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Assigning products to and retrieving them from proper storage locations are crucial decisions in minimizing
the operating cost of a unit-load warehouse. The problem becomes intractable when the warehouse faces

variable supply and uncertain demand in a multiperiod setting. We assume a factor-based demand model in
which demand for each product in each period is affinely dependent on some uncertain factors. The distributions
of these factors are only partially characterized. We introduce a robust optimization model that minimizes the
worst-case expected total travel in the warehouse with distributional ambiguity of demand. Under a linear
decision rule, we obtain a storage and retrieval policy by solving a moderate-size linear optimization problem.
Surprisingly, despite imprecise specification of demand distributions, our computational studies suggest that
the linear policy achieves close to the expected value given perfect information and significantly outperforms
existing heuristics in the literature.
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1. Introduction
In a global economy, companies create a competi-
tive advantage by paying substantial attention to their
supply chain design and operations. A warehouse is
a consolidation hub of various products in a supply
chain. A large warehouse that supports a wide range
of businesses may store thousands of different prod-
ucts, which pass through the warehouse in huge vol-
umes daily. The operational efficiency of warehouses
is crucial to the competence of a supply chain. For
excellent reviews of warehouse design and opera-
tions, see Van den Berg (1999), de Koster et al. (2007),
and Gu et al. (2007).

In a unit-load warehouse, all products are stored and
retrieved in unit-load (pallet) quantities. Each pallet
carries items of the same product and is generally
handled singly at a time. Unit-load warehouses can
be found upstream in a supply chain and are linked
to production facilities. For example, §4 describes a
case study that we have done with a unit-load ware-
house owned by a logistics company. The warehouse
stores pallets of products for a manufacturer located
nearby and retrieves these pallets when they are
requested. Unit-load warehouses can also be found in
the reserve areas of large distribution centers, where

products are stored to replenish fast-pick areas in
separate locations within the centers (Bartholdi and
Hackman 2007). For the sake of presentation, each
pallet is moved by a forklift in the following descrip-
tion. Our model is equally suitable for warehouses
using very-narrow-aisle trucks or automated storage
and retrieval systems (Roodbergen and Vis 2009).

Arrivals of products to a unit-load warehouse in
each time period (say, every day) generally follow
some predetermined schedule according to the sup-
pliers’ production plans. In contrast, the number of
pallets of each product departing from the warehouse
is less predictable because of uncertain demand.
Arriving pallets are moved from a receiving dock to
their storage locations. (In some cases, products need
to be palletized before they are stored.) Each pallet is
stored at its assigned location until it is requested and
moved to a shipping dock. A key performance mea-
sure of a unit-load warehouse is the average travel
time to move each pallet from a receiving dock to its
storage location and then to a shipping dock. In the
storage assignment problem of a unit-load warehouse
the storage location of each pallet is determined so
that the expected total travel time is minimized over
a planning horizon.
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To store a pallet, a forklift first moves the pallet
from a receiving dock to the storage location. After
inserting the pallet into its location, the forklift returns
to the receiving dock. To retrieve a pallet, a forklift
moves from a shipping dock to the pallet’s location,
extracts the pallet, and then moves it to the shipping
dock. This travel pattern is known as single-command
travel. We assume the time durations to insert and to
extract each pallet at its storage location are constant
and are ignored in deciding where to store the pallets.

A storage assignment policy is a set of rules that deter-
mines the storage locations of pallets. Two types of
storage assignment policies are commonly used: dedi-
cated storage policies and shared storage policies. A ded-
icated storage policy reserves each storage location
for a specific product, and no other products can be
stored in that location. Because products’ locations are
fixed, they can be memorized. A well-known ded-
icated storage policy is proposed by Heskett (1963,
1964). The author defines the cube-per-order index
(COI) of a product as the ratio of its allocated stor-
age space to its demand rate. Products are ranked in
increasing COI and are assigned sequentially to loca-
tions with the smallest travel time. The inverse of COI
of a product is called the turnover rate of the product.
Thus, this policy is also known as the full turnover pol-
icy (de Koster et al. 2007, Roodbergen and Vis 2009).

Mallette and Francis (1972) consider multiple
receiving and shipping docks and identify the opti-
mal dedicated storage policy. They show that if all
products have the same probability mass function for
selecting a dock, the full turnover policy (or the COI
policy) is optimal. Malmborg and Bhaskaran (1990)
prove the optimality of the COI policy for more com-
plicated situations.

Under a dedicated storage policy, the empty stor-
age locations cannot be reassigned to other products
when the inventory of a product is depleted. To over-
come this problem, one can use a shared storage pol-
icy, which allows an empty location to be assigned
to any product. Thus, a product may be assigned to
different locations over time. A warehouse that imple-
ments a shared storage policy must rely on a com-
puterized system to track products. An example of a
shared storage policy is the random policy, which ran-
domly assigns an arriving pallet to any empty loca-
tion with equal probability.

Another example of a shared storage policy is the
class-based turnover policy proposed by Hausman et al.
(1976), Graves et al. (1977), and Schwarz et al. (1978).
Under this policy, storage locations are grouped into
several classes. Products with the highest turnover
rate are assigned to the class with the smallest aver-
age travel time. A pallet is assigned randomly to any
empty location within a class. Rosenblatt and Eynan
(1989) and Eynan and Rosenblatt (1994) determine

the optimal boundaries of the classes in a rectan-
gular warehouse for the class-based turnover policy.
Thonemann and Brandeau (1998) derive the expected
travel time for the random, COI, and class-based
turnover policies under stochastic demand with a sta-
tionary distribution.

Goetschalckx and Ratliff (1990) study a warehouse
that is perfectly balanced: For every time period,
the number of arriving pallets equals the number of
departing pallets, with identical duration of stay. They
show that if a warehouse is perfectly balanced, an
optimal shared storage policy is the full duration-of-
stay policy, which assigns the pallets with the shortest
duration of stay to the locations with the smallest
travel time. Following the ideas of the class-based
turnover policy, the authors also introduce the class-
based duration-of-stay policy. This policy sorts the pal-
lets in increasing duration of stay and sequentially
assigns them to a predetermined number of classes.
The pallets with the shortest duration of stay are
assigned to the class with the smallest average travel
time. If a warehouse is not perfectly balanced, the
simulation results based on a deterministic environ-
ment suggest that the full duration-of-stay policy out-
performs the class-based turnover policy with two
classes, which in turn outperforms the class-based
duration-of-stay policy with two classes.

Kulturel et al. (1999) compare the class-based
turnover policy with the class-based duration-of-stay
policy using computer simulations for a warehouse
with three classes that face stochastic demand. Their
results echo the findings of Goetschalckx and Ratliff
(1990), which show that the class-based turnover pol-
icy generally outperforms the class-based duration-
of-stay policy. All these papers assume demand for
each product is stationary over the planning horizon,
which is hardly true in reality because of seasonality
or life cycles of products. A heuristic approach to han-
dling nonstationary demand is to constantly reshuf-
fle the products so that those with increased mean
demand are relocated to more economic locations. See
Table 4 of Gu et al. (2007) for references in this area
of research.

In this paper, we study the storage assignment
problem in a unit-load warehouse that faces uncer-
tain demand over a multiperiod planning horizon.
To capture the complexity of demand pattern, we con-
sider a factor-based demand model in which demand
for each product is affinely dependent on some
uncertain factors. This allows us to model different
seasonality effects. Furthermore, unlike most papers
in the literature, we do not restrict the system to
an economic order quantity (EOQ)-based replenish-
ment policy with a fixed-order quantity for each prod-
uct. Instead, we assume the number of arriving pallets
of each product in each period is predetermined
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according to the supplier’s production plan. We adopt
an approach based on robust optimization to solve the
storage assignment problem.

Robust optimization is a promising approach to
address optimization problems under uncertainty.
This is justified by the significant growth in this area
of research (see, for instance, Soyster 1973; Ben-Tal and
Nemirovski 1998, 1999, 2000; Bertsimas and Sim 2003,
2004; Bertsimas et al. 2003; Chen et al. 2008; Chen and
Sim 2009; Goh and Sim 2010; El-Ghaoui and Lebret
1997; El-Ghaoui et al. 1998; Erdoğan and Iyengar
2006). Robust optimization has also been implemented
in a dynamic setting that involves decision making in
stages. Bertsimas and Thiele (2006) propose a robust
optimization solution to a multiperiod inventory con-
trol problem. Similarly, Adida and Perakis (2006) han-
dle demand uncertainty in a dynamic pricing and
inventory control problem by formulating a determin-
istic robust optimization problem.

To better adapt to a multistage decision process,
Ben-Tal et al. (2004) introduce the concept of an
adjustable robust counterpart that permits decisions
to be delayed until information becomes available.
Applications of the adjustable robust counterpart
include Atamtürk and Zhang (2007) and Erera et al.
(2009). Unfortunately, adjustable robust counterpart
models are generally NP-hard. The authors propose
a linear decision rule called affinely adjustable robust
counterpart. Ben-Tal et al. (2005) demonstrate that an
affinely adjustable robust counterpart can be remark-
ably effective in minimizing the worst-case objective
of a multiperiod inventory control problem. Bertsimas
et al. (2010) show that the affinely adjustable robust
counterpart can be optimal in some situations. See
and Sim (2010) demonstrate the effectiveness of piece-
wise linear decision rules in minimizing the expected
objective of a multiperiod inventory control problem
under stochastic demand with correlation.

Our approach to the storage assignment problem is
similar to the affinely adjustable robust counterpart.
We restrict the storage and retrieval decisions to a
linear decision rule to obtain a tractable formulation.
Specifically, our contributions can be summarized as
follows:

1. We have developed a new method for storage
assignment in unit-load warehouses. Our approach
has the following three unique characteristics:
(i) We can handle stochastic demand over multiple
periods without specifying its exact probability distri-
bution. (ii) We assume the number of pallets of each
product arriving in each period can be of any inte-
ger. In contrast, almost all existing models adopt an
EOQ-based replenishment policy with a fixed reorder
quantity for each product. (iii) We consider the capac-
ity constraint of each storage class to determine stor-
age and retrieval decisions. In contrast, all existing
approaches neglect these capacity constraints. A case

study with a company and numerical experiments
based on realistic warehouse settings suggest that our
method requires significantly less travel than the best-
known methods in the literature.

2. We propose a factor-based demand model in
which the demand for each product is affinely depen-
dent on some uncertain factors. The support set of
the uncertain factors is a polytope called the factors
support set. The means of the uncertain factors are
also uncertain. The support set of these uncertain
means is also a polytope called the factor means support
set. In our model we adopt the approach of Gilboa
and Schmeidler (1989) of minimizing the worst-case
expected total cost. In contrast, Ben-Tal et al. (2005)
minimize the worst-case total cost, which is a special
case of our model in which the factor means support
set is the same as the factors support set.

3. We characterize the factors support set to ensure
feasibility in the storage assignment problem under
a linear decision rule. Such characterization is not
required in the inventory control problem of Ben-Tal
et al. (2005), where feasibility is guaranteed for any
bounded support set, which is not the case for the
storage assignment problem.

In this paper, let z̃ denote an uncertain variable and
let z̃ denote an uncertain vector. The support set W
of an uncertain vector z̃ is the smallest convex set
containing all instances of z̃. Let f 1g2 W → <p, for
any integer p, denote function mappings. We use the
notation f 4z̃5≥ g4z̃5 to represent statewise dominance:
f 4z5≥ g4z5 for all z ∈W . Similarly, f 4z̃5= g4z̃5 denotes
statewise equality: f 4z5= g4z5 for all z ∈W . We use y′

to denote the transpose of vector y.

2. Problem Formulation
We consider a unit-load warehouse with single com-
mand travel. We assume a single receiving dock
and a single shipping dock whose locations may
not coincide with each other. As explained later, our
model can be generalized to warehouses with mul-
tiple receiving and shipping docks. For each storage
location, we define its store cost (retrieve cost) as the
travel time for a standard forklift to move from the
receiving (shipping) dock to the location and then
return to the receiving (shipping) dock.

We partition the storage locations using a grid into
different classes. Figure E.1(a) in Appendix E shows
an example. Each rectangle defined by four neighbor-
ing grid points corresponds to a class. Let sj and rj
denote the average store cost and the average retrieve
cost of all locations in class j , respectively, and we
assume each location in class j has store cost sj and
retrieve cost rj , for j = 11 0 0 0 1N . Each class j has capac-
ity cj , which represents the number of locations in
the class. We assume the N th class represents emer-
gency storage, which has infinite capacity (cN = �)
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but incurs high storage and retrieval costs. When a
pallet is assigned to a class, it is stored at an arbitrary
location in the class.

Suppose there are M products indexed by i =

11 0 0 0 1M . We divide the planning horizon into T peri-
ods indexed by t = 11 0 0 0 1 T . For each period, we
assume all pallets from suppliers arrive at the start
of the period and all pallets ordered by customers
during the period are retrieved at the end of the
period. Our goal is to minimize the total expected
cost over the planning horizon. For convenience, let
N = 811 0 0 0 1N 9, N− = 811 0 0 0 1N − 19, M = 811 0 0 0 1M9,
T= 811 0 0 0 1 T 9, and T+ = 811 0 0 0 1 T + 19.

2.1. Deterministic Demand
We begin with a deterministic model in which all
information throughout the entire planning horizon is
available at the start of the first period. Let ati denote
the number of pallets of product i arriving at the start
of period t. Let vt

ij be a decision variable determin-
ing the number of arriving pallets of product i that
are assigned to class j in period t. Because all arriv-
ing pallets must be assigned to some classes, we have
∑

j∈N vt
ij = ati , for i ∈ M1 t ∈ T. Similarly, let dt

i denote
the number of pallets of product i that are ordered in
period t. Let wt

ij be a decision variable determining
the number of pallets of product i that are retrieved
from class j in period t. We have

∑

j∈Nwt
ij = dt

i , for
i ∈M1 t ∈T.

Let xt
ij denote the number of pallets of product i

in class j at the start of period t. We assume there
is no initial inventory in the warehouse, so x1

ij = 0,
for i ∈ M1 j ∈ N. We do not allow backlog of orders
at any time, even after the planning horizon. Thus,
xt
ij ≥ 0, for i ∈M1 j ∈N1 t ∈T+. The inventory of prod-

uct i in class j at the start of period t + 1 is xt+1
ij =

xt
ij +vt

ij −wt
ij , for i ∈M, j ∈N, t ∈T. Because the inven-

tory in each class j must not exceed its capacity, we
have the capacity constraints

∑

i∈M4x
t
ij + vt

ij5 ≤ cj , for
j ∈N−, t ∈T.

The decision variables should be restricted to inte-
gers. However, to yield a tractable formulation, we
relax the integrality constraints and formulate a lin-
ear optimization problem to minimize the total cost
of the warehouse, as follows:

ZD = min
∑

t∈T

∑

i∈M

∑

j∈N

4sjv
t
ij + rjw

t
ij5 (1)

s.t.
∑

j∈N

vt
ij = ati1 i ∈M1 t ∈T3

∑

j∈N

wt
ij = dt

i1 i ∈M1 t ∈T3

xt+1
ij = xt

ij + vt
ij −wt

ij1 i ∈M1 j ∈N1 t ∈T3

x1
ij = 01 i ∈M1 j ∈N3
∑

i∈M

4xt
ij + vt

ij5≤ cj1 j ∈N−1 t ∈T3

xt
ij ≥ 01 i ∈M1 j ∈N1 t ∈T+3

vt
ij1w

t
ij ≥ 01 i ∈M1 j ∈N1 t ∈T0

We assume any shortage will be handled by the
suppliers and will not incur any cost. Thus, there is
always sufficient inventory to meet demand for every
period. Equivalently,

t
∑

�=1

d�
i ≤

t
∑

�=1

a�i 1 i ∈M1 t ∈T0 (2)

Proposition 1. Problem (1) is feasible if and only if
inequalities (2) hold.

Proof. See Appendix A.

Note that the initial conditions x1
ij = 0, for i ∈ M,

j ∈ N are not overly restrictive. Proposition 1 can be
extended to a more general initial setting in which
inequalities (2) become

∑t
�=1 d

�
i ≤

∑t
�=1 a

�
i +

∑

j∈N x1
ij1

for i ∈M1 t ∈T1 where x1
ij ≥ 0 for i ∈M1 j ∈N.

2.2. Factor-Based Demand Model
We adopt a factor-based demand model similar to that
of See and Sim (2010) in which demand for each prod-
uct in period t is affinely dependent on uncertain fac-
tors z̃k, k = 11 0 0 0 1Kt , where Kt represents the number
of such factors used to model demand up to period t.
At the end of period t, the uncertain factors are real-
ized and the values of z̃k, k = 11 0 0 0 1Kt are known.
At the start of period t + 1, new uncertain factors z̃k,
k = Kt + 11 0 0 0 1Kt+1 are introduced and they are real-
ized at the end of period t + 1. Thus, we have 1 ≤

K1 ≤ K2 ≤ · · · ≤ KT . We define Kt
4

= 811 0 0 0 1Kt9, K0
t

4

=

801 0 0 0 1Kt9, z̃
t 4

= 4z̃11 0 0 0 1 z̃Kt
5, and z̃ 4

= z̃T .
Demand for product i in period t is an affine

function of z̃t : dt
i 4z̃

t5
4

= dt10
i +

∑

k∈Kt
dt1 k
i z̃k1 i ∈ M1

t ∈ T1 where dt1 k
i are known coefficients for k ∈ K0

t .
The factor-based demand model can capture corre-
lation of demand for different products across dif-
ferent periods with appropriate values of dt1 k

i . For
example, for a two-period, two-product case with
K1 = 2 and K2 = 4, we have d1

14z̃
15 = d110

1 + d111
1 z̃1 +

d112
1 z̃2 and d1

24z̃
15 = d110

2 + d111
2 z̃1 + d112

2 z̃2 for period 1;
and d2

14z̃
25= d210

1 + d211
1 z̃1 + d212

1 z̃2 + d213
1 z̃3 + d214

1 z̃4 and
d2

24z̃
25 = d210

2 + d211
2 z̃1 + d212

2 z̃2 + d213
2 z̃3 + d214

2 z̃4 for pe-
riod 2. If demand for product 1 is independent of
demand for product 2, then we have d112

1 = d111
2 = 0

and d212
1 = d214

1 = d211
2 = d213

2 = 0. This implies d1
14z̃

15 =

d110
1 + d111

1 z̃1 and d1
24z̃

15 = d110
2 + d112

2 z̃2 for period 1
and d2

14z̃
25 = d210

1 + d211
1 z̃1 + d213

1 z̃3 and d2
24z̃

25 = d210
2 +

d212
2 z̃2 + d214

2 z̃4 for period 2. Furthermore, if demand
for each product is independent across periods, then
we have d211

1 = d212
2 = 0. This implies d1

14z̃
15 = d110

1 +

d111
1 z̃1, d1

24z̃
15 = d110

2 + d112
2 z̃2, d2

14z̃
25 = d210

1 + d213
1 z̃3, and

d2
24z̃

25= d210
2 + d214

2 z̃4. In §4, we will demonstrate how
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a warehouse manager could set up such a demand
model using historical demand data.

In practice, it is often difficult to obtain the actual
distribution of the uncertain factors. As a result, we
need to handle this ambiguity and characterize the
uncertain factors as follows.

Assumption U. The uncertain factors z̃ are random
variables with an unknown distribution. They lie in a full
dimensional polytope support set W called the factors sup-
port set. The factors have uncertain means with a support
set Ŵ called the factor means support set, which is also
a polytope. We define U as a family of distributions of z̃
such that for all P ∈U, we have EP4z̃5 ∈ Ŵ , where EP4z̃5
represents the expected values of z̃ under a distribution P.

Similar to inequalities (2), demand cannot exceed
inventory for each product in any period. Thus,
W and Ŵ are subsets of the set G

4

= 8z ∈

<KT 2
∑t

�=1 d
�
i 4z

�5 ≤
∑t

�=1 a
�
i 1d

t
i 4z

t5 ≥ 01 i ∈ M1 t ∈ T9.
Without loss of generality, we can define the factors
support set as W

4

= 8z ∈ <KT 2 z ∈ G1z ∈ S9, where S
represents other constraints on the factors and can
be expressed as S = 8z ∈ <KT 2 ∃u ∈ <Nb 2 Az+Bu≤ q9,
A ∈ <Na×KT , B ∈ <Na×Nb , and q ∈ <Na . Likewise, we
can define the factor means support set as Ŵ

4

= 8z ∈

<KT 2 z ∈ G1z ∈ Ŝ9, where Ŝ = 8z ∈ <KT 2 ∃u ∈ <N̂b 2 Âz+

B̂u≤ q̂9, Â ∈ <N̂a×KT , B̂ ∈ <N̂a×N̂b , and q̂ ∈ <N̂a . In classi-
cal robust optimization the uncertainty sets used are
typically simple geometric sets such as boxes, ellip-
soids, or their intersections. Such uncertainty sets are
not always subsets of G and can render the prob-
lem infeasible. We assume W and Ŵ are nonempty.
Note that Ŵ ⊆ W ; thus, we may assume Ŝ ⊆ S.
If the factor means are completely unknown, we have
Ŵ =W , which becomes the adjustable robust coun-
terpart model of Ben-Tal et al. (2005).

3. A Robust Optimization Model
We consider a robust optimization model that takes
adjustability into account as information unfolds. For
each period t, the following sequence of events is
repeated: At the start of period t, a decision on where
to store the arriving pallets is made based on the
information captured in z̃t−1. These pallets are then
moved to their assigned storage locations. After the
demand in period t is realized, z̃t becomes avail-
able. A decision on where to retrieve pallets is made,
and then pallets are retrieved from their storage loca-
tions. We define the following adjustable variables:
(1) vt

ij4z̃
t−15 is the number of arriving pallets of prod-

uct i assigned to class j at the start of period t after
z̃t−1 is realized. This decision is made after the pallets
for period t arrive at the warehouse. (2) wt

ij4z̃
t5 is the

number of pallets of product i retrieved from class j at
the end of period t after z̃t is realized. This decision is

made after demand in period t is realized. (3) xt+1
ij 4z̃t5

is the number of pallets of product i in class j at the
start of period t + 1.

Because the actual demand distribution is not
known, we consider a family of distributions of z̃
under Assumption U. To address distributional ambi-
guity, we use the approach by Gilboa and Schmeidler
(1989) that minimizes the worst-case expected total
cost over the family of distributions as follows:

ZR = min max
P∈U

EP

[

∑

t∈T

∑

i∈M

∑

j∈N

4sjv
t
ij4z̃

t−15+ rjw
t
ij4z̃

t55

]

(3)

s.t.
∑

j∈N

vt
ij4z̃

t−15= ati1 i ∈M1 t ∈T3

∑

j∈N

wt
ij4z̃

t5= dt
i 4z̃

t51 i ∈M1 t ∈T3

xt+1
ij 4z̃t5= xt

ij4z̃
t−15+ vt

ij4z̃
t−15−wt

ij4z̃
t51

i ∈M1 j ∈N1 t ∈T3

x1
ij4z̃

05= 01 i ∈M1 j ∈N3
∑

i∈M

4xt
ij4z̃

t−15+ vt
ij4z̃

t−155≤ cj1 j ∈N−1 t ∈T3

xt
ij4z̃

t−15≥ 01 i ∈M1 j ∈N1 t ∈T+3

vt
ij4z̃

t−151wt
ij4z̃

t5≥ 01 i ∈M1 j ∈N1 t ∈T3

vt
ij1x

t
ij ∈FKt−1

1 i ∈M1 j ∈N1 t ∈T3

wt
ij ∈FKt

1 i ∈M1 j ∈N1 t ∈T3

where Fp denotes a family of measurable functions
that map <p to < for any integer p. In problem (3),
the optimal solutions vt

ij and wt
ij are functions repre-

senting the optimal storage and retrieval decisions.

3.1. Linear Storage-Retrieval Policy
It is generally intractable to determine the opti-
mal storage and retrieval decisions for problem (3).
To obtain a tractable formulation, we assume vt

ij and
wt

ij are affine functions as follows:

vt
ij4z̃

t−15= vt10
ij +

∑

k∈Kt−1

vt1 k
ij z̃k1 i ∈M1 j ∈N1 t ∈T3 (4)

wt
ij4z̃

t5=wt10
ij +

∑

k∈Kt

wt1 k
ij z̃k1 i ∈M1 j ∈N1 t ∈T0 (5)

Given the coefficients vt1 k
ij 1 k ∈ K0

t−1, and wt1 k
ij 1 k ∈ K0

t ,
for i ∈M1 j ∈N1 t ∈T, the functions vt

ij and wt
ij defined

above constitute a linear storage-retrieval policy or a lin-
ear decision rule. Under Assumption U, the objective
function of problem (3) becomes

max
P∈U

∑

t∈T

∑

i∈M

∑

j∈N

4sjv
t
ij4EP4z̃

t−155+ rjw
t
ij4EP4z̃

t555

= max
z∈Ŵ

∑

t∈T

∑

i∈M

∑

j∈N

4sjv
t
ij4z

t−15+ rjw
t
ij4z

t550
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By limiting to linear decision rules, problem (3)
becomes the following optimization problem:

ZLR = min max
z∈Ŵ

∑

t∈T

∑

i∈M

∑

j∈N

4sjv
t
ij4z

t−15+ rjw
t
ij4z

t55 (6)

s.t.
∑

j∈N

vt
ij4z̃

t−15= ati1 i ∈M1 t ∈T3

∑

j∈N

wt
ij4z̃

t5= dt
i 4z̃

t51 i ∈M1 t ∈T3

xt+1
ij 4z̃t5= xt

ij4z̃
t−15+ vt

ij4z̃
t−15−wt

ij4z̃
t51

i ∈M1 j ∈N1 t ∈T3

x1
ij4z̃

05= 01 i ∈M1 j ∈N3
∑

i∈M

4xt
ij4z̃

t−15+vt
ij4z̃

t−155≤cj1 j ∈N−1 t∈T3

xt
ij4z̃

t−15≥ 01 i ∈M1 j ∈N1 t ∈T+3

vt
ij4z̃

t−151wt
ij4z̃

t5≥ 01 i ∈M1 j ∈N1 t ∈T3

vt
ij1x

t
ij ∈LKt−1

1 i ∈M1 j ∈N1 t ∈T3

wt
ij ∈LKt

1 i ∈M1 j ∈N1 t ∈T3

where Lp denotes a family of affine functions that
map <p to < for any integer p. Clearly, if problems (3)
and (6) are feasible, we have ZR ≤ ZLR. Chen et al.
(2008) show that a feasible stochastic optimization
problem can become infeasible under a linear deci-
sion rule. Even if problem (3) is feasible, it is not clear
whether there exists a linear decision rule that is fea-
sible. Fortunately, this is not the case for the storage
assignment problem.

Theorem 1. Under Assumption U, problem (6) is fea-
sible and its objective function ZLR is finite. The coefficients
of the optimal linear storage-retrieval policy can be com-
puted by solving the following optimization problem:

ZLR = min g0
+ max

z∈Ŵ

∑

k∈KT

gkzk (7)

s0t0 gk
=
∑

t∈T

∑

i∈M

∑

j∈N

4sjv
t1 k
ij + rjw

t1 k
ij 51 k ∈K0

T 3

∑

j∈N

vt1 k
ij =

{

ati if k = 01
0 otherwise1

i ∈M1 k ∈K0
T 1 t ∈T3

∑

j∈N

wt1 k
ij =

{

dt1 k
i if k ∈K0

t 1

0 otherwise1

i ∈M1 k ∈K0
T 1 t ∈T3

xt+11 k
ij = xt1 k

ij + vt1 k
ij −wt1 k

ij 1

i ∈M1 j ∈N1 k ∈K0
T 1 t ∈T3

x1
ij = 01 i ∈M1 j ∈N3

ht1k
j =

∑

i∈M

4xt1k
ij +vt1k

ij 51 j ∈N1k∈K0
T 1t∈T3

ht10
j +

∑

k∈KT

ht1 k
j zk ≤ cj1

∀z ∈W1 j ∈N−1 t ∈T3

vt10
ij +

∑

k∈KT

vt1 k
ij zk ≥ 01

∀z ∈W1 i ∈M1 j ∈N1 t ∈T3

wt10
ij +

∑

k∈KT

wt1 k
ij zk ≥ 01

∀z ∈W1 i ∈M1 j ∈N1 t ∈T3

xt10
ij +

∑

k∈KT

xt1 k
ij zk ≥ 01

∀z ∈W1 i ∈M1 j ∈N1 t ∈T+3

vt1 k
ij = xt1 k

ij = ht1 k
j = 01

i ∈M1 j ∈N1 k ∈KT \Kt−11 t ∈T3

wt1 k
ij = 01 i ∈M1 j ∈N1 k ∈KT \Kt1 t ∈T0

Proof See Appendix B.

For a special case where the factor means are
known, we have Ŵ = 8E4z̃59. We can translate the
factors such that E4z̃5 = 0. The objective function of
problem (7) reduces to ZLR = ming0, which becomes
the optimal expected total cost under a linear deci-
sion rule.

Note that the objective function and some of the
constraints of problem (7) involve the parameters z
over the support sets Ŵ and W . These are known as
robust counterparts (see, for instance, Ben-Tal and
Nemirovski 1998). Problem (7) can be represented as
a linear optimization problem. For brevity, we present
the derivation of the constraints corresponding to the
robust counterparts involving the set W in the resul-
tant linear optimization problem. Derivation for the
robust counterpart involving the set Ŵ is similar.

Proposition 2. The variables y and r are feasible in
the robust counterpart z′y ≤ r1 ∀z ∈ W , or equivalently
maxz∈W z′y ≤ r , if and only if there exist Ã ∈ <Na and
Át1Ât ∈ <M , for t ∈T, that are feasible in

∑

t∈T

4āt ′Át
+dt10′

Ât5+Ã′q≤ r1

∑

t∈T

4D̄t ′Át
−Dt ′Ât5+A′Ã = y1

B′Ã = 01

Ã ≥ 01 Át1 Ât
≥ 01 t ∈T1
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where āt =
∑t

�=14a
� − d�105, at ′ = 4at1 · · ·atM 5, dt10′

=

4dt10
1 · · ·dt10

M 5, D̄
t
=
∑t

�=1 D
� , and

Dt
=







dt11
1 · · · d

t1Kt
1 0 · · · 0

000 · · ·
000

000 · · ·
000

dt11
M · · · d

t1Kt
M 0 · · · 0







∈ <
M×KT 0

Proof. See Appendix C.

We use Proposition 2 to transform problem (7) to
a linear optimization problem. Because the resultant
formulation is heavy in notation, we present it in
Appendix D.

3.2. Restricted Linear Storage-Retrieval Policy
The large number of decision variables needed to
characterize the linear storage-retrieval policy in prob-
lem (7) impedes practical implementations. According
to Equation (5), the number of variables needed to
determine the retrieval decisions wt

ij4z̃
t5 under the lin-

ear decision rule is �Kt�+1, where �Kt� =Mt. The full
implementation of the linear decision rule is memory
intensive and limits the problem size we could han-
dle. To address this issue, we propose the following
restricted linear storage-retrieval policy or restricted linear
decision rule:

vt
ij4z̃

t−15= vt10
ij +

∑

k∈Ki1 t−1

vt1 k
ij zk1 i ∈M1 j ∈N3 (8)

wt
ij4z̃

t5=wt10
ij +

∑

k∈Ki1 t

wt1 k
ij zk1 i ∈M1 j ∈N3 (9)

where Ki1 t = 8k ∈ Kt2 d
t1 k
i 6= 09. Note that under the

factor-based model, the demand for product i in
period t can be written as dt

i 4z̃
t5= dt10

i +
∑

k∈Ki1 t
dt1 k
i z̃k,

i ∈ M1 t ∈ T. In practice, most of the coefficients dt1 k
i

are zeros; thus, �Ki1 t� is small compared with �Kt�. For
example, if demands are independent across products
and periods, then �Ki1 t� = 1. To change from the lin-
ear decision rule to the restricted linear decision rule,
some of the decision variables are forced to zeros.
Specifically, the decisions vt

ij4z̃
t−15 and wt

ij4z̃
t5 under

the restricted linear decision rule only respond to fac-
tors associated with the realized demand of product i
and are not affected by factors of other products.
Therefore, the restricted linear decision rule can result
in a much smaller optimization problem and greatly
improve scalability. Although the restricted linear
decision rule may be inferior to the linear decision
rule, the following result ensures that the restricted
linear decision rule remains feasible in problem (3).

Proposition 3. Under Assumption U, there exists a
restricted linear storage-retrieval policy in the form of
Equations (8) and (9) that is feasible for problem (3).

Table 1 Warehouse Example

(a) Warehouse layout

Class Storage cost Retrieval cost Capacity

1 10 10 300
2 50 50 500
3 11000 11000 �

(b) Number of arrivals and demand for each product in each period

t = 1 t = 2

i a1
i d1

i 4z̃
1
5 a2

i d2
i 4z̃

2
5

1 300 100 + z̃1 50 50 + z̃3

2 300 10 + z̃2 0 200 + z̃4

Proof. The proof of feasibility is the same as that
of Theorem 1 and is omitted for brevity. �

Our numerical studies suggest that the restricted
linear decision rule greatly extends the problem size
we could handle. Furthermore, it significantly outper-
forms existing heuristics in the literature and achieves
close to the expected value, given perfect demand
information.

3.3. An Example
We illustrate our approach using a small example
with two products and three classes. Table 1(a) shows
the layout of the warehouse with class 3 represent-
ing emergency storage. We assume demand for each
product in each period is independent of other prod-
ucts and periods. Table 1(b) gives a problem instance
for a planning horizon of two periods. Assume the
uncertain factors z̃11 0 0 0 1 z̃4 have support set W =

8z2 �z�� ≤ 109 and zero means so that Ŵ = 809.
It is easy to verify that there is enough inventory to
meet demand for all z ∈ W in each period. Thus, we
have W ⊆G.

The robust counterpart z′y ≤ r1 ∀z ∈ W is simply
10
∑4

k=1 �yk� ≤ r , which can be easily transformed to
linear constraints. The storage assignment problem
under linear storage-retrieval policies is

min
2
∑

t=1

2
∑

i=1

3
∑

j=1

4sjv
t10
ij + rjw

t10
ij 5 (10)

s.t.
3
∑

j=1

vt1 k
ij =

{

ati if k = 01
0 otherwise1

i = 1121 k = 01 0 0 0 141 t = 1123
3
∑

j=1

wt1 k
ij =

{

dt1 k
i if k ∈K0

t 1

0 otherwise1

i = 1121 k = 01 0 0 0 141 t = 1123

xt+11 k
ij = xt1 k

ij + vt1 k
ij −wt1 k

ij 1 i = 1121 j = 11 0 0 0 131

k = 01 0 0 0 141 t = 1123
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x1
ij = 01 i = 1121 j = 11 0 0 0 133

2
∑

i=1

(

4xt10
ij + vt10

ij 5+ 10
4
∑

k=1

�xt1 k
ij + vt1 k

ij �

)

≤ cj1

j = 1121 t = 1123

vt10
ij − 10

4
∑

k=1

�vt1 k
ij � ≥ 01

i = 1121 j = 11 0 0 0 131 t = 1123

wt10
ij − 10

4
∑

k=1

�wt1 k
ij � ≥ 01

i = 1121 j = 11 0 0 0 131 t = 1123

xt10
ij − 10

4
∑

k=1

�xt1 k
ij � ≥ 01

i = 1121 j = 11 0 0 0 131 t = 11 0 0 0 133

vt1 k
ij = xt1 k

ij = 01 i = 1121 j = 11 0 0 0 131

k = 24t − 15+ 11 0 0 0 141 t = 1123

w11 k
ij = 01 i = 1121 j = 11 0 0 0 131 k = 3140

We only need to solve problem (10) once to obtain
the optimal vt1 k

ij and wt1 k
ij , which represent an optimal

linear policy. Note that we can reduce the size of the
problem by removing the variables that are assigned
to zeros. The corresponding problem under restricted
linear policies would require the variables v212

1j , v211
2j ,

w112
1j , w111

2j , w212
1j , w211

2j , w214
1j , and w213

2j for all j to be set
to zeros. In this example, the optimum solutions for
both linear and restricted linear policies coincide.

Let vt1 k and wt1 k denote 2×3 matrices with vt1 k
ij and

wt1 k
ij as their 4i1 j5 entries respectively. Solving problem

(10) gives

v110
=





90 210
210 90

0 0





′

1 v11 k
= 01 k = 11 0 0 0 140 (11)

The matrix v110 determines the number of pallets of
product i assigned to class j in period 1. For example,
there are 90, 210, and 0 pallets of product 1 assigned
to classes 1, 2, and 3, respectively.

The solution to problem (10) also determines the
coefficients w11 k

ij as follows:

w11 0
=





90 0
10 10
0 0





′

1 w111
=





0 0
1 0
0 0





′

1

w112
=





0 0
0 1
0 0





′

1 w11 k
= 01 k = 3140 (12)

Given these coefficients, once demand in period 1
is realized, we can determine the retrieval decisions

for period 1 according to Equation (5): w1
ij4z̃

15 =

w110
ij + w111

ij z̃1 + w112
ij z̃2. Suppose in period 1 the real-

ized demands for products 1 and 2 are 95 and 18,
respectively. According to Table 1(b), the correspond-
ing realized factors are z̃1

= 4z̃11 z̃25 = 4−5185. Using
product 1 for illustration, we have




w1
114z̃

15
w1

124z̃
15

w1
134z̃

15



=





90
10
0



+





0
1
0



 4−55+





0
0
0



 485=





90
5
0



 0

Thus, in period 1 we should retrieve 90, 5, and 0 pal-
lets of product 1 from classes 1, 2, and 3, respectively.

Similarly, given the realized factors z̃1, we can
determine the storage decisions for period 2 accord-
ing to Equation (4): v2

ij4z̃
15= v210

ij +v211
ij z̃1 +v212

ij z̃2. From
the solution of problem (10), we have

v210
=





50 0
0 0
0 0





′

1 v21 k
= 01 k = 11 0 0 0 140 (13)

The storage decisions for product 1 in period 2 are




v2
114z̃

15
v2

124z̃
15

v2
134z̃

15



=





50
0
0



+





0
0
0



 4−55+





0
0
0



 485=





50
0
0



 0

Thus, we should store 50, 0, and 0 pallets of product 1
in classes 1, 2, and 3, respectively.

The coefficients w21 k
ij for the retrieval decisions are

given as follows:

w210 =





45 200
5 0
0 0





′

1 w21 k = 01 k = 1121

w213 =





005 0
005 0
0 0





′

1 w214 =





0 1
0 0
0 0





′

0

(14)

We can determine the retrieval decisions for period 2
based on these coefficients according to Equation (5):
w2

ij4z̃
25 = w210

ij +w211
ij z̃1 +w212

ij z̃2 +w213
ij z̃3 +w214

ij z̃4. Sup-
pose in period 2 the realized demands for prod-
ucts 1 and 2 are 56 and 198, respectively. According
to Table 1(b), the corresponding realized factors are
z̃2

= 4z̃11 z̃21 z̃31 z̃45 = 4−518161−25. Using product 1
for illustration, we have




w2
114z̃

25
w2

124z̃
25

w2
134z̃

25



 =





45
5
0



+





0
0
0



 4−55+





0
0
0



 485

+





005
005
0



 465+





0
0
0



 4−25=





48
8
0



0

Thus, in period 2 we should retrieve 48, 8, and 0 pal-
lets of product 1 from classes 1, 2, and 3, respectively.
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The procedure of using the optimal restricted lin-
ear policy is summarized as follows: We first obtain
the coefficients vt1 k

ij and wt1 k
ij by solving a linear opti-

mization problem. After demand is realized in each
period t, we derive the factors z̃t and then use them to
determine the storage and retrieval decisions accord-
ing to Equations (8) and (9).

4. Implementation in Practice:
A Case Study

We perform a case study with a major third-party
logistics provider in Singapore to demonstrate the
applicability of our method. The company owns a
unit-load warehouse that provides storage services for
its client. All other activities, such as demand fore-
casting, customer order processing, and production
scheduling, are done by the client. All pallets are han-
dled by a fleet of 15 forklifts. The warehouse pays
its employees by the hour and charges the client by
volume for storing and handling the products.

The warehouse operates in two shifts per day.
It receives and puts away products during the day
shift between 8:00 a.m. and 5:30 p.m. Sixty percent of
the arriving pallets are from the client’s manufactur-
ing plant located nearby, and the rest are imported
from foreign countries. The warehouse is informed
one week in advance about the arrivals of pallets,
with 98% accuracy. The day shift is supported by
30 employees who not only receive and put away
pallets, but also batch customer orders that are trans-
mitted from the client. All orders arriving during the
day shift are retrieved in the following night shift,
which has 10 employees working between 8:00 p.m.
and 6:00 a.m. In our model, we set each period as a
day so that the warehouse’s business processes are in
line with our assumption: All arriving pallets in each
period are stored before any pallets are retrieved for
demand occurring in the period.

Figure E.1(a) in Appendix E shows the warehouse’s
layout. The storage area is 90 meters wide with 10
aisles. Each aisle is 65 meters long. There are 18 single-
deep racks. Every aisle has a rack on each side except
the end aisles. Each rack contains 48 sections, and
each section has four to five levels. Only one pallet
can be stored in each level of a section. All levels
of the same section belong to the same class because
they have identical storage cost and identical retrieval
cost. The warehouse is partitioned into 10 classes
(thus, N = 11) with a grid shown in Figure E.1(a).

We have collected the actual numbers of arriving
and departing pallets of each product in each period
for 48 weeks. Figure 1(a) sorts the 410 products in the
warehouse according to their annual demands. The
first 122 products account for about 80% of the total
annual demand. The warehouse operates six days a

Figure 1 Product Characteristics
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Notes. (a) The distribution of annual demands is strongly skewed. (b) The
autocorrelation of the total daily demand suggests a weekly seasonality
pattern.

week, so a natural choice for the length of planning
horizon is six periods (that is, weekly planning). Fig-
ure 1(b) shows the autocorrelation of the total daily
demand for all products over time. The peaks at lags
6, 12, and 18 suggest a weekly seasonality pattern.

We assume no correlation between different prod-
ucts. Using the factor-based demand model, we
assume the demand for product i in period t is
dt
i 4z̃

t
i5 = dt10

i + z̃ti , where dt10
i represents the sample

mean of demand. We assume the uncertain factor z̃ti
falls in the range 6max8−dt10

i 1−3� t
i 913� t

i 7, where � t
i is

the sample standard deviation of demand.1

We compare the restricted linear decision rule (RLR)
with the static class-based turnover policy (TOS), the
dynamic class-based turnover policy (TOD), and the
class-based duration-of-stay policy (DOS). We eval-
uate the actual cost of each policy using the data
given. The implementation of each policy requires
the means and standard deviations of daily demands.

1 Note that it is difficult to estimate the support of demand statis-
tically. Nevertheless, in our computational studies, we found that
the solution is rather insensitive to the size of the support set. Thus,
we only report the results of this case.
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To achieve this, we use the first 16 weeks of data to
estimate these parameters in each period of week 17.2

We then implement the policy for week 17 to evaluate
its actual cost. Following a rolling-horizon principle,
the demand parameters for week 18 can be estimated
based on the data from week 2 to week 17, and so on.

For the RLR, we round any nonintegral vt
ij and wt

ij

to the nearest integers. If the rounded solution does
not match the actual number of arriving (departing)
pallets, then we store (retrieve) any additional pallets
in (from) the most economic class available. For exam-
ple, if demand for a product is 20 but the rounded
solution is to retrieve 19 pallets from class 1 and 0
from other classes, then we retrieve 1 more pallet from
the most economic class that contains the product.

For the TOS policy, define the static turnover rate as
6
∑T

t=14a
t
i + dt10

i 5/�t
i7/T for each product i, where �t

i is
the average number of pallets of product i in period t.
Products are ranked according to their static turnover
rates, and the product with the highest static turnover
rate is assigned to the most economic class. When a
product is requested, it is retrieved from the most eco-
nomic class containing the product. The TOD policy
is similar to the TOS policy, except in each period t
the former ranks products according to their dynamic
turnover rates 4ati + dt10

i 5/�t
i . For the DOS policy, we

use the ADAPTIVE algorithm by Goetschalckx and
Ratliff (1990). We also compare with a deterministic
policy (DET), which is based on the optimal solu-
tion of problem (1). This policy is implemented with
a rolling horizon using the realized demands of the
past period and the mean demands of the coming
periods. We implement all policies in Java program-
ming language and solve the linear programs using
CPLEX 10.2 on a personal computer with a 3.06 GHz
Intel Core 2 Duo processor with 4 GB of SDRAM. For
the RLR, it takes about 20 minutes to create a weekly
plan, which is acceptable for the company.

The cost of each policy is computed based on the
storage and retrieval costs of each class. Table 2 shows
that the average daily cost under the RLR is signifi-
cantly lower than that of other heuristics in this case
study from week 17 to week 48. The table also shows
that our method has the lowest 85%, 90%, and 95%
quantiles of daily cost among all the policies. Figure 2
shows the percentage of days that have cost less than
a value s under each policy. The daily cost of the RLR
is first-order stochastically dominated by that of other
heuristics. This strongly indicates that the RLR gener-
ally results in a lower daily cost than other heuristics.

2 Because of the weekly seasonality pattern, we determine the
mean dt10

i and the standard deviation � t
i of demand based on the

corresponding day of each of the previous weeks. For example,
we use the actual demand for product i on Mondays of the first
16 weeks to estimate its mean demand on Monday of week 17.

Table 2 Daily Cost Profile Under Each Policy for the Case Study from
Week 17 to Week 48

Average 85% quantile 90% quantile 95% quantile
daily cost of daily cost of daily cost of daily cost

RLR 912201164 1513881911 1518321972 1715731184
TOS 1010141759 1613671066 1711571081 1819681993
TOD 1010441606 1614371146 1712401289 1819931355
DOS 919511695 1614151298 1618831752 1818551040
DET 917301629 1519261992 1617051780 1812431095

We will see that this superiority of the RLR in daily
cost results in substantial savings in the long run.

We benchmark all policies against the expected value
given perfect information (EV � PI), which is determined
by resolving problem (1) every time we enter a new
week. For example, to find EV � PI for week 17,
we solve problem (1) with the actual demands in
week 17. As we enter week 18, we resolve prob-
lem (1) with the actual demands in weeks 17 and 18
to obtain a new EV � PI , and so on. We define percent-
age efficiency of a policy as 4EV � PI5/Z× 100%, where
Z represents the cost given by the policy. An effi-
cient policy would have high percentage efficiency.
Figure 3(a) shows that the cumulative cost of the RLR
is consistently lower than that of other heuristics and
is close to EV � PI . Figure 3(b) shows that the RLR
significantly outperforms other heuristics in percent-
age efficiency. For example, in week 48 it is about 8%
more efficient than all the existing heuristics, which
have similar costs. This strongly suggests that the RLR
can generate substantial savings over other heuristics
in the long run. Note that the DET policy is signif-
icantly worse than the RLR but more efficient than
other heuristics. We also try different starting dates
and durations to estimate the demand parameters
and find that the RLR consistently outperforms other
heuristics.

Figure 2 Restricted Linear Decision Rule’s Lower Daily Cost
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Figure 3 Cumulative Costs and Percentage Efficiencies
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Notes. (a) The RLR outperforms other heuristics in cumulative cost. (b) The
RLR is significantly more efficient than other heuristics.

It is noteworthy that replenishments and fulfill-
ments may occur simultaneously and continuously
over time in other warehouses. We can approximate
continuous time using shorter periods. To obtain a

Table 3 Average Cost and Percentage Efficiency of Each Policy Under Different Layouts

Average cost (×108)/percentage efficiency (%)

Layout M N Time (sec) RLR TOS TOD DOS DET

1 11500 11 441669 3002400295/9100 4503400275/6006 3408400715/7901 3508400295/7608 3105400195/8703
600 19 191793 1109400985/9203 1807400705/5806 1506400975/7005 1407410875/7406 1206400735/8702
300 33 211699 8083400685/9201 1406400775/5507 1005400665/7705 1004400675/7709 9036410695/8609

80 111 171387 2011400275/9705 2084400085/7205 2023400805/9203 2053410145/8105 2023400165/9204

2 11500 11 451718 3001400575/9102 4409400325/6101 3404400175/7906 3506400015/7700 3102400375/8800
600 19 151498 1104400795/9007 1805410205/5508 1502410755/6800 1404410205/7106 1201400865/8509
300 33 251353 8085400945/9108 1405400865/5601 1004400545/7709 1004400475/7801 9023400765/8800

80 111 171633 2014400645/9703 2081400495/7401 2024400985/9208 2053400745/8203 2022400105/9305

3 11500 11 431319 3007400015/9205 4507400205/6201 3504400575/8002 3605410245/7709 3205400165/8706
600 19 171150 1205410035/9301 1900410905/6104 1600400645/7208 1502410135/7606 1301410515/8805
300 33 191166 9010400045/9203 1408400015/5609 1007410465/7804 1007410295/7808 9058400705/8707

80 111 171470 2021400855/9700 209410405/7308 2031410825/9205 2059410735/8206 2032400925/9204

solution quickly, we can set a shorter planning hori-
zon and solve the problem more frequently.

5. Numerical Studies on More
General Cases

We test the performance of the policies in more gen-
eral settings by considering a warehouse shown in
Figure E.1(b) in Appendix E. It has 50 single-deep
racks, and each rack contains 80 sections. Depend-
ing on the number of products in the warehouse,
the number of levels in each section ranges from
one to six. Only one pallet can be stored in each
level of a section. We consider three layouts. The
first is a U-flow layout shown in Figure E.1(b), in
which the receiving dock R and shipping dock S
coincide. The second and third layouts are shown
in Figures E.1(c) and (d), respectively. The receiving
and shipping docks in the latter two layouts are not
located at the same point.

We perform simulations to compute the average
cost of each policy for T = 7. We create 500 repli-
cations of arrival and demand data, which is suffi-
cient to ensure that the standard error is within 2% of
the average cost for each policy. To compute EV � PI ,
we first use the realized demand in each replication
to solve problem (1) and then use the average cost
over all replications as EV � PI . In the simulations we
assume the uncertain factors z̃k follow a uniform dis-
tribution U4−q1 q5, where q is a parameter. Thus, we
have W = 8z2 �z�� ≤ q9 and Ŵ = 809. Table 3 shows
the average cost and percentage efficiency of each pol-
icy for q = 5. The subscript of each cost value repre-
sents the standard error in percentage of the average
cost. The fourth column shows the computational
times of the RLR. The RLR significantly outperforms
other heuristics and gives results close to EV � PI . The
savings given by the RLR over other heuristics can be
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as high as 36% (for layout 1, M = 300, and N = 33).
In general, the DET policy outperforms the TOD
and DOS policies, which outperform the TOS pol-
icy. An extensive set of experiments suggests that the
RLR is consistently better than other heuristics and
its costs are very close to EV � PI for wide ranges of
N , M , q, T , and different class generation methods.
We do not include all the results here because of space
limitations. Interested readers can refer to supplemen-
tary materials at http://www.mysmu.edu/faculty/
yflim/sup.pdf.

6. Understanding the Policies
To explain the differences between the policies, we
use the example in §3.3 to compare their decisions.
Consider an extreme case, where z̃k = −10, for k =

11 0 0 0 14. The realized demands in periods 1 and 2
are (9010) and (401190), respectively. Table 4 shows
the inventory level of each product in each class after
storage and retrieval are done at the start and the end,
respectively, of each period under each policy. The
costs of the storage and retrieval decisions associated
with each class are also shown.

Under the TOS policy, product 2 has higher pri-
ority than product 1. Consequently, all arriving pal-
lets of product 2 are stored in class 1 at the start
of period 1. On the contrary, the TOD policy ranks
product 1 higher in period 1 and stores all its arriv-
ing pallets in class 1. Both policies assign all loca-
tions of the most economic class to a single product
in period 1. This strategy is myopic because vari-
ability in arrivals and demands means the storage
and retrieval activities in the subsequent periods may

Table 4 Inventory Levels and Costs of Each Class Under Different Policies

t = 1 t = 2

Start End Start End

Product\class 1 2 3 1 2 3 1 2 3 1 2 3 Total cost

TOS
1 0 300 0 0 210 0 0 260 0 0 220 0
2 300 0 0 300 0 0 300 0 0 110 0 0
Cost 31000 151000 0 0 41500 0 0 21500 0 11900 21000 0 281900

TOD
1 300 0 0 210 0 0 260 0 0 220 0 0
2 0 300 0 0 300 0 0 300 0 0 110 0
Cost 31000 151000 0 900 0 0 500 0 0 400 91500 0 291300

DOS
1 150 150 0 60 150 0 110 150 0 70 150 0
2 150 150 0 150 150 0 150 150 0 0 110 0
Cost 31000 151000 0 900 0 0 500 0 0 11900 21000 0 231300

RLR
1 90 210 0 0 210 0 50 210 0 10 210 0
2 210 90 0 210 90 0 210 90 0 20 90 0
Cost 31000 151000 0 900 0 0 500 0 0 21300 0 0 211700

only involve the other product, which is stored at
locations with higher costs. To absorb the variability,
we should share the most economic storage locations
between different products. The DOS policy partially
addresses this issue by evenly allocating the locations
of class 1 to the two products in period 1. However,
as we can see from Table 4, this policy does not give
the best solution.

Assuming that we know the above realized
demands for products 1 and 2, what is a good pol-
icy to store and retrieve pallets? To minimize cost,
one should store at least 90 pallets of product 1 in
class 1 at the start of period 1 such that demand
for this product in period 1 can be fully satisfied by
class 1. This also ensures sufficient space in class 1
to accommodate all arrivals of product 1 in period 2.
In contrast, because there is no arrival of product 2
in period 2, one should store at least 190 pallets of
product 2 in class 1 at the start of period 1. Using this
initial allocation, except the storage in period 1, class 2
is not involved for the rest of the planning horizon.
All policies in Table 4 fail to satisfy this initial alloca-
tion requirement except the RLR, which stores 90 and
210 pallets of products 1 and 2, respectively, to class 1
in period 1. This indicates the superiority of the RLR
over other heuristics.

Both the TOS and DOS policies consider only
the aggregated arrival and demand information for
each product, whereas the TOD policy relies on
the detailed information in each individual period.
In contrast, the RLR stores and retrieves pal-
lets according to coefficients in Equations (11)–(14),
which are obtained by solving problem (10). This
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optimization problem considers both aggregated
information (over the entire planning horizon) and
detailed information (in each period). In addition, it
also takes the capacity constraint of each class and
demand uncertainty into account. As we can see in
Table 4, the RLR indeed gives the lowest total cost in
this example.

7. Conclusions
Minimizing travel in a unit-load warehouse is non-
trivial because replenishments may not follow a sim-
ple rule, as they typically depend on the production
plans and status of the suppliers. The problem is fur-
ther complicated by the fact that products face uncer-
tain demand over multiple periods. It is therefore
very challenging to find an efficient storage-retrieval
policy for the warehouse.

Existing heuristics in the literature such as the
turnover-based and the duration-of-stay-based poli-
cies do not consider variability of both inflow and
outflow of products. Furthermore, these heuristics
neglect the capacity of each storage class in the ware-
house. Although these heuristics are easier to imple-
ment in practice, our results suggest that remarkable
savings can be obtained by taking into account the
variability of product flow and the capacity con-
straints of storage classes.

To handle variability of product flow, we consider
a factor-based demand model in which demand for
each product in each period is affinely dependent
on some uncertain factors. We only require informa-
tion on the mean and the bounds of each uncertain
factor. We formulate the storage assignment prob-
lem in a unit-load warehouse as a robust optimiza-
tion problem that minimizes the worst-case expected
total cost subject to the capacity constraints of stor-
age classes. By limiting to restricted linear decision
rules, we obtain a storage-retrieval policy by solving
a moderate-size linear program.

A case study with a logistics company suggests
that the restricted linear storage-retrieval policy can
be obtained in a reasonable amount of time for
weekly planning and it generates substantial sav-
ings over other heuristics. A detailed analysis on
daily costs shows that the restricted linear policy,
on average, significantly outperforms other heuris-
tics. The case study strongly supports the claim
that our method is implementable and promising for
practical use.

The restricted linear policy outperforms the class-
based turnover and the class-based duration-of-stay
policies in all numerical experiments that we conduct
based on realistic warehouse settings. In some exper-
iments, the savings by the restricted linear policy can
be as high as 36%. Surprisingly, despite imprecise

specification on demand distributions, the restricted
linear policy attains close to the expected value, given
perfect information (a lower bound of the optimal
expected cost) in many cases.

A detailed observation of the storage and retrieval
decisions reveals that the restricted linear policy
outperforms other heuristics by carefully allocating
the storage space of economic classes to different
products. This is accomplished by considering vari-
able arrivals and stochastic demands for products and
the capacity constraints of storage classes, which are
ignored by the existing heuristics.

Our model can be generalized to a warehouse with
multiple receiving and multiple shipping docks as
follows: Change ati to ati1 � , where ati1 � represents the
number of arriving pallets of product i at dock � in
period t. Likewise, we can do so for the demand dt

i

and the decision variables vt
ij and wt

ij .
Although our numerical results are based on a

storage class generation method that partitions the
warehouse using a grid, further numerical studies
reveal that the performance of the restricted lin-
ear policy relative to other heuristics is not sensi-
tive to the class generation method used. Details can
be found at http://www.mysmu.edu/faculty/yflim/
sup.pdf.

Finally, we emphasize that the computational time
to solve large linear programs could be further re-
duced in the future through continuing improvements
in linear optimization. We would also like to high-
light that although the formulation of robust opti-
mization models can be rather tedious, it has been
made easier because of the availability of software
such as ROME (Goh and Sim 2011) and AIMMS
(http://www.aimms.com/).
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Appendix A. Proof of Proposition 1
(⇒) Suppose that (1) is feasible; then there exists a feasi-

ble solution x1v1w such that

xt+1
ij = xtij + vt

ij −wt
ij1 i ∈M1 j ∈N1 t ∈T0 (A1)

From the third constraint when t = 1 and summing all the
jth terms for j ∈N, we have

∑

j∈N

x2
ij =

∑

j∈N

4x1
ij + v1

ij −w1
ij5

= a1
i − d1

i (from the first and second constraint of (1)).

(A2)
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From the constraint xtij ≥ 01 i ∈M1 j ∈N1 t ∈T+, we conclude
that inequality (2) is true for t = 1. Similarly, for t = 21 0 0 0 1 T ,
we have

t
∑

�=1

∑

j∈N

x�+1
ij =

t
∑

�=1

∑

j∈N

4x�ij + v�
ij −w�

ij5

=

t
∑

�=1

∑

j∈N

x�ij +
t
∑

�=1

∑

j∈N

4v�
ij −w�

ij5

=

t
∑

�=1

∑

j∈N

x�ij +
t
∑

�=1

4a�i − d�
i 50 (A3)

Hence,
t
∑

�=1

4a�i − d�
i 5 =

t
∑

�=1

∑

j∈N

x�+1
ij −

t
∑

�=2

∑

j∈N

x�ij

=
∑

j∈N

xt+1
ij

≥ 00 (A4)

Similarly, the last inequality is deduced from the non-
negativity of xtij for i ∈ M1 j ∈ N1 t ∈ T+. Thus, we proved
inequality (2).

(⇐) Suppose that
∑t

�=1 a
�
i −

∑t
�=1 d

�
i ≥ 0 for i ∈ M1 t ∈ T.

Using the assumption that there is an emergency storage
class, N , with infinite storage, the fifth constraint (capacity
constraint) is satisfied; we have

vt
ij =

{

ati for j =N1

0 otherwise1

and

wt
ij =

{

dt
i for j =N1

0 otherwise1

for i ∈ M1 j ∈ N1 t ∈ T. Hence, vt
ij1w

t
ij ≥ 0 for i ∈ M1 j ∈ N1

t ∈ T. We now prove the nonnegativity of xtij . For j 6= N , it
is clear that xtij = 0 for all i ∈ M1 t ∈ T. We now prove the
case j =N . For t = 1,

x2
iN = x1

iN + v1
iN −w1

iN

= a1
i − d1

i

≥ 0 (from inequality (2) when � = 1).

For any i ∈M1 j ∈N1 t ∈T,

xt+1
iN = xtij + vt

iN −wt
iN

= xt−1
iN +

t
∑

�=t−1

4v�
iN −w�

iN 5

= xt−1
iN +

t
∑

�=t−1

4a�i − d�
i 5

= xt−2
iN +

t
∑

�=t−2

4a�i − d�
i 5

= · · ·

= x1
iN +

t
∑

�=1

4a�i − d�
i 5

≥ 0 (from inequality (2)).

Inductively, xtiN ≥ 01 1 i ∈ M1 t ∈ T. Thus, xtij ≥ 01 i ∈ M,
j ∈N1 t ∈T. �

Appendix B. Proof of Theorem 1
Under Assumption U, we have z̃ with support set W . For
i ∈M1 j ∈N1 t ∈T, let

vt
ij4z

t−15=

{

ati for j =N

0 otherwise1

and

wt
ij4z

t5=

{

dt
i 4z

t5 for j =N

0 otherwise1

where z ∈ W . Under the uncertainty set W , we have
dt
i 4z

t5≥ 0; hence, wt
ij4z

t5 ≥ 0. The nonnegativity of vt
ij4z

t−15
follows from the nonnegativity of ati . We now prove the
constraint xt+1

ij 4zt5≥ 0. For i ∈M1 j ∈N1 t ∈T,

xt+1
ij 4zt5 = xtij4z

t−15+ vt
ij4z

t−15−wt
ij4z

t5

=

{

xtij4z
t−15+ ati − dt

i 4z
t5 for j =N1

xtij4z
t−15 otherwise0

Since x1
ij = 0, it is clear that xt+1

ij 4zt5= 0 for j 6=N . For i ∈M,
j =N and t ∈T,

xt+1
iN 4zt5 = xtiN 4z

t−15+ vt
iN 4z

t−15−wt
iN 4z

t5

= xtiN 4z
t−15+ atN − dt

N 4z
t5

= xt−1
iN 4zt−25+

t
∑

�=t−1

4a�N − d�
N 4z

� 55

= · · ·

= x1
iN +

t
∑

�=1

4a�N − d�
N 4z

� 55

≥ 0 (since z ∈W ).

Thus, xt+1
ij 4zt5 ≥ 0 for i ∈ M1 j ∈ N1 t ∈ T, and we have

found a feasible solution for ZLR. It is clear that the objective
value is also finite.

Using the linear decision rule on the objective function of
(6), we have

∑

t∈T

∑

i∈M

∑

j∈N

4sjv
t
ij4z

t−15+ rjw
t
ij4z

t55

=
∑

t∈T

∑

i∈M

∑

j∈N

((

sjv
t10
ij +

∑

k∈Kt−1

sjv
t1 k
ij zk

)

+

(

rjw
t10
ij +

∑

k∈Kt

rjw
t1 k
ij zk

))

=
∑

t∈T

∑

i∈M

∑

j∈N

(

4sjv
t10
ij + rjw

t10
ij 5+

∑

k∈KT

4sjv
t1 k
ij + rjw

t1 k
ij 5zk

)

1

in which vt1 k
ij = 0 for i ∈ M1 j ∈ N1 k ∈ KT \Kt1 t ∈ T and

wt1 k
ij = 0 for i ∈ M1 j ∈ N1 k ∈ KT \Kt−11 t ∈ T. Setting gk =

∑

t∈T

∑

i∈M

∑

j∈N4sjv
t1 k
ij +rjw

t1 k
ij 5 for k ∈K0

T , the objective func-
tion becomes

min max
z∈Ŵ

(

g0
+
∑

k∈KT

gkzk

)

= min
(

g0
+ max

z∈Ŵ

∑

k∈KT

gkzk

)

0
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For i ∈M,
∑

j∈N

vt
ij4z̃

t−15= ati1 t ∈T

⇔
∑

j∈N

(

vt10
ij +

∑

k∈KT

vt1 k
ij zk

)

= ati ∀z ∈W1 t ∈T

⇔
∑

j∈N

vt1 k
ij =

{

ati if k = 01
0 otherwise1

k ∈K0
T 1 t ∈T0

The last equivalence holds because the set W is full dimen-
sional. Similarly, for i ∈M,

∑

j∈N

wt
ij4z̃

t5= dt
i 4z̃

t51 t ∈T

⇔
∑

j∈N

(

wt10
ij +

∑

k∈KT

wt1 k
ij zk

)

= dt10
i +

∑

k∈KT

dt1 k
i zk ∀z ∈W1 t ∈T0

⇔
∑

j∈N

wt1 k
ij = dt1 k

i 1 k ∈K0
T 1 t ∈T0

For i ∈M1 j ∈N,

xt+1
ij 4z̃t5 = xtij4z̃

t−15+ vt
ij4z̃

t−15−wt
ij4z̃

t51 t ∈T

⇔ xt+110
ij +

∑

k∈Kt

xt+11 k
ij zk

=

(

xt10
ij +

∑

k∈Kt

xt1 kij zk

)

+

(

vt10
ij +

∑

k∈Kt−1

vt1 k
ij zk

)

−

(

wt10
ij +

∑

k∈Kt

wt1 k
ij zk

)

1 t ∈T

⇔ xt+110
ij +

∑

k∈KT

xt+11 k
ij zk

=

(

xt10
ij +

∑

k∈KT

xt1 kij zk

)

+

(

vt10
ij +

∑

k∈KT

vt1 k
ij zk

)

−

(

wt10
ij +

∑

k∈KT

wt1 k
ij zk

)

1 t ∈T

⇔ xt+11 k
ij = xt1 kij + vt1 k

ij −wt1 k
ij 1 k ∈K0

T 1 t ∈T0

For i ∈M1 j ∈N, since vt1 k
ij = 01wt1 k

ij = 0 for k ∈KT \Kt1 t ∈T,
we have xt+11 k

ij = xt1 kij for k ∈ KT \Kt1 t ∈ T. From the con-
straint x1

ij = 0 for i ∈ M1 j ∈ N, we conclude that xt1 kij = 0 for
i ∈M1 j ∈N1 k ∈KT \Kt1 t ∈T.

By the definition that ht1 k
j =

∑

i∈M xt1 kij +vt1 k
ij , for j ∈N1 k ∈

K0
T 1 t ∈ T, we can draw the similar deduction that ht1 k

j = 0
for j ∈N1 k ∈KT \Kt1 t ∈T.

Finally, for inequality constraints involving linear deci-
sion rule, we note that given y ∈LKt

the constraint

y4z̃t5≤ r

is equivalent the following robust counterpart

y0
+
∑

k∈KT

ykzk ≤ r1 ∀z ∈W0

Hence, we prove that under the linear storage-retrieval pol-
icy, we have problem (7). �

Appendix C. Proof of Proposition 2
Note that with

dt10
=







dt10
1
000

dt10
M







1 Dt
=









dt11
1 ··· d

t1Kt
1 0 ··· 0

000 ···
0 0 0 0 ··· 0

dt11
M ··· d

t1Kt
M 0 ··· 0









∈<
M×KT 1

we can concisely represent the vector of uncertain de-
mands as

dt4z̃t5=







dt
14z̃

t5
000

dt
M 4z̃t5







= dt10
+Dtz for t ∈T1

where z 4
= zT . Hence, we can express the factor support set,

W as follows:

W =

{

z
∣

∣

∣

∣

∃u2
t
∑

�=1

d� 4z� 5≤
t
∑

�=1

a�1dt4zt5≥01t∈T1Az+Bu≤q
}

=

{

z
∣

∣

∣

∣

∃u2
t
∑

�=1

D�z≤

t
∑

�=1

4a� −d�1051dt10
+Dtz≥ 01

t ∈T1Az+Bu≤ q
}

= 8z � ∃u2 D̄
t
z≤ āt1−Dtz≤ dt101 t ∈T1Az+Bu≤ q91

where at = 4at1 · · ·atM 5, āt =
∑t

�=14a
� − d�1051 and D̄

t
=

∑t
�=1 D

� . To obtain the robust counterpart, maxz∈W z′y ≤ y,
we note that by strong linear programming duality, the pri-
mal problem

max
u1z

y′z

s.t. D̄
t
z≤ āt1 t ∈T

−Dtz≤ dt101 t ∈T

Az+Bu≤ q

has the same objective value as the following dual problem:

min
∑

t∈T

4āt ′Át
+dt10 ′

Ât5+Ã′q

s.t.
∑

t∈T

4D̄t ′Át
−Dt ′Ât5+A′Ã = y

B′Ã = 0

Ã ≥ 01 Ât1 Át
≥ 01 t ∈T0

Hence, the robust counterpart, maxz∈W z′y ≤ y is feasible if
and only if there exists Ã, Át1Ât , t ∈ T feasible in the dual
problem and that

∑

t∈T4ā
t ′Át +dt10 ′

Ât5+Ã′q≤ r0 �

Appendix D. Formulation for Computing the
Optimal Linear Policy

min g0
+ max

z∈Ŵ

∑

k∈Kt

gkzk

s.t. gk
=
∑

t∈T

∑

i∈M

∑

j∈N

4sjv
t1 k
ij + rjw

t1 k
ij 51 k ∈K0

T 3

∑

j∈N

vt1 k
ij =

{

ati if k = 01
0 otherwise1

i ∈M1 k ∈KT 1 t ∈T3
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∑

j∈N

wt1 k
ij = dt1 k

i 1 i ∈M1 k ∈K0
T 1 t ∈T3

xt+11 k
ij = xt1 kij + vt1 k

ij −wt1 k
ij 1 i ∈M1 j ∈N1 k ∈K0

T 1 t ∈T3

x1
ij = 01 i ∈M1 j ∈N3

ht1 k
j =

∑

i∈M

4xt1 kij + vt1 k
ij 51 j ∈N1 k ∈K0

T 1 t ∈T3

∑

�∈T

(

ā� ′Á�
htj

+d�10 ′
Â�
htj

)

+Ã′

htj
q≤ cj −ht10

j 1 j ∈N−1 t ∈T3

∑

�∈T

(

D̄� ′
Á�

htj
−D� ′Â�

htj

)

+A′Ãhtj
= ht1KT

j 1 j ∈N−1 t ∈T3

B′Ãhtj
= 01 j ∈N−1 t ∈T3

∑

�∈T

(

ā� ′Á�
vtij

+d�10 ′
Â�
vtij

)

+Ã′

vtij
q≤−vt10

ij 1 i∈M1 j ∈N1t∈T3

∑

�∈T

(

D̄� ′
Á�

vtij
−D� ′Â�

vtij

)

+A′Ãvtij
= vt1KT

ij 1

i ∈M1 j ∈N1 t ∈T3

B′Ãvtij
= 01 i ∈M1 j ∈N1 t ∈T3

∑

�∈T

(

ā� ′Á�
wt
ij
+d�10 ′

Â�
wt
ij

)

+Ã′

wt
ij
q≤−wt10

ij 1

i ∈M1 j ∈N1 t ∈T3
∑

�∈T

(

D̄� ′
Á�

wt
ij
−D� ′Â�

wt
ij

)

+A′Ãwt
ij
=wt1KT

ij 1

i ∈M1 j ∈N1 t ∈T3

B′Ãwt
ij
= 0 i ∈M1 j ∈N1 t ∈T3

Appendix E. Warehouse Layouts
Figure E.1 (a) Layout of the Case Study in §4: Storage Locations Are Grouped Into Different Classes by Partitioning the Warehouse with a Grid;

(b) Layout 1 (U-Flow Layout): Receiving and Shipping Docks Are Located at the Same Point; (c) Layout 2 (Flow-Through Layout):
Receiving and Shipping Docks Are Located at the Centers of the Opposite Sides of the Warehouse; (d) Layout 3: Receiving and Shipping
Docks Are Located at Arbitrary Points on the Opposite Sides of the Warehouse

…

… …

…

R

S

R /S

(a) (b)

(d)

R

S

R

S(c)

∑

�∈T

(

ā� ′Á�
xtij

+d�1 0 ′
Â�
xtij

)

+Ã′

xtij
q≤ −xt1 0

ij 1

i ∈M1 j ∈N1 t ∈T3

∑

�∈T

(

D̄� ′
Á�

xtij
−D� ′Â�

xtij

)

+A′Ãxtij
= xt1KT

ij 1

i ∈M1 j ∈N1 t ∈T3

B′Ãxtij
= 01 i ∈M1 j ∈N1 t ∈T3

vt1 k
ij = xt1 kij = ht1 k

j = 01 i ∈M1 j ∈N1 k ∈KT \Kt1 t ∈T3

wt1 k
ij = 01 i ∈M1 j ∈N1 k ∈KT \Kt−11 t ∈T

Ãhtj
1Ãvtij

1Ãwt
ij
1Ãxtij

≥ 01 i ∈M1 j ∈N1 t ∈T3

Áhtj
1Ávtij

1Áwt
ij
1Áxtij

≥ 01 i ∈M1 j ∈N1 t ∈T3

Âhtj
1Âvtij

1Âwt
ij
1Âxtij

≥ 01 i ∈M1 j ∈N1 t ∈T3

where

ht1KT
j =









ht11
j

000

h
t1KT
j









1 vt1KT
ij =









vt11
ij

000

v
t1KT
ij









1

wt1KT
ij =









wt11
ij

000

w
t1KT
ij









1 and xt1KT
ij =









xt11
ij

000

x
t1KT
ij









0
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