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We consider a two-server queueing system in which the servers choose their service rate based on the
demand and holding cost allocation scheme offered by the demand generating entity. We provide an
optimal holding cost allocation scheme that leads to the maximum possible service rate for each of a
pooled and a split system. Our results suggest that careful allocation of holding costs can create incentives
that enable minimum turnaround times using a common queue.
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1. Introduction

We first provide a motivating context for the model. Consider
the repair process for aircraft components (such as engines and
gearboxes) at the US Coast Guard (USCG) Aviation Division. When
such components fail, they are frequently sent to outside vendors
(such as GE, Pratt and Whitney, Rockwell or others) for repair
(see [4]). The first step is to diagnose the good parts within
these components and provide credit to the Coast Guard for these
good parts. Here credit refers to the payment from the vendors
to the Coast Guard as “security” for these good parts while the
broken component waits to be repaired. Upon repair, the working
component (with the original good parts installed) is returned to
the Coast Guard, the security for the good parts is reimbursed, and
the vendors get paid for the repaired functioning product based on
predetermined contract terms. Holding cost in this context thus
refers to the financing cost for the good parts and the storage cost
of components while they are waiting for repair and has to be
borne by the vendors. The goal of the Coast Guard is to manage
the repair task allocation and holding cost allocation to vendors
(i.e., deciding the workload and the portion of the financing and
storage costs each vendor is responsible for) in order to incentivize
fast turnaround of components.

The details of the flows are described next. The broken
components may be stored in a common pool and allocated to
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vendors based on a demand allocation scheme or they may be
allocated to vendors upon arrival. They can thus be part of a
common queue or a separate queue of components waiting to be
repaired. In both cases, the realized holding cost has to be allocated
to vendors. The vendor who does the repair is paid the revenue
associated with the repair. It is intuitive that vendors will choose
a rate of repair that maximizes their profits over time, i.e., the net
revenue of holding costs. The goal of this paper is to examine how
holding cost allocation and repair task allocation to vendors affect
vendor repair rates and thus component turnaround time, i.e., the
sum of waiting time plus repair time for components.

We now describe a model that abstracts the context and
provides associated notation. We thus consider a two-server
(where the vendor is a server) queueing system in which the
servers are independent companies who choose their service rate,
given a customer allocation scheme and an associated holding cost
allocation scheme offered by the demand generating entity. The
service times are modeled as exponentially distributed with the
individual servers determining their own rates w; and w,. Let
c(u) denote the cost of serving at a rate u for each server; we
assume c(u) to be convex increasing in . Demand for the service
(broken components) arrives according to a Poisson process of rate
A. A server receives R for each completed service. The holding
cost associated with each unit of demand is based on a positive
marginal holding cost h times, the time between demand arrival
and demand service completion. Note that all demands have to
be served in a finite amount of time; otherwise the servers would
incur infinitely large holding costs. Since we are interested in the
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system’s performance under a competitive environment, we shall
assume that the parameters are such that an exit strategy is never
part of an equilibrium; that is, it is never optimal for a server to exit
the market completely.

Leti,j = 1,2,i # j denote the indices for the servers. Each
server chooses a service rate to maximize profits per unit time.
Though each repair completion will garner a specific holding cost
that will be allocated to the servers, we are interested in the
holding cost per unit time. The holding cost per unit time can be
expressed (using Little’s Law) as the holding cost associated with
the random variable that denotes the time average number of the
outstanding orders charged to server i, denoted by I;. Let L; denote
the expected value of I;. Given a demand and holding cost allocation
rule, server i would choose w; so as to maximize its profit per unit
time denoted as:

(i, uj) = RA; — hL; — (), (1)

where A; depends on the demand allocation rule, and L; depends
on the holding cost allocation rule.

Our main results are as follows: (i) We propose an incentivized
holding cost allocation (IHCA) scheme that leads to the maximum
possible service rate for any given demand allocation and
demonstrate its effect for split systems and pooled systems
in equilibrium. (ii) We develop conditions under which THCA
generates monotonic decreasing holding cost allocations with
service rate increase. (iii) We show that the optimal pooled system
always dominates the optimal split system in terms of system
expected waiting time.

The rest of the paper is organized as follows. Section 2 provides
a literature review and positions this paper with respect to
other existing work. Section 3 identifies the maximum possible
service rate for the split and pooled systems and examines their
relationship. Section 4 describes IHCA in general and applies it
to split and pooled systems. It also provides insights into the
link between problem parameters and the associated holding
cost allocation scheme. Finally Section 5 provides a summary of
conclusions.

2. Literature review

The operational management literature in the area of incentive
effects on queue service rates is nascent but growing. Using
demand allocation as a mechanism to induce faster service, in
the absence of holding costs, has been analyzed in the literature.
For example, [5] consider a two-server system with two types of
demand allocation schemes: (1) balanced allocation under which
jobs, upon arrival, are immediately assigned to one of the two
servers with the goal of balancing the expected waiting time at
each server based on the service rates; and, (2) common queue
allocation (first studied in [7]) under which jobs are only allocated
to idle servers, with each idle server equally likely to be allocated
a job; jobs form a common queue if both servers are busy.
Conventional wisdom suggests that common queue allocation, by
pooling capacity and thus risks, is more efficient in utilizing system
resources and hence typically leads to better system performance
than would balanced allocation (see for example [8]). However,
in the presence of strategic servers i.e., servers who are allowed
to choose their service rates depending on the demand allocation
process, [5] show that the demand allocation mechanism in the
balanced allocation provides an incentive effect on the servers
(since the balanced allocation allocates more demand to the
faster server than would common queue allocation) giving rise to
higher service rates that could lead to shorter expected system
waiting time (including service time) than would common queue
allocation.

Bell and Stidham [1] discuss social versus individual optimiza-
tion and describe a balanced allocation scheme that we will ana-
lyze later. Cachon and Zhang, [3] classify balanced allocation and
common queue allocation as a state-independent system and a
state-dependent system respectively. They do so because balanced
allocation allocates demand to servers based only on their capac-
ities but not on the current state of the system (e.g., information
regarding which server is idle) unlike common queue allocation.
Cachon and Zhang [3] then propose and analyze an optimal state-
independent system, which they label linear allocation.

Lin and Kumar [10] show that threshold allocation scheme is
an optimal state-dependent allocation scheme. Under threshold
allocation, demand is allocated to the busy faster server instead of
the idle slower server as long as the demand in queue at the faster
server is less than a threshold. Unfortunately, as pointed out in [3],
while a numerical method to evaluate the system’s performance
under threshold allocation given non-strategic servers is available
(see [11]), there is neither explicit expression nor analytical
characterization for the optimal threshold for both cases of
strategic and non-strategic servers.

Both [3,5] focus on demand allocation mechanisms and do not
consider holding cost allocation mechanisms. In fact, their models
assume holding costs to be zero. As in the motivating example,
while the total system holding costs for any given vendor capacity
may be fixed, the allocation schemes that attribute the system
holding costs to the vendors may impact the vendor capacity
choices much like the incentive effect of the demand allocation
mechanisms.

3. Model formulation

Following the convention in the literature, we divide the
set of demand allocation policies into two broad classes: (1)
split (or state-independent) systems in which arriving jobs are
immediately assigned to one of the two servers based on their
capacities; and, (2) pooled (or state-dependent) systems in which
jobs are allocated to the servers based on the current state of the
system. We will first identify the maximum service rate for the split
and pooled systems. We will then devise a holding cost allocation
scheme that attains this service rate. Finally we will explore the
nature of the holding cost allocation process.

Our first goal is to determine, for each of the split and pooled
systems, the optimal demand and holding cost allocation scheme.
Our proposed scheme for each system is optimal in the sense
that it leads to the maximum possible symmetric service rates at
equilibrium that can be offered by the servers for each system.
We emphasize that while our goal is to attain the maximum
possible symmetric service rates at equilibrium, we do not
restrict our analysis to just symmetric equilibria when we are
determining the Nash equilibria for the game; a symmetric Nash
equilibrium solution emerges as the unique (and hence symmetric)
above-mentioned maximum possible symmetric service rate. Our
rationale for the optimality of a unique symmetric maximum
possible service rate at equilibrium, if attained, is two-fold. First,
our proposed allocation schemes, as well as those considered in the
literature all culminate in both servers splitting the total demand
rate equally. From a central planner’s perspective, given that both
servers split the total demand rate equally, it is straightforward to
show that for any asymmetric service rate pair (jt1, u,) offered by
the servers, the expected waiting time for each customer can be
improved when both servers offer identical service rate i, where
pu = M2 put it differently, given that both servers split the
total demand rate equally, then our proposed scheme leads to
the maximum possible service rate that each server could offer at
equilibrium. Second, consistent with the literature, a symmetric
equilibrium has a natural appeal and is hence desirable (see for
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example [2]). Indeed, as stated in [6]: “it is more natural for firms
to focus on a symmetric equilibrium, so that it is more likely to
occur than an asymmetric one”. (See more discussion of the focal
principle in [9].)

We first derive the maximum possible symmetric service rates
at equilibrium, us and wp, for a split system and a pooled system
respectively. Suppose that each server has an outside option of
value v; i.e,, a server will not provide any service unless its
expected profit for offering its service is at least v. For simplicity
of the presentation, we shall henceforth assume that v equals
0, although the analysis can be extended readily to the case of
positive v. Notice that the maximum possible symmetric service
rates must be such that the servers would each earn zero profit
given that they are allocated half of the repair tasks (since a larger
service rate is feasible if each server earns positive profit). Hence,
applying standard M/M/1 and M/M/2 queueing results to the
server’s profit function in (1), s and u, must be each respectively
aroot of 7° and 7P presented as follows:

7' (u) =RA/2—h — (). (2)

2 — A

28wy 3)
———— —c(u).

aqo? =4z~

In fact, since our goal is to attain the maximum possible symmetric
service rates at equilibrium, 15 and u, are each respectively the
largest root of ° and 7rP. We note that in the event of positive v, we
only need to add the term —v to both Eqgs. (2) and (3) respectively.

7P(u) =RA/2 —h

Lemma 1. Both 7v° and 7P are concave in p in the range (A/2, 00)
and hence each has at most two real roots larger than A/2.

Lemma 1implies that u, and wp, if they exist, are each the larger
of the two roots of Egs. (2) and (3). Let w,(us) and wp(up) denote
the expected system waiting time corresponding to s and u,, for
the split and pooled system respectively. Note also that 7P > x°.
Consequently, we have

Corollary 1. (i) pp > ps. (i) wp(pp) < ws(us).

Hence, consistent with the conventional wisdom, an optimal
pooled system (that induces p,) always outperforms an optimal
split system (that induces ). A natural question is: What are the
conditions under which us and p, exist? Such conditions can be
derived from Lemma 1, together with the observations that both
7r° and 7P are increasing in R and decreasing h.

Corollary 2. (i) For any given h, there exist RS (h) and R®. (h),

min min
RP . (h) < RS (h), such that s () exists if and only if R > R’

min
(R > RP.). (ii) For any given R, there exist h . (R) and hh.x(R),

(R) < hhax(R), such that ps (1) exists if and only if h < h

S
hmax max

(h < hhax).

Corollary 2 shows that there exists a lower bound for R (for a
given h) and a lower bound for h (for a given R) for each of split
systems and pooled systems, beyond which ps and p, fail to exist;
in this case, it is never economically viable for the servers to offer
any service rate. Since 7” > 7%, it is not surprising to observe from
Corollary 2 that u,, exists over a larger parameter range than does
Ws. This is depicted in Fig. 1.

To avoid the trivial case, we shall assume that the conditions
with respect to the bounds in Corollary 2 hold so that both 1, and
up are well-defined. To facilitate our analysis in the next section,
we present the following comparative static results of us and i,
with respect to R and h.

Lemma 2. Both us and i, are concave increasing in R and concave
decreasing in h.

So far in this section, our results concerning us and u, are
applicable to the general split and pooled systems. Next, we focus
on a specific pooled system and split system, namely, common
queue allocation and balanced allocation. Consequently, whenever
applicable, we shall identify variables associated with each of the
two allocations using their respective letter superscripts: CQ, B.

4. Incentivized holding cost allocation (IHCA) policy

In this section, we provide holding cost allocation policies that
will induce ps and u, and thus generate the optimal service
rate at the servers. Before we introduce our optimal holding
cost allocation policy, IHCA, we first state the following desirable
properties of a holding cost allocation policy. Let | denote the total
number of outstanding orders in the system and let L denote the
expected value of L.

(P1) The holding cost allocation induces u; for the split system
and p, for the pooled system.

(P2) The holding costs allocated to the servers should add up to
h x li.e., the realized average holding cost per unit time; that is,
L+L=L

Both (P1) and (P2) are natural. Another desirable property is
a monotonically decreasing holding cost allocation i.e., the policy
would decrease the holding cost charged as a server increases its
service rate. This is stated as follows:

(P3) gL < 0.

We now present IHCA, under which the holding costs per unit
time charged to each server are hi; or hl; fori,j = 1,2, i # j,as
follows:

if e (uy — i) < =172
if —1/2 <x(uj—pi) <1/2 (4)

0
li = {1/2+K(Mj—uf)
l if k(i — i) > 1/2.
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Note that 0 < I; < [ as desired. Since | depends on the service
rates u; and u;, the associated holding cost allocation is nonlinear
in the service rates. The allocation starts with each server being
allocated half the system holding costs with an adjustment (via the
parameter « ) proportional to the difference between the servers’
service rates. As we shall see later, by choosing an appropriate
value for the parameter «, one could influence the servers so that
a desirable service rate at equilibrium can be achieved. Note also
that clearly Eq. (4) satisfies (P2).

We now derive for any demand allocation schemes (A1, A,) and
holding cost allocation schemes (I;, )|, such that [y + L, = 1
(be it split or pooled systems), conditions under which there is a
unique « that leads to the maximum possible service rate (us for
a split system and p,, for a pooled system) being the unique Nash
equilibrium.

Theorem 1. For any given demand allocation scheme, (11, A;) and
associated system holding cost hL, there is an IHCA holding cost

allocation (14, 1) |, with
} 1 dL
H1=Ha=iLe 2 dp

IHCA
where o = s(p) if it is a split (pooled) system such that if A; and L;

K =k
drq
satisfy the following conditions:

=3 c(ne) —R——

5
d (5)

H1=H2=/e

(C1) i d forany u; >
Bt Wi > I
dui — du e

dL dL

(€2) > — forany p; > u;

dui — du;

then any Nash equilibrium must be symmetric and j;
the Nash equilibria.

= |, is one of

Corollary 3. In addition to conditions (C1) and (C2), if ST’Z JP—
= 0 has exactly one solution in u, then ; = [, is the unique Nash

equilibrium.

Conditions (C1) and (C2) demonstrate the phenomenon of
diminishing returns. Condition (C1) states that the rate of increase
of demand allocation, A; with respect to u; is decreasing in
ui while condition (C2) states that the rate of decrease of L
with respect to p; is decreasing in w;. In general, % can
be one of the Nash equilibria for any systems; conditions (C1)
and (C2) are merely sufficient conditions (but not necessary)
that ensure that asymmetric equilibria do not exist, while
the condition “dd—z lui=us=n« = 0 has exactly one solution in 1"
ensures that there is at most one symmetric Nash equilibrium so
that «'H is indeed the unique Nash equilibrium. It turns out that
conditions (C1) and (C2) and the condition in Corollary 3 are quite
general and are satisfied by pooled systems such as common queue
system and split systems such as linear allocation (with > 1) in
[3], as well as balanced allocation which is presented next.

4.1. Split system — balanced allocation with IHCA policy

If we consider a split system and demand allocation follow-
ing [1] (i.e., under balanced allocation), demand is allocated as
follows:

Note that A; > 0 implies that
mi = pj— A (7)

Applying Corollary 3 to the balanced allocation, we get the
following corollary.

Corollary 4. Under balanced allocation and IHCA, if k = kB~HA =
+lc (us) — 51 - then w; = s is the unique Nash
equilibrium.

Qus A)z'

Note that «3%A can be uniquely determined once the
exogenous parameters such as Rand h (>0) are given. Henceforth,
we shall label the above optimal split system B — IHCA system.

We will examine the impact of problem parameters on the
holding cost allocation policy in Section 4.3.

4.2. Pooled system—common queue allocation with IHCA policy

For the pooled system, we consider the common queue
allocation, which is first studied in [7] for the case without holding
costs. Following [7], for any given service rates p; and u,, the
demand allocated to server i is:

= A Ap? + papa (i + p2) (8)
' Ay + p2)? + 212 (g + 2 — A)

Analogous to Corollary 4, we have

Corollary 5. Under common queue allocation and IHCA, if k =

CQ-IHCA _ 1y _ A5 +4%)
K - h[c (Mp) 2/413(2/411“’/‘)] (4/43_/‘2)2 ’
is the unique Nash equilibrium.

then u; = pp

As before, kQ~™M™ can be uniquely determined once the

exogenous parameters are given. Henceforth, we shall label the
above optimal pooled system CQ — IHCA system.

4.3. Sufficient conditions for the monotonic nonincreasing holding
cost allocation policy P3

So far, we have shown that IHCA policies can satisfy both
properties (P1) and (P2). In this section, we present conditions
under which property (P3) is also satisfied. Note from Eq. (4) that,
since | is decreasing in w;, property (P3) is satisfied if « > 0.
Hence it suffices to determine sufficient conditions under which
kBHCA > 0 and kQ-HA > 0. It turns out that B~ s concave
in R under a very general condition, and is decreasing in h while it
remains positive. This is presented next.

3
Theorem 2. (i) If % dfj(/i‘) < (Law C("))z, then 1B—"H4 is concave in
R. (ii) While kB~ remains posmve, it is decreasing in h.
Consequently, we have,

de(w) de(w)

Corollary 6. (i) Suppose o3 du < (%)2. Then for any given
h, there exist Rj(h) (>R}

>RS..,) and RS (h) such that k34 > 0 if and
only if R} < R < R}, (ii) For any given R, there exists h; (R) such that
kBHA ~ 0 ifand only if h < hS.

The condition & ;(é‘) dfj(l‘j) < (%)2 is rather general and is
satisfied, for example, when c(u) = au" for any positive real
number a and positive integer n. We also note that in all our
numerical experiments, R} is either equal or very close to R} ; so

that this lower bound is not as restrictive as it may appear most of
the time. For example, consider a representative case with c(u) =
0.14%, A =10andh = 2.ThenRS,, = 1.924 whereas R} = 1.935.

min
In contrast to kB~HA while x“@~HA js also decreasing in h as

long as k¢~HA - 0, it is increasing in R under a very general
condition.
. dzc(u) A de(p) A(4pu+A)
Theorem 3. (i) If i " weED e T 2(2u+A)2C('u“) > 0, then
 CQ—IHCA CQ—IHCA

is increasing in R. (ii) While «
decreasing in h.

remains positive, it is
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Consequently, we have,

: d?e(w A dew) | _A4u+a)
Corollary 7. (i) Suppose a2 T ARG du + mc(,u) >

0. Then for any given h, there exists R} (h) such that k@A > 0 if
and only if R > RY. (ii) For any given R, there exists hi;(R) such that
kCQTHA ~ 0 ifand only if h < Kb,

. . s dio(w) A de(w)
Just as in Corollary 6(i), the condition a2 peTEw R Tl
%C(M) > 0 is rather general and is again satisfied, for

example, when c(u) = au" for any positive real number a and
positive integer n. It turns out that for a very general class of c(w),
RP < RP. and hf > hh.x so that k @~1HA > 0,

Theorem 4. Let c(u) = au”, where a > 0 and n is an integer larger
than one. Then @ ~1HA > 0,

In Fig. 2 we present an example that shows the behavior of
kB=IHCA and CQ—HA 35 R and h increase. In this example, we fix
c(w) = 0.1u? and A = 10. In Fig. 2(a), we set h equal to
2 and evaluate xBH@A and QA for R = 2,4,6,8,10. In
Fig. 2(b), we set R equal to 5 and evaluate x5~ and xQ—IHA
for h = 1,5, 10, 15. Fig. 2(a) shows that x “¢~"H jncreases with
R, i.e, it is optimal to charge a lower holding cost to the faster
server as the revenue increases when a common queue is used.
Fig. 2(b) shows that the impact of increasing holding costs is to
decrease the holding cost allocation rate. Note that the graphs are
consistent with Theorems 2-4 as well as Corollaries 6 and 7 and
that k“@¢~HA - 0 for the range of parameters.

4.4. Managerial insights

We have thus provided a holding cost allocation scheme that
permits an entity like the Coast Guard to choose a holding cost
allocation and a demand allocation scheme that permits the
minimum turnaround time for components. To put our holding
cost allocation scheme in perspective, note that for balanced
allocation, Corollary 6 asserts that for moderate R and h, x5~/H% >
0 and thus %’i < 0, while for high R and h, x5~ < 0 and thus

% > 0. An interpretation is that for balanced allocation, when

R and h are moderate, it is not profitable for servers to provide a
high service rate. In this case, to create the appropriate incentive
to offer high service rates, B — IHCA induces high service rate by
assessing a faster server a smaller portion of the overall system
holding costs. However, when R and h are high, the servers are
already motivated to offer high service rate. In this case, to induce
a Nash equilibrium, B — IHCA adjusts incentives by assessing a
faster server, who serves a greater fraction more demand, a higher
portion of the overall system holding costs. We emphasize that

this last observation does not imply that the equilibrium does not
favor high service rate. On the contrary, the high R and h offer
enough incentives for the servers to provide high service rate.
However, to achieve equilibrium, it takes a x5~ (qualitatively
different than «“¢~H) that results in the faster server being
assessed a higher portion of the overall system holding costs.
In contrast to balanced allocation, for a pooled common queue
allocation, Theorem 4 asserts that under a very general class of
c(n), kQMA ~ 0 and thus % < 0 for all R and h. Hence,

for a pooled common queue alllocation, under a very general
class of c(u), CQ — IHCA exhibits monotonicity in that it always
assess a faster server a smaller portion of the overall system
holding costs. We attribute such difference in the behaviors of
kB=HA and ,CQ—HA to the higher efficiency in utilizing system
resources under the pooled queue over the split queue system.
Thus, the holding cost allocation adjusts incentives, by decreasing
or increasing holding cost allocations to the faster server, to enable
the system to operate under the maximum possible service rate.

The insights above also suggest that results with no holding
costs should be used with caution when adapted to systems with
holding costs. We note that «5~H is not well-defined if h = 0,
in which case 7; in Eq. (1), and subsequently the model, reduce
to those considered in [3,5]. They present conditions under which
the unique Nash equilibrium, which generates nonzero profits for
the servers, exists. The corresponding rates are lower than those
we consider because their incentive scheme cannot induce the
maximum service rate. However, the presence of holding cost
and its appropriately chosen allocation scheme can help realize
Wus. Thus, in the presence of holding costs, the system reverts
back to the optimality of pooled service systems. This helps in
reconciling the counterintuitive result in [5] (that a split system
could outperform a pooled system) and the traditional findings in
queueing theory. One additional note of caution is when the linear
allocation scheme in G&Z (considered for h = 0) is extended to a
linear holding cost allocation when h > 0, it is possible to generate
multiple Nash equilibria, thus making attainment of the maximum
service rate difficult.

The key takeaway is that (a) holding cost allocations enable
a large enough set of incentive schemes that can permit
maximum service rate to be generated from servers and (b) the
associated allocations enable the traditional queueing results to be
resurrected as the best option for the system.

5. Conclusions

While our proposed demand and holding cost allocation
schemes lead naturally to a unique and symmetric Nash equilib-
rium, it is possible that other allocation schemes may lead to asym-
metric equilibria. In this case, in order to search for the optimal
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allocation scheme, one may have to extend the notion of maxi-
mum possible symmetric service rates at equilibrium to the case
of asymmetric equilibria. We leave such exploration of optimal al-
location schemes to future research.

Appendix
Proof of Lemma 1. The proof follows by taking the second-order

derivatives of 7° and 7P respectively. O

Proof of Lemma 2. The proofs for ps and p, are similar. Setting
7°(us) = 0, differentiating both sides with respect to R and h, and

with further manipulation, we can verify that & > 0 Pus

dR — dR2 -
d“s < Oand ddh’ﬁs < 0.The above inequalities follow smce | us =
h(zﬂzil‘m2 c’(s) < 0 (because i is the largest root and 7°is
-

concave). O

Proof of Theorem 1. From Eq. (1), 3 d”’ = Rdx’ h(%", —c’(ui). We

first show that asymmetric equ111br1a do not exist. Suppose on the
contrary (w1, u2) is an asymmetric equilibrium and without loss
of generality, let ;1 > . Note that from Eq. (4) and conditions
(C1)and (C2),

0= drmq dm,
dur  dua
dry  day , ,
R\ — ———)+c(u2) —c(u1) <0
dur  dus
ife(uj — wi) < —L/2;
<dA] dk2> h ( dL dL >
R\ ——— )+ |7 ——
= duy  dus dua  dpg
+c'(u2) = ' (u1) <0 if —L/2 < sy — i) < L/2;
da da dL dL
(Bt (- )
dur  dua duy  dpy
¢ (1) — /(1) < 0 if ey — i) > L/2,
a contradiction. Finally, setting d’” |uy=pe=u, €qual zero, we get
k=«kMA O
Proof of Corollary 4. From standard M/M/1 queueing results,
L = uﬁzui/\ It is straightforward to show that Egs. (4) and
( ) satisfy conditions (C1) and (C2) Next, let GB-HA(u) =
dm L uy=p=uy) = R/2 + h(k + e A)z) —c’(n). Then
dGBleCA 4hA
- _ _ CH 0,
du Gu—ap W=

so that GB~H™ is decreasing in 1 and thus a symmetric equilibrium
is unique. Finally, set GE~'H equal zero with y replaced by p, we
getx = kB-HA O

Proof of Corollary 5. From standard M /M /2 queueing results, we
have

_ A + p12)*
(1 + 12 — D2papa (w1 + p2) + Apf + p3)]
It is straightforward to show that Egs. (4) and (8) satisfy conditions

— d 2
(C1)and (C2). Next,let G A () = oL, ey, = Ry +

h(x + ﬁ) — c’(u). Then
dGCQ—IHA A%(4p + A) 8uA Y
=R 2~ 2 2 ¢ <0,
du W Q2u+ A) (4p? — A?)

so that GR~™M™A js decreasing in u and thus a symmetric
equilibrium is unique. Finally, set G¢~™M™ equal zero with u
replaced by j1,, we get k = k@7HA O

Proof of Theorem 2. (i) The following is straightforward to derive.

dycB-HA /, 4hA dus 1
dR :hHC (o) + (2us—A>3] dR _5} (A
2y B-IHCA 1 [] dcw) 24hA dps\?
R T oh|| A |, @us— A (cTR)
” 4hA d? s
+ [c (1) + o _A)J T } (A2)

From (2), setting 77°(us) equal zero and differentiating twice, we
get

s g Zam W) (dus)z
drR2 — c/(1ks)

(A3)

24
Qus—4)?
Substituting (A.3) into (A.2), we have

dus 2
dZKB—IHCA (ﬁ)
"R T Tz ()
@re-mz — s
d3c(p) 24hA , 24
X - c'(us) —h——
dp? Us (us — A)* (2us — A)?

p 4hA p 8hA
- |:C (1s) + Qs — A)3] |:C (s) + Qpts — A)3:|
- C//(Hs)z}
s

2
(%) (d%(m dC(M))
¢ (s)
2A

2A 3

hasar ~ - du
whoere both inequalities make use of | ps = hm — ' (us)
<0.

(ii)
dKB—IHCA

dh

< —

<0

c” (us)
h

1
= 1) —R/2)+ [

4hA d
+ 73:| Ms
Qus — A)

(A4)

Part (ii) follows by observing that [‘H(—”S) + —hd ]d“S is negative

Qus—A4)3
and so is ——[c (1s) — R/2] if kB~HA is positive. O

Proof of Theorem 3. (i) The following are straightforward to
derive.

dKCQ—IHCA 1 Y
TaR TR || Th

8 Ay (34° +4u))
(4ul — A%)3

A(Ap, +A) | dp, A?
2M§(2Mp + A)? 2up2up + A)

dup drz? [ dmP
dR dR du i
A2
. >0, (A8)
2A(4p5+42) ,
4;1_1%7/\2 ¢ (,LLP)

Note from Eq. (3) that
2 I 2upA
B 4(“[))2 — A2
Using (A.5)-(A.7), we have

2
+c(up>} > Se(wy) (A7)
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dKCQ—IHCA
dR
180 [ g D A
hidr |7 T2+ A 2,y + ) S
1d A4, + A
> LAy C//(Mp)—i_ (4up ) c(p)
h dR 12 Q2up + A)?
B ) — th(4M§ + A?)
1p iy + A) b 4p2 — A2
1du, |, Aldu, + 4)
> h dR ¢ (up) + Mg(zﬂp‘i‘A)zC(’up)
- (up) ¢ . O
ppuy + A) ?

(ii) The proof is similar to that of Theorem 2(ii).

Proof of Theorem 4. We shall show that k“¢~H®A ~ 0 for R =
Rb . for R > RV the result then follows from Theorem 3 (i).
Recall that 7P(u) is concave and note that at R = anm, P ()
touches the x-axis at j, and is negative at other values of y; that

is pp satisfies 7P(up) = 0 and d”:li’“ lu, = 0. (For other R larger
than Rb, |, 77 (1) = 0 but d”;li“) i, < 0since u, is the larger root

of P.) Solving these two equations for R and h, we have
g 2auplan + Dy — (n—1)A%]

B A(4p2 + A?)

_ na,u,z_l(4,u,g — A?)?

O 2A(4uk + A?)

Substitute (A.8) and (A.9) into k ¢ ~HA we have

A
CQ—IHCA __
K =
"2y — ARGy + M P
where
Flup) = 8np) — 4(n +2) Ap +2nA%w, + (3n — 2) A°

npp 4y — 4Aw, + A%) + dnp) — 8Au;

+ nAzle +(3n—=2)4A3

> npy(du) — 4Aup + A%) + 2, (4 — 4Ap, + A%)
+(3n—=2)A% (sincen > 2)

> 0.
Hence k@~HA > 0atR=R". . O
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