (β0, β1) were (1, −1). The simulation study shows
that the proposed method is nearly as efficient as the standard GEE using the correct working correlation
model and is superior to the standard GEE using an incorrect working correlation model. We also eval-
uated the empirical coverage probability of 95% confidence intervals of (β0, β1) using Theorem 2 and
found that they are close to the nominal level. Details of the results are given as supplementary material
available at Biostatistics online.

4. APPLICATION TO INDONESIAN CHILDREN’S INFECTION DATA

In this section, we apply the proposed method to data from a longitudinal study of the respiratory infection
rate in a group of Indonesian children (Diggle and others, 2002). The sample consists of 275 preschool
children examined at 3-month intervals for 18 months. The maximum number of visits is therefore K = 6.
In total, the 275 children generated 1200 repeated measures of the response (infection versus no infec-
tion). The primary interest in this study is to determine the relationship between respiratory infection and
Vitamin A deficiency while adjusting for a number of confounders, as listed in Table 1.

We fitted the data by a GEE using an exchangeable (CS), AR(1), and MA(1) working correlation. We
then used the proposed method using R1(α) = CS, R2(α) = AR(1), and R3(α) = MA(1). The results
are given in Table 1. Standard errors of the estimates for GEEMA(1), GEECS, and GEEAR(1) were obtained
from the R routine geese in the geepack package. Those for the proposed method were estimated using
Theorem 1. The results using the 4 methods are quite similar. The conclusions from all methods are the
same, that there is no evidence of increased risk for infection due to xerophthalmia. These conclusions are
similar to those in earlier studies (e.g. Zeger and Karim, 1991; Lin and Carroll, 2001).

As a means to compare the merits of the different models, we used Akaike’s information criterion
(AIC) for GEE as developed by Pan (2001). Let Q(β) ≡ − ∑n

i=1{yi − µi (β)}T V −1
i (yi − µi (β)). Then,

to assess the merits of a model with parameter estimates β̂ obtained using a working correlation matrix
R, the AIC is defined as −2Q(β̂) + 2 trace(�̂−1

I �̂R), where �̂−1
I is the inverse of the variance of the

model coefficients under an independence working correlation and �̂R is that under working correlation
R. The AIC values for the 4 methods are given in Table 2. In Table 2, we also give the second term of
the AIC, that is, 2 trace(�̂−1

I �̂R), which has been shown in Hin and Wang (2009) to be more accurate in
capturing the true correlation structure. The method proposed in this paper has the lowest AIC value and

Table 1. Parameter estimates (SE) using 4 methods to analyze the Indonesian children’s infection data

Parameter Method

GEEMA(1) GEECS GEEAR(1) EL

Intercept −2.371 (0.162) −2.367 (0.162) −2.377 (0.162) −2.370 (0.146)
Age −0.0317 (0.00628) −0.0316 (0.00628) −0.0315 (0.00627) −0.0317 (0.00578)
Xerophthalmia 0.680 (0.431) 0.651 (0.438) 0.717 (0.419) 0.763 (0.372)
Cos (season) −0.543 (0.161) −0.538 (0.160) −0.550 (0.161) −0.537 (0.153)
Sex −0.398 (0.237) −0.396 (0.237) −0.394 (0.237) −0.408 (0.227)
Height for age −0.0488 (0.0244) −0.0493 (0.0243) −0.0478 (0.0244) −0.0498 (0.0224)
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Table 2. Goodness of fit for the 4 methods in the Indonesian children’s infection data analysis

Method AIC 2 trace(�̂−1
I �̂R)

GEEMA(1) 3312.993 12.099
GEECS 3313.351 12.118
GEEAR(1) 3313.575 12.137
EL 3310.236 10.199

the lowest value in 2 trace(�̂−1
I �̂R) and therefore, by these measures, is the most preferred method for this

data set.

5. CONCLUSION AND FUTURE RESEARCH

We have introduced a method for combining GEEs in analyzing longitudinal data so as to improve the effi-
ciency of the GEE method when, as is typically the case in practice, correct specification of the correlation
structure is problematic.

Validity of the GEE approach requires correct specification of the mean function. If some observa-
tions are missing completely at random (Little and Rubin, 1987), the mean function is not affected, and
in those cases, the method proposed here remains valid. However, if the missingness probability depends
on the observed responses (missing at random) or on the missing responses conditional on the observed
responses (nonignorable missingness), then correct modeling of the missingness probability is required
for the GEE approach, and therefore our method, to be valid. However, correct specification of the miss-
ingness probability is a nontestable condition (Gill and others, 1997; Manski, 2003), therefore, if missing
at random or nonignorable missingness are suspected, some sort of sensitivity analysis is necessary.

A related method to the one proposed in this paper is the quadratic inference function (QIF) by
Qu et al. (2000). In their work, the inverse of the working correlation matrix is approximated by a linear
combination of basis matrices, Mi , i = 1, . . . , m, such as

R(α)−1 ≈ a0 M0 + a1 M1 + · · · + am Mm, (5.1)

where M1 = IK×K is an identity matrix and Mi , i = 2, . . . , m, are known symmetric matrices. Instead
of estimating a0, . . . , am directly, they recognized that a GEE based on (5.1) is equivalent to solving the
linear combination of a vector of estimating equations:

gn(β) = 1

n

n∑
i=1

gi (β) = 1

n

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

DT
i A−1/2

i M1 A−1/2
i {yi − µi }

DT
i A−1/2

i M2 A−1/2
i {yi − µi }

...

DT
i A−1/2

i Mm A−1/2
i {yi − µi }

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

which can be performed using the generalized method of moments (Hansen, 1982). Their method gives
β̂QIF = arg minβ Qn(β) ≡ gT

n (β)C−1
n (β)gn(β), where Cn(β) = 1/n2 ∑n

i=1 gi (β)gT
i (β) is an estimate

of the variance of gn(β). We used a modest simulation study to compare our method to QIF and found that
the 2 methods give very similar results throughout when the true correlation structure is AR(1), whereas
for the CS structure there does seem to be a substantial difference in favor of EL when α = 0.7. Detailed
results of the study are given as supplementary material available at Biostatistics online. However, we
view these results as preliminary. More work needs to be done to compare these 2 related methods.
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Finally, our proposed method is motivated on combining GEEs to find an optimal combination of
working correlations for a single data set. There are also situations where multiple longitudinal studies
are to be combined in a single analysis, for example, in a meta-analysis or multicenter study (e.g. Inoue
and others, 2004). In that case, S1(β), . . . , S J (β) may be viewed as GEEs from the different studies that
share a common parameter β of interest. The difference between that situation and the one considered
here is the multiple samples in the former. The method proposed here can be modified using a multiple
sample EL.
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