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Real-time condition monitoring is becoming an important tool in maintenance decision-making. Condition monitoring is the process
of collecting real-time sensor information from a functioning device in order to reason about the health of the device. To make effective
use of condition information, it is useful to characterize a device degradation signal, a quantity computed from condition information
that captures the current state of the device and provides information on how that condition is likely to evolve in the future. If properly
modeled, the degradation signal can be used to compute a residual-life distribution for the device being monitored, which can then
be used in decision models. In this work, we develop Bayesian updating methods that use real-time condition monitoring information
to update the stochastic parameters of exponential degradation models. We use these degradation models to develop a closed-form
residual-life distribution for the monitored device. Finally, we apply these degradation and residual-life models to degradation signals
obtained through the accelerated testing of bearings.

1. Introduction

Condition monitoring is the process of collecting real-time
sensor information from a functioning device in order to
reason about the health of the device. The promise of con-
dition monitoring is twofold. First, since it provides knowl-
edge of a device’s health, it eliminates maintenance that is
not really necessary. Second, by making failures more pre-
dictable, it promotes failure avoidance, which leads to less
unscheduled downtime, fewer emergencies, and less scrap.
Condition monitoring technology has evolved rapidly over
the past decade, becoming cheaper, more powerful, and
more user-friendly. Emerging wireless technologies coupled
with satellite links and the internet enable the monitoring
of geographically remote devices from a centralized loca-
tion (Lee and Schneeman, 1999; Arnon, 2000; Feijs and
Manders, 2000). Indeed, the potential of condition mon-
itoring to support high-level decision-making such as de-
vice replacement, maintenance scheduling, and spare parts
management has never been greater and will only increase in
the future. The objective of this work is to develop methods
that use condition-based information to predict the residual
life of devices being monitored.

To make the most effective use of condition information,
it is helpful to identify a degradation signal, a quantity com-
puted from sensor information that captures the current
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state of the device and provides information on how that
condition is likely to evolve in the future (Nelson, 1990).
The degradation signal provides the basis for developing
models that can be used to estimate the residual life of
the device. For example, Fig. 1 illustrates a vibration-based
degradation signal for three of the bearings tested in this
work. As the bearings degrade, the vibration they exhibit
tends to increase. When the vibration reaches a standard
threshold (which typically depends on the required preci-
sion of the specific application), the bearing is considered to
have failed. Note that even though the degradation rates of
the three bearings differ significantly, the signals all exhibit
similar shapes. Indeed, it is not unusual for a population
of “identical” devices to have a common degradation sig-
nal form while exhibiting widely different degradation rates
and failure times.

The functional form associated with the degradation pro-
cess is driven by the underlying physical phenomenon. The
objective of this paper is to model the functional form of the
degradation process. Our approach is to develop a param-
eterized model of the degradation signal of a population
of devices. We use the phrase “degradation signal” to refer
to the “real” condition of the device as detected through
condition monitoring, whereas we use the phrase “degra-
dation model” to refer to our attempt to model the degra-
dation signal mathematically for predictive purposes. This
degradation model must capture the functional form of the
degradation signal for the population of devices. That is, we
expect every device in the population to have a degradation
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Fig. 1. Bearing degradation signals.

signal that exhibits the form expressed by this model. Model
parameters are either deterministic or stochastic. Deter-
ministic parameters are assumed to be known and constant
throughout the device’s life. These might represent some
feature common to all devices in the population. Stochas-
tic parameters are used to model the degradation charac-
teristics that are unique to the individual device, typically
the rate of degradation. These parameters are assumed to
follow some distributional form across the population of
devices, with those of the individual device being an un-
known “draw” from the population. Error terms are in-
cluded in the model to capture device and environmental
noise, signal transients, measurement errors, and variations
due to monitoring equipment.

The degradation model for an individual device is ob-
tained by estimating the stochastic parameters of that de-
vice. To do this, we use Bayesian updating to combine two
sources of information: (i) the distribution of the param-
eters across the population of devices; and (ii) the real-
time sensor information collected from the device through
condition monitoring, that is, the degradation signal from
the individual device. Our objective is to use this estimated
model of the device’s degradation signal to make reason-
able predictions about the residual life of the device. We do
this by using the device’s degradation model to develop its
residual-life distribution.

Specifically, this paper develops a Bayesian updating pro-
cedure and residual-life distributions for two different expo-
nential degradation signal models. The first model assumes
that the degradation signal exhibits independent random
fluctuations about an exponential signal trajectory, whereas
the second model assumes that the error fluctuations follow
a Brownian motion process. In both cases, the purpose of
the Bayesian updating is to improve the estimation of the
stochastic parameters in the exponential model, that is, to
improve our estimate of the true signal trajectory.

The paper is organized as follows. Section 2 provides a
brief literature review, and Section 3 develops Bayesian up-
dating and residual-life distributions for the two-parameter
exponential model with random error terms and the two-

parameter exponential model with Brownian error terms.
Section 4 then applies these degradation and residual-life
models to data obtained through the accelerated testing of
bearings, thus illustrating their application and usefulness.
Section 5 provides a conclusion and a discussion of future
research directions.

2. Literature review

This section reviews some of the relevant literature related
to condition monitoring and degradation modeling. The
goal of much condition monitoring research is to identify
measurable quantities that allow successful diagnosis of a
device’s health. For example, in power generators, the in-
tegrity of insulating materials is critical, and thus identify-
ing measurable quantities that capture insulator degrada-
tion, designing and integrating sensing capability, and using
monitoring information to diagnose insulation health are
active areas of research (Feser et al., 1995). Martin (1994),
Fararooy and Allan (1995), Dimla (1999), and Thorsen and
Dalva (1999), provide surveys of similar research in other
application areas, including cutting tools, high-voltage in-
duction motors, railway equipment, and machine tools.

If devices exhibit a predictable degradation pattern, then
in addition to diagnosing current health, analysts are able
to predict future health. In this case, a random coefficients
model can be used to capture the degradation form com-
mon to a population of devices, with the coefficients being
used to model the differences between individual devices.
For example, Lu and Meeker (1993) consider the case in
which the life distribution of a population of devices is to
be computed using degradation information obtained from
a randomly selected set of devices. The authors present sev-
eral random coefficient models and illustrate various meth-
ods for computing life distributions with these models.

Wang (2000) enumerates the underlying assumptions of
the random coefficients model, which are: (i) the condition
of the device deteriorates with operating time and the level
of deterioration can be observed at any time; (ii) the mean
and variance of device deterioration can be increasing in
time; (iii) device failure occurs when the degradation signal
reaches a well-defined threshold; (iv) the device being mon-
itored comes from a population of devices, each of which
exhibits the same degradation form; and (v) the distribu-
tion of the stochastic parameters across the population of
devices is known. We note that both Lu and Meeker (1993)
and Wang (2000) assume that the error in the degrada-
tion signal is independent and identically distributed (iid)
N(0, σ 2) across the population of devices.

Yang and Yang (1998) develop a random-coefficient-
based approach that uses the life times of failed devices
plus degradation information from un-failed devices to ob-
tain better estimates of life parameters. The authors exper-
imentally demonstrate that this approach provides better
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estimators than traditional life testing in which only failure
times are recorded. Yang and Jeang (1994) use a random co-
efficients model to study the effect of cutting tool flank wear
on the surface roughness in metal cutting. The degradation
signal considered is the surface roughness of a machined
part. The authors use their model to develop an inspection
scheme for deciding when tools require changing.

Tseng et al. (1995) combine random coefficient mod-
els for luminosity degradation with experimental design to
identify manufacturing settings that provide slow rates of
luminous degradation of fluorescent lamps. Their experi-
mental results indicate that the mean life can be improved
by up to 67%. Goode et al. (1998) use an exponential degra-
dation model to develop predictions for the condition of a
hot strip mill. The authors use case studies based on ac-
tual hot strip mill failures to compare the effectiveness of
degradation-based life prediction with time-to-failure pre-
dictions based on a Weibull model. They conclude that the
degradation model provides a much greater accuracy than
the reliability model. Chinnam (1999) presents a neural-
network-based model for online estimation of component
reliability. Degradation signals that capture the physical
characteristics of the component are viewed as a time se-
ries and a multi-layer perceptron model is used to perform
a 1-step prediction of the degradation measurement. The
model is used to estimate the in-process reliability of drill-
bits in a drilling process.

Doksum and Hoyland (1992) develop inverse Guassian
life models and maximum likelihood estimators for units
subject to accelerated stress testing. Accumulated decay
is modeled as a Wiener process with drift and diffusion
dependent on and changing with the stress level. They il-
lustrate how to use test data to estimate the mean life un-
der normal stress levels. Whitmore (1995) models degrada-
tion as a Wiener process and illustrates how to account for
measurement errors. Similarly, Whitmore and Schenkelberg
(1997) use a Wiener process to model degradation data col-
lected from accelerated testing and develop methods for es-
timating the parameters of time and stress transformations.
The authors provide a case study on self-regulating heating
cables.

Lu et al. (2001) present methods for forecasting system
performance reliability for systems with multiple failure
modes. Time series forecasting is used to develop a joint
density function for the performance measures. This joint
density is then integrated to obtain a reliability function that
can be used to assess the system reliability. The authors il-
lustrate their work on an x-y positioning system with two
failure points. Lu et al. (2001) develop a model for esti-
mating the conditional performance reliability in real-time
for an individual component while in operation. Sampled
measurements are treated as a realization of a stochastic
process, and exponential smoothing is used to develop a
conditional distribution of the performance variable. As an
example, the authors determine the conditional reliability
of a tool given its predicted tool wear.

The models developed in this paper are similar to the
closed-form models presented by Lu and Meeker (1993),
but with some key differences. Whereas Lu and Meeker
(1993) develop methods to compute life distributions for
a population of components, we focus on computing a
residual-life distribution for a single operating device. That
is, we use the distributions of the stochastic parameters
across the population of devices, which we refer to as the
prior distributions, together with monitoring information
collected from the device in question, to compute a resid-
ual life distribution for that individual device. Furthermore,
whereas Lu and Meeker (1993) assume the error terms to
be independent normal random variables, our work uses
a degradation model that assumes a Brownian motion
(Wiener) error process. Finally, because we are computing
the residual life, we must explicitly consider the signal error
terms in our life distribution, which significantly compli-
cates the derivations.

We now proceed to Section 3, which presents our degra-
dation models, our Bayesian updating approach for es-
timating model parameters, and our derivations of the
residual-life distributions.

3. Bayesian degradation signal models

This section develops methods that combine two sources
of information, the reliability characteristics of a device’s
population and real-time sensor information from a func-
tioning device, to periodically update the distribution of
the device’s residual life. Specifically, we develop two expo-
nential degradation models, one with random error terms
(Section 3.1) and one with a Brownian motion error pro-
cess (Section 3.2). In the first case, error is modeled as a
stochastic process with iid components. In other words, for
observation times, t1, t2, . . . , tk, t1 < t2 < · · · < tk, the er-
ror terms observed at those times, ε(t1), . . . , ε(tk), are iid
random variables. As previously discussed, this type of error
term is widely used in the existing literature, see for example
Lu and Meeker (1993), Goode et al. (1998), Yang and Yang
(1998) and Wang (2000). In the second case, the error term
is modeled as a modified Brownian motion with indepen-
dently and identically distributed increments. That is, the er-
ror increments, ε(t1), ε(t2) − ε(t1), . . . , ε(tk) − ε(tk−1), are
assumed to be independent random variables. This type of
error term has been used by Doksum and Hoyland (1992),
Whitmore (1995) and Whitmore and Schenkelberg (1997).
We use these degradation models, along with assumptions
regarding the distributional forms of the stochastic parame-
ters and error terms, to develop Bayesian updating methods
for continually re-estimating a functioning device’s stochas-
tic parameters. Finally, we use these updated parameters to
estimate the residual-life distribution of the monitored de-
vice.

The models presented in this work are appropriate for
specific degradation phenomena that have an exponentially
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increasing or decreasing form. While the results presented
in this paper apply only to this specific class of models, we
note that similar techniques can be applied to a wide vari-
ety of other models. Gebraeel et al. (2001) present residual-
life derivations for a variety of degradation models that
capture a diversity of degradation forms including linear,
polynomial, and other types of exponential models beyond
those presented here. Furthermore, Gebraeel (2003) ad-
dresses models with dependent stochastic parameters as
well as other computational approaches for deriving em-
pirical residual-life distributions.

3.1. Two-parameter exponential model with multiplicative
random error terms

In this section we first model the degradation signal for
a population of components with an exponential model
assuming error terms from an iid random error process. A
Bayesian updating method is used to estimate the unknown
stochastic parameters of the model for an individual com-
ponent. Once we have determined the posterior distribution
for these unknown parameters, we derive the residual-life
distribution for the individual component.

3.1.1. The degradation signal model
Let S(t) denote the degradation signal as a continuous
stochastic process, continuous with respect to time t . We
observe the degradation signal at some discrete points in
time, t1, t2, . . ., where ti ≥ 0. Therefore, we can model the
degradation signal at time ti, i = 1, 2, . . ., as follows:

S(ti) = φ + θ exp
(

βti + ε(ti) − σ 2

2

)

= φ + θ exp(βti) exp
(

ε(ti) − σ 2

2

)
,

for i = 1, 2, . . ., where φ is a known constant, θ is a lognor-
mal random variable, where ln θ has mean µ0 and vari-
ance σ 2

0 , β is a normal random variable with mean µ1

and variance σ 2
1 , and ε(ti) is a random error term that fol-

lows a normal distribution with mean zero and variance
σ 2. We assume ε(0) = 0. We assume that θ , β and ε(ti) are
mutually independent, and that ε(t1), ε(t2), . . . are iid ran-
dom variables. Under these assumptions, it is easy to show
that E[exp(ε(ti) − (σ 2/2))] = 1, and thus E[S(ti)|θ, β] =
φ + θ exp(βti). Figure 2(a) illustrates the type of degrada-
tion signal this model is intended to represent. For addi-
tional information on this and other models typically used
to model degradation, see Nelson (1990) and Shao and
Nezu (2000).

For this exponential model, it will be convenient to work
with the logged signal at time ti, which we will denote by
L(ti). We can then define the logged signal at time ti as
follows:

L(ti) = ln(S(ti) − φ) = ln θ + β ti + ε(ti) − σ 2

2
. (1)

(a)

(b)

Fig. 2. Typical degradation signal for the exponential model:
(a) with iid errors; and (b) with Brownian errors.

Finally, we let Li = L(ti) and we define θ ′ = ln θ −
(σ 2/2). Note that θ ′ is a normal random variable with mean
µ0 − (σ 2/2) and variance σ 2

0 . Then we can write:

Li = θ ′ + βti + ε(ti). (2)

We will use the observations L1, L2, . . ., obtained at times
t1, t2, . . ., as our data.

Next, suppose we have observed L1, . . . , Lk at times
t1, . . . , tk. Since the error terms, ε(ti), i = 1, . . . , k, are iid
normal random variables, if we know θ ′ and β, then the
conditional joint density function of L1, . . . , Lk, given θ ′
and β, is:

f (L1, . . . , Lk|θ ′, β) =
(

1√
2πσ 2

)k

× exp

(
−

k∑
i=1

(
(Li − θ ′ − βti)2

2σ 2

))
.

Generally, however, θ ′ and β will be unknown. We let π1(θ ′)
and π2(β) denote the prior distributions on θ ′ and β, re-
spectively. As described above, we assume that these prior
distributions are known and represent our knowledge of
the reliability characteristics of the population of devices.
Here we assume that the prior distributions for θ ′ and β are
normal with mean µ′

0 = µ0 − (σ 2/2) and variance σ 2
0 and



Residual-life distributions from component degradation signals 547

normal with mean µ1 and variance σ 2
1 , respectively. Then,

given the observed data, L1, . . . , Lk, the joint posterior dis-
tribution of (θ ′, β) is given as follows:

Proposition 1. Given the observed data, L1, . . . , Lk, the joint
posterior distribution of (θ ′, β) is a bivariate normal distribu-
tion with mean (µθ ′, µβ), variance (σ 2

θ ′, σ
2
β ) and correlation

coefficient ρ, where:

µθ ′ =
( ∑k

i=1 Liσ
2
0 + µ′

0σ
2
)( ∑k

i=1 t2
i σ 2

1 + σ 2
) − ( ∑k

i=1 tiσ
2
0

)( ∑k
i=1 Litiσ

2
1 + µ1σ

2
)

(
kσ 2

0 + σ 2
)( ∑k

i=1 t2
i σ 2

1 + σ 2
) − ( ∑k

i=1 tiσ
2
1

)( ∑k
i=1 tiσ

2
0

) ,

µβ =
(
kσ 2

0 + σ 2
)( ∑k

i=1 Litiσ
2
1 + µ1σ

2
) − ( ∑k

i=1 tiσ
2
1

)( ∑k
i=1 Liσ

2
0 + µ′

0σ
2
)

(
kσ 2

0 + σ 2
)( ∑k

i=1 t2
i σ 2

1 + σ 2
) − ( ∑k

i=1 tiσ
2
1

)( ∑k
i=1 tiσ

2
0

) ,

σ 2
θ ′ = σ̄ 2

σ 2
1

∑k
i=1 t2

i σ 2
1 + σ 2(

kσ 2
0 + σ 2

)( ∑k
i=1 t2

i σ 2
1 + σ 2

) − ( ∑k
i=1 ti

)2
σ 2

0 σ 2
1

,

σ 2
β = σ̄ 2

σ 2
0

kσ 2
0 + σ 2(

kσ 2
0 + σ 2

)( ∑k
i=1 t2

i σ 2
1 + σ 2

) − ( ∑k
i=1 ti

)2
σ 2

0 σ 2
1

, ρ = −σ0σ1
∑k

i=1 ti√
kσ 2

0 + σ 2
√

σ 2
1

∑k
i=1 t2

i + σ 2
,

where σ̄ 2 = σ 2σ 2
0 σ 2

1 .

Proof. Given the prior distributions on θ ′ and β, we can find the posterior distribution of (θ ′, β), denoted p(θ ′, β | L1,

. . . , Lk), as follows:

p(θ ′, β | L1, . . . , Lk) ∝ f (L1, . . . , Lk|θ ′, β)π1(θ ′)π2(β)

∝ exp

{
−

k∑
i=1

(Li − θ ′ − βti)2

2σ 2

}
exp

{ −1

2σ 2
0

(θ ′ − µ′
0)2

}
exp

{ −1

2σ 2
1

(β − µ1)2
}
,

∝ exp

{
− 1

2

[
σ 2

0 σ 2
1

σ 2σ 2
0 σ 2

1

(
kθ ′2 + β2

k∑
i=1

t2
i − 2θ ′

k∑
i=1

Li − 2β

k∑
i=1

Liti + 2θ ′β
k∑

i=1

ti

)

+ σ 2σ 2
1

σ 2σ 2
0 σ 2

1

(θ ′2 − 2µ′
0θ

′) + σ 2σ 2
0

σ 2σ 2
0 σ 2

1

(β2 − 2µ1β)

]}
,

∝ exp
{

− 1
2

[
θ ′2

(
kσ 2

0 σ 2
1 + σ 2σ 2

1

σ̄ 2

)
+ β2

(∑k
i=1 t2

i σ 2
0 σ 2

1 + σ 2σ 2
0

σ̄ 2

)
− 2θ ′

(∑k
i=1 Liσ

2
0 σ 2

1 + µ′
0σ

2σ 2
1

σ̄ 2

)

− 2β

(∑k
i=1 Litiσ

2
0 σ 2

1 + µ1σ
2σ 2

0

σ̄ 2

)
+ 2θ ′β

(∑k
i=1 tiσ

2
0 σ 2

1

σ̄ 2

)]}
, (3)

∝ exp
{

− 1
2

[
θ ′2

(
1

σ 2
θ ′(1 − ρ2)

)
+ β2

(
1

σ 2
β (1 − ρ2)

)
− 2θ ′

(
µθ ′

σ 2
θ ′(1 − ρ2)

− µβρ

σθ ′σβ(1 − ρ2)

)

− 2β

(
µβ

σ 2
β (1 − ρ2)

− µθ ′ρ

σθ ′σβ(1 − ρ2)

)
+ 2θ ′β

( −ρ

σθ ′σβ(1 − ρ2)

)]}
,

∝ 1

2πσθ ′σβ

√
1 − ρ2

exp
{

−
[
σ 2

β (θ ′ − µθ ′)2 − 2σθ ′σβρ(θ ′ − µθ ′)(β − µβ) + σ 2
θ ′(β − µβ)2

2σ 2
θ ′σ

2
β (1 − ρ2)

]}
, (4)

where σ̄ 2 = σ 2σ 2
0 σ 2

1 and µθ ′, σ 2
θ ′, µβ, σ 2

β and ρ are as defined
in the proposition. Notice that this last equation is the bi-
variate normal density function (see, for example, Larsen

and Marx (1986). Thus, (θ ′, β) given L1, . . . , Lk has a bi-
variate normal posterior distribution with mean (µθ ′, µβ),
variance (σ 2

θ ′, σ
2
β ), and correlation ρ. �

Finally, we note that it is easy to show that −1 ≤ ρ < 0.
Notice that, while our model assumes that the unknown
model parameters (i.e., the random variables) θ ′ and β are

independent, there is a correlation coefficient in the poste-
rior distribution of θ ′ and β. This is due to the fact that,
in the posterior distribution for θ ′ and β, our beliefs about
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θ ′ and β are updated from a single set of data (L1, . . . , Lk).
Thus, it is natural that these posterior beliefs about θ ′ and
β would be correlated.

3.1.2. Determining the residual-life distribution
Once we have updated the posterior distribution of (θ ′, β),
our goal is to determine the distribution of the residual life
of the functioning device. In other words, we would like
to determine the distribution of the time until failure for
the component. For this purpose we will assume that fail-
ure occurs when the degradation signal reaches some given
failure threshold, D, and thus our objective is to estimate
the distribution of the time until the signal reaches D. In this
paper, we take the threshold value, D, as fixed and known.
In general, such failure thresholds are not always clearly
defined and developing one for a given application requires
knowledge of industrial standards, application precision,
and engineering judgment.

At a given time, tk, our objective is to determine the
distribution of the time until the signal reaches the fail-
ure threshold, D. To do this, we first compute the poste-
rior distribution for (θ ′, β) as described above. We then
define the random variable L(t + tk) to be the logged
degradation signal value observed at time t + tk, t > 0,
given L1, . . . , Lk observed at times t1, . . . , tk. We next
determine the distribution of L(t + tk) given L1, . . . , Lk.
Since L(t + tk) = θ ′ + β(t + tk) + ε(t + tk) − (σ 2/2), the
distribution of L(t + tk), given L1, . . . , Lk, is normal with
mean:

µ̃(t + tk)
�= µθ ′ + µβ(t + tk) − σ 2

2
,

and variance

σ̃ 2(t + tk)
�= σ 2

θ ′ + (t + tk)2σ 2
β + σ 2 + 2ρ(t + tk)σθ ′σβ.

Next, we let T denote the residual life of the compo-
nent at time tk and we note that T satisfies L(T + tk) = D.
We can then find the conditional cumulative distribution
function (cdf) of T given L1, . . . , Lk, FT |L1,...,Lk (t) = P{T ≤
t |L1, . . . , Lk}, as follows:

P{T ≤ t |L1, . . . , Lk} = P{L(t + tk) ≥ D|L1, . . . , Lk},
= 1 − P{L(t + tk) ≤ D|L1, . . . , Lk},
= 1 − P

{
Z <

D − µ̃(t + tk)√
σ̃ 2(t + tk)

}
,

= P
{

Z ≥ D − µ̃(t + tk)√
σ̃ 2(t + tk)

}
,

= �(g(t)),

where Z is a standard normal random variable, �(·) is
the cdf of a standard normal random variable, and g(t) =
(µ̃(t + tk) − D)/

√
σ̃ 2(t + tk).

Note that we have determined the residual-life cdf
by finding the probability that the value of the sig-
nal at time t + tk, L(t + tk), is greater than D. This

procedure provides an approximation for the resid-
ual life cdf. In reality, to determine the residual-
life cdf we should find P(T ≤ t) = 1 − P(T > t) = 1 −
P(L(s + tk) < D, ∀s ≤ t). Thus, the residual-life distribu-
tions found in this paper are approximations that will
work well when the variance of the error terms, ε(t),
is small.

Notice that limt→−∞ g(t) = −µβ/σβ , which implies that
the domain of the residual life, T , is (−∞, ∞). There-
fore, it is mathematically possible to have T < 0. Clearly,
however, from a practical point of view we must have
T ≥ 0. Therefore, we use the truncated conditional cdf
for T with the constraint T ≥ 0. This truncated cdf of
T is:

P{T ≤ t |L1, . . . , Lk, T ≥ 0}
= P{0 ≤ T ≤ t |L1, . . . , Lk}

P{T ≥ 0|L1, . . . , Lk} = �(g(t)) − �(g(0))
1 − �(g(0))

,

for t ≥ 0.
We have shown how to find the cdf of the residual life

of the component, T , given that we are at time tk with
observed logged signal values, L1, . . . , Lk. We note that T
is not a normal random variable since the variance term in
g(t) above is a function of t . Rather, T has a distribution
that is similar to the Bernstein distribution (Ahmad and
Sheikh, 1984). Given the truncated conditional cdf for T ,
we can derive the truncated conditional probability density
function (pdf) for T by differentiating FT |L1,...,Lk,T≥0(t) with
respect to t . Thus, we have:

fT |L1,...,Lk,T≥0(t) = φ(g(t))g′(t)
1 − �(g(0))

,

where φ(·) is the pdf of a standard normal random variable.
This procedure for updating the distribution of the resid-

ual life can be performed each time new sensor infor-
mation is obtained. In other words, each time we collect
a new signal observation, we can recalculate the poste-
rior distribution for (θ ′, β) and obtain new estimates of
µθ ′, µβ, σ 2

θ ′, σ
2
β and ρ. Then, given these updated param-

eters, we can update the distribution of the residual life for
the device by updating the values of µ̃(t + tk) and σ̃ 2(t + tk)
in the function g(t). Because this procedure only requires
the computation of the cdf and pdf for a standard nor-
mal random variable, the procedure can be easily imple-
mented on a spreadsheet, as will be seen in Section 4 of this
paper.

3.2. Two-parameter exponential model with multiplicative
Brownian motion error

In this section, we develop an exponential degradation
model with a Brownian motion error process. This model
is more appropriate for applications where successive error
fluctuations in sensor readings are correlated. We present
a Bayesian updating procedure, similar to the procedure



Residual-life distributions from component degradation signals 549

described above, for determining the distribution of the
residual life under the assumption of a Brownian error pro-
cess. We start by reviewing the definition of a Brownian
motion process.

Definition 1. A one-dimensional standard Brownian mo-
tion is a real-valued process W (t), t ≥ 0, that has the fol-
lowing properties:

1. If t0 < t1 < · · · < tn, then W (t0), W (t1) − W (t0), . . . ,
W (tn) − W (tn−1) are mutually independent.

2. If s, t ≥ 0, then

P(W (s + t) − W (s) ∈ A) =
∫

A
(2π t)−1/2e−x2/2t dx.

3. With probability one, t → W (t) is continuous.

Part 1 of this definition says that the process W (t) has in-
dependent increments. Part 2 of this definition says that
the increment W (s + t) − W (s) has a normal distribution
with mean zero and variance t . Part 3 of this definition says
that W (t), t ≥ 0, almost surely has continuous paths. For a
further discussion of the Brownian motion process and its
properties, see Durrett (1991).

3.2.1. The degradation signal model
Let S(t) denote the degradation signal as a continuous
stochastic process, continuous with respect to time t . We
assume that S(t) has the following functional form:

S(t) = φ + θ exp
(

βt + ε(t) − σ 2t
2

)

= φ + θ exp(βt) exp
(

ε(t) − σ 2t
2

)
,

where φ is a constant, θ is a lognormal random variable,
where ln θ has mean µ0 and variance σ 2

0 , β is a normal ran-
dom variable with mean µ1 and variance σ 2

1 , and ε(t) =
σW (t) is a centered Brownian motion such that the mean
of ε(t) is zero and the variance of ε(t) is σ 2t . We assume θ ,
β and ε(t) are mutually independent. Under these assump-
tions, it is easy to show that E[exp(ε(t) − (σ 2t/2))] = 1, and
thus E[S(t)|θ, β] = φ + θ exp(βt). Figure 2(b) illustrates
the type of degradation signal this model is intended to
represent.

For this model, as for the previous model, we find it
more convenient to work with the logged degradation sig-
nal. Thus, we define L(t) as follows:

L(t) = ln(S(t) − φ) = θ ′ + βt + ε(t) − σ 2t
2

, (5)

where θ ′ = ln θ is a normal random variable with mean
µ0 and variance σ 2

0 . By defining β ′ = β − (σ 2/2), we can
further simplify L(t) as follows:

L(t) = θ ′ + β ′t + ε(t). (6)

Finally, we let Li = L(ti) − L(ti−1) denote the difference be-
tween the observed value of the logged signal at times ti and
ti−1, for i = 2, 3, . . ., with L1 = L(t1).

Next, suppose we have observed L1, . . . , Lk at times
t1, . . . , tk. Since the error increments, ε(ti) − ε(ti−1), i =
1, . . . , k, are independent normal random variables, if we
know θ ′ and β ′, the conditional joint density function of
L1, . . . , Lk, given θ ′ and β ′, is:

f (L1, . . . , Lk|θ ′, β ′) =
(

1√
2πσ 2

)k

exp
(

− (L1 − θ ′ − β ′t1)2

2σ 2t1

−
k∑

i=2

(
(Li − β ′(ti − ti−1))2

2σ 2(ti − ti−1)

))
.

Generally, however, θ ′ and β ′ will be unknown. We
let π1(θ ′) and π2(β ′) denote the prior distributions on
θ ′ and β ′ respectively, which are assumed to be normal
with mean µ0 and variance σ 2

0 , and normal with mean
µ′

1 = µ1 − (σ 2/2) and variance σ 2
1 , respectively. Then,

given the data, L1, . . . , Lk, observed at times t1, . . . , tk,
we can find the posterior joint distribution of (θ ′, β ′) as
follows:

Proposition 2. Given the observed data, L1, . . . , Lk, the pos-
terior distribution of (θ ′, β ′) is a bivariate normal distribution
with mean (µθ ′, µβ ′), variance (σ 2

θ ′, σ
2
β ′) and correlation coef-

ficient ρ, where:

µθ ′ =
(
L1σ

2
0 + µ0σ

2t1
)(

σ 2
1 tk + σ 2

) − σ 2
0 t1

(
σ 2

1

∑k
i=1 Li + µ′

1σ
2
)

(
σ 2

0 + σ 2t1
)(

σ 2
1 tk + σ 2

) − σ 2
0 σ 2

1 t1
,

µβ ′ =
(
σ 2

1

∑k
i=1 Li + µ′

1σ
2
)(

σ 2
0 + σ 2t1

) − σ 2
1

(
L1σ

2
0 + µ0σ

2t1
)

(
σ 2

0 + σ 2t1
)(

σ 2
1 tk + σ 2

) − σ 2
0 σ 2

1 t1
,

σ 2
θ ′ = σ 2σ 2

0 t1
(
σ 2

1 tk + σ 2
)

(
σ 2

0 + σ 2t1
)(

σ 2
1 tk + σ 2

) − σ 2
0 σ 2

1 t1
,

σ 2
β ′ = σ 2σ 2

1

(
σ 2

0 + σ 2t1
)

(
σ 2

0 + σ 2t1
)(

σ 2
1 tk + σ 2

) − σ 2
0 σ 2

1 t1
,

ρ = −σ0σ1
√

t1√(
σ 2

0 + σ 2t1
)(

σ 2
1 tk + σ 2

) .

Proof. Given the prior distributions on θ ′ and β ′, we
can find the posterior distribution of (θ ′, β ′), denoted
p(θ ′, β ′|L1, . . . , Lk), as follows:

p(θ ′, β ′|L1, . . . , Lk)
∝ f (L1, . . . , Lk|θ ′, β ′)π1(θ ′)π2(β ′),

∝ exp
{

− (L1 − θ ′ − β ′t1)2

2σ 2t1
−

k∑
i=2

(Li − β ′(ti − ti−1))2

2σ 2(ti − ti−1)

}

exp
{−(θ ′ − µ0)2

2σ 2
0

}
exp

{−(β ′ − µ′
1)2

2σ 2
1

}
,
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∝ exp
{

− 1
2

[
θ ′2

(
σ 2

0 + σ 2t1

σ 2σ 2
0 t1

)
+ β ′2

(
σ 2

1 tk + σ 2

σ 2σ 2
1

)
− 2θ ′

(
L1σ

2
0 + µ0σ

2t1

σ 2σ 2
0 t1

)

− 2β ′
(

σ 2
1

∑k
i=1 Li + µ′

1σ
2

σ 2σ 2
1

)
+ 2θ ′β ′

(
1
σ 2

)]}
, (7)

∝ exp
{

− 1
2

[
θ ′2

(
1

σ 2
θ ′(1 − ρ2)

)
+ β ′2

(
1

σ 2
β ′(1 − ρ2)

)
− 2θ ′

(
µθ ′

σ 2
θ ′(1 − ρ2)

− µβ ′ρ

σθ ′σβ ′(1 − ρ2)

)

− 2β ′
(

µβ ′

σ 2
β ′(1 − ρ2)

− µθ ′ρ

σθ ′σβ ′(1 − ρ2)

)
+ 2θ ′β ′

( −ρ

σθ ′σβ ′(1 − ρ2)

)]}
,

∝ 1

2πσθ ′σβ ′
√

1 − ρ2
exp

{
−

[
σ 2

β ′(θ ′ − µθ ′)2 − 2σθ ′σβ ′ρ(θ ′ − µθ ′)(β ′ − µβ ′) + σ 2
θ ′(β ′ − µβ ′)2

2σ 2
θ ′σ

2
β ′(1 − ρ2)

]}
, (8)

where µθ ′, σ 2
θ ′, µβ ′, σ 2

β ′ and ρ are as defined in the propo-
sition. Notice that this last equation is the bivariate nor-
mal density function (see, for example, Larsen and Marx
(1986)). Thus, (θ ′, β ′) has a bivariate normal posterior dis-
tribution with mean (µθ ′, µβ ′), variance (σ 2

θ ′, σ
2
β ′), and cor-

relation ρ. �

Finally, we note that it is easy to show that −1 <

ρ < 0 by observing that t1 < tk implies ρ = −
√

σ 2
0 σ 2

1 t1/√
σ 2

0 σ 2
1 tk + A > −1, where A = σ 2σ 2

1 t1tk + σ 2σ 2
0 + σ 4t1 ≥

0.

3.2.2. Determining the residual-life distribution
Given the posterior distribution of (θ ′, β ′), we would like to
determine the distribution of the time until failure for the
component. Thus, similar to the model presented in the pre-
vious section, our objective is to determine the distribution
of the time until the signal reaches the failure threshold,
D. To do this, we first determine the posterior distribution
for (θ ′, β ′), as described above. We then define the random
variable L(t + tk) to be the logged degradation signal value
observed at time t + tk, t > 0, given L1, . . . , Lk observed at
times t1, . . . , tk. We can then determine the distribution of
L(t + tk) given L1, . . . , Lk as follows.

Proposition 3. Given the observed data, L1, . . . , Lk, L(t + tk)
is a normal random variable with mean µ̃(t + tk) and variance
σ̃ 2(t + tk), where:

µ̃(t + tk)
�=

k∑
i=1

Li + µβ ′t = L(tk) + µβ ′t,

and

σ̃ 2(t + tk)
�= σ 2

β ′t2 + σ 2t.

Proof. First, note that using Equation (6) we can write
L(t + tk) = L(tk) + β ′t + ε(t + tk) − ε(tk), where L(tk) =∑k

i=1 Li. Therefore, given L1, . . . , Lk, L(t + tk) is a normal
random with mean µ̃(t + tk) = L(tk) + E[β ′]t = L(tk) +

µβ ′t and variance σ̃ 2(t + tk) = t2V [β ′] + V [ε(t + tk) −
ε(tk)] = σ 2

β ′t2 + σ 2t . �

Next, we let T denote the residual life of the compo-
nent and we note that T satisfies L(T + tk) = D. Given
this proposition, we can then find the conditional cdf of
T given L1, . . . , Lk, FT |L1,...,Lk (t) = P{T ≤ t |L1, . . . , Lk}, as
follows:

P{T ≤ t |L1, . . . , Lk} = P{L(t + tk) ≥ D|L1, . . . , Lk},
= 1 − P{�L(t + tk) ≤ D|L1, . . . , Lk},
= 1 − P

{
Z <

D − µ̃(t + tk)√
σ̃ 2(t + tk)

}
,

= P
{

Z ≥ D − µ̃(t + tk)√
σ̃ 2(t + tk)

}
,

= �(g(t)),

where Z is a standard normal random variable, �(·) is
the cdf of a standard normal random variable, and g(t) =
(µ̃(t + tk) − D)/

√
σ̃ 2(t + tk).

Notice that we predict the distribution of the residual life
at time tk, before the signal value reaches the threshold D,
i.e.,

∑k
i=1 Li = L(tk) < D. Therefore, we have:

lim
t→0

g(t) = lim
t→0

∑k
i=1 Li + µβ ′t − D√

σ 2
β ′t2 + σ 2t

= −∞.

Thus, we have limt→0 FT |L1,...,Lk (t) = 0, which implies that
the domain of T is (0, ∞). Therefore, unlike in the previous
model with independent random errors, this model does
not require truncation of the conditional cdf and pdf of T .

We have shown how to find the conditional cdf of the
residual life of the component, T , given that we are at time
tk with observed signal values L1, . . . , Lk. Note that T is
not a normal random variable since the variance term in
g(t) is a function of t . Rather, as in the previous model, T
has a distribution that is similar to the Bernstein distribu-
tion, and we can derive its conditional pdf by differentiat-
ing FT |L1,...,Lk (t) with respect to t . In fact, we can write the
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conditional pdf of T , given L1, . . . , Lk, as:

fT |L1,...,Lk,T≥0(t) = φ(g(t))g′(t),

where φ(·) is the pdf of the standard normal random
variable.

As with the previous model, the residual-life distributions
found in this section are approximations that will work well
when the variance of the error terms, ε(t), is small. In order
to find an exact expression for the residual-life distribution
for the model with a Brownian error process, we would need
to apply the concept of first passage times (see, for example,
Cox and Miller (1965)). This is an important topic for future
research.

As in the previous model, this procedure for determining
the distribution of the residual component life can be per-
formed each time we obtain a new signal observation. This
procedure for periodically updating the distribution of the
residual life as new signal observations are obtained can be
easily implemented on a spreadsheet, as will be seen in the
next section.

4. Application of the exponential degradation-signal
models to data obtained on bearings

In this section, we apply the degradation models presented
above to the degradation signals of 34 bearings that we have
run to failure under accelerated testing conditions. We first
briefly describe our experimental data. We next describe
how we used these data to test the assumptions required
for the exponential degradation-signal models. We then de-
scribe how we implemented the Bayesian updating methods
for the exponential models, as developed in Section 3. Fi-
nally, we evaluate the predictive ability of these models and
discuss the results of these experiments.

4.1. The degradation signals of the bearings

Recall that Fig. 1 illustrated the degradation signals of three
test bearings from our degradation database. These degra-
dation signals are based on vibration monitoring and track
the evolution of the vibration level with respect to time. An
experimental setup has been designed to perform acceler-
ated testing on a set of identical thrust ball bearings. An
accelerometer is used to capture the vibration signal result-
ing from bearing degradation. Signals are transmitted to a
data acquisition system for computer display and storage.
The failure threshold for these experiments, D = 0.03 MV,
was computed from published industrial standards (Blake
and Mitchel, 1972). For a given bearing, vibration data were
collected and processed every 2 minutes, i.e., ti+1 − ti = 2
for all i ≥ 0.

As seen in Fig. 1, the degradation signal consists of two
distinct parts. The first part of the signal is stable and rep-
resents the vibration level before a bearing defect occurs.
The second phase begins when a fatigue defect occurs in

the bearing, and the vibration level increases as the defect
worsens. Note that the functional form resembles an expo-
nential. Indeed, exponential degradation models have been
used for bearing degradation (Shao and Nezu, 2000). In the
work that follows, we only use degradation data associated
with this second phase.

4.2. Testing of the exponential model assumptions

To implement the degradation models, we first logged the
signal data and then fitted the models presented in Equa-
tions (2) and (6) for each individual bearing. In other words,
for each model and for each individual bearing we obtained
estimates of the model parameters. In order to simplify the
analysis, we took φ = 0. In general, however, φ may be any
known constant.

For the exponential model with random error terms, we
used linear regression on the logged signal values, Li, from
a single bearing to estimate θ ′ and β for that bearing. First,
from Equation (2) and the assumption that ε(0) = 0, we
note that for a given bearing with true parameter value θ ′,
L(0) = θ ′. Therefore, for each bearing we set θ ′ equal to the
log of the initial degradation signal. Then, to estimate β

for that bearing, we performed a linear regression on the
logged signal values, Li, for that bearing, in which we forced
the intercept, L(0), to equal θ ′. We then took the estimated
slope from this regression as the true value of β for that
bearing.

For the exponential models with Brownian motion er-
ror terms, the model requires ε(0) = 0, and thus L(0) = θ ′.
Therefore, for each bearing we set θ ′ equal to the log of the
initial degradation signal. In addition, since the error terms
for the Brownian motion model are not iid, we could not
use linear regression to estimate β ′. Instead, because the
error increments for a single bearing with true parameter
value β ′ are iid, the random variables:

Xk = L(tk) − L(tk−1)
tk − tk−1

= L(tk) − L(tk−1)
2

, k = 1, 2, . . . ,

are iid with mean β ′. Therefore, we used X̄ as the value of
β ′ for that bearing.

Thus, for each bearing and for each model (random error
and Brownian motion error) we obtained estimates of the
true parameter values (θ ′ and β for the random error model
and θ ′ and β ′ for the Brownian model). We then used these
estimated parameter values to test the assumptions required
for our models. Our model assumes that each parameter
value has a normal distribution across the population of
devices. For example, for the random error model we as-
sume that θ ′ ∼ N(µ′

0, σ
2
0 ) and β ∼ N(µ1, σ

2
1 ). In order to

test the normality of the model parameters, we performed
chi-square goodness-of-fit tests. For these tests we used the
sample mean and variance of the 34 observed θ ′ and β (β ′)
values as our estimates of the mean and variance of the
normal distributions. In both cases (random and Brownian
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motion error terms) the chi-square test failed to reject the
null hypothesis that θ ′ and β (β ′) are normally distributed,
with p-values of 0.55 and 0.74, respectively.

In addition to testing the normality assumption for the
model parameters, we also tested the assumptions related
to the error terms, for both the iid random error term as-
sumption and the Brownian motion error process assump-
tion. The main difference between these two models is the
nature of the independence assumption. For the iid error
term assumption, for any observation times t1, . . . , tk, the
error terms ε(t1), . . . , ε(tk) are assumed to be independent
and normally distributed with mean zero and variance σ 2.
For the Brownian motion assumption, the error terms are
assumed to have independent and normally distributed in-
crements. That is, ε(t1), ε(t2) − ε(t1), . . . , ε(tk) − ε(tk−1) are
assumed to be independent and normally distributed with
mean zero.

We tested these independence assumptions as follows.
For each bearing, we collected the set of residuals for each
observation time (where each residual is the difference be-
tween the signal and the fitted model at the given observa-
tion time). We then computed the sample correlation be-
tween the residuals (for the random error model) or the
residual increments (for the Brownian model) for each pair
of observation times, ti and tk, i < k. In other words, for
the random error model (Brownian error model), for each
observation time we calculated 34 residuals (residual incre-
ments), one for each bearing. We then calculated the sample
correlation between these 34 residuals (residual increments)
at times ti and tk, for i < k. If the model assumptions hold,
we would expect the correlations to be small. The Fig. 4
in Gebraeel et al. (2003) plots these sample correlations
whereas our Fig. 3 (a and b) plots the average residuals
(averaged across the 34 bearings) for each observation time
ti. In both Fig. 3(a) and Fig. 3(b) we show the results for
ti ∈ {4, 14, 24, . . . , 144}. Figure 3 (a and b) suggests that the
independence assumption required for the Brownian model
fits the given data better than the independence assumption
required for the iid model. Figure 3 (a and b) also supports
the assumption that the true mean residual is zero.

To test the normality assumption, we created normal
probability plots for both the error terms and the error
increments, for the iid model and the Brownian model,
respectively (The Fig. 6 in Gebraeel et al. (2003)). These
plots suggest that error increments come closer to satisfy-
ing the normality assumption than do the error terms. Thus,
the Brownian error model seems to provide a better fit for
the given data.

Finally, we estimated the variance parameter, σ 2. To es-
timate σ 2 under the assumption of random error terms, for
each bearing we calculated the residuals, i.e., the difference
between the fitted model and the actual signal value, for
t1, t2, . . .. Note that these residuals are sample values for
ε(ti). Thus, to estimate σ 2, we calculate the sample vari-
ance. To estimate σ 2 under the assumption of a Brownian
motion error process, for each observation time tk, we es-

(a)

(b)

Fig. 3. Average model residuals across 34 bearings: (a) iid and
(b) Brownian exponential model.

timated σ 2 by taking one-half of the sample variance of
the error increments across the test bearings at that ob-
servation time. To understand this, note that for each test
bearing the error increments, ε(tk+1) − ε(tk), k ≥ 0, are in-
dependent and normally distributed with mean zero and
variance σ 2(tk+1 − tk). Recall that in our experiments we
have tk+1 − tk = 2 for all k. Therefore, the sample variance
of the error increments across the 34 test bearings at each
time, tk, is an estimator of 2σ 2.

In Sections 4.3 and 4.4, we discuss how we applied the
degradation models and the Bayesian updating methodol-
ogy to our bearing data.

4.3. Implementing the Bayesian updating models

To implement the Bayesian updating methods developed
in Section 3, we constructed a spreadsheet to compute the
distribution of the residual life for a bearing given the degra-
dation signal observations for both the Brownian error and
the random error models. In practice, the choice for using
either of the two models depends on the characteristics of
the actual degradation signals. Initial experimentation is
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necessary to investigate the degree of correlation between
the error terms. In the case of correlated error terms, we sug-
gest the use of the Brownian error model. In contrast, for
uncorrelated error terms both models are applicable. How-
ever, further testing is required to investigate which of the
models provides more accurate estimates of the residual-life
distribution.

With these spreadsheets, we can update the distribution
of the residual life for an operating bearing any time we
obtain a new signal observation, i.e., at any observation
time tk. For each bearing and each tk, we can calculate
the posterior means and variances for the stochastic pa-
rameters, θ ′ and β (β ′), as discussed in Section 4.4. (Fig. 4
(a and b) illustrates a representative evolution of the poste-
rior means for θ ′ and β (β ′).) Given these posterior means
and variances, we can then compute the distribution of
the residual life given the degradation signal observations
obtained up to that point in time. Thus, we can calculate
FT |S1,...,Sk (t) = P{T ≤ t |S1, . . . , Sk}, as a function of T > 0.
Recall that T is the random variable representing the resid-
ual life of the bearing, so tk + T is the total life of the bear-
ing. While we can update the distribution of residual life
at any observation time tk, for the purpose of evaluating
the predictive ability of these models, we focused on three

(a)

(b)

Fig. 4. Evolution of the posterior means for: (a) θ ′; and (b) β.

Fig. 5. Residual-life density functions for bearing 3 using the
Brownian exponential model.

values of tk, tk ∈ {0.5TA, 0.75TA, 0.9TA}, where TA is the
actual life of the bearing. Figure 5 illustrates the probabil-
ity density functions for the residual life obtained at these
times for one of our test bearings. As noted earlier, these
distributions do not follow any known distributional form,
but are similar to the Bernstein distribution (Ahmad and
Sheikh, 1984). In addition, it is easy to show that, as is the
case for the Bernstein distribution, the moments of these
distributions do not exist. Therefore, we use the 5th, 50th
and 95th percentiles of the residual-life distribution to eval-
uate the performance of these distributions, as described in
the next section.

4.4. Evaluating the residual-life distributions with the
experimental data

In this section we compare the performance of the estimated
residual-life distributions for the exponential models de-
scribed in Section 3. To provide a benchmark, at times tk,
tk ∈ {0.5TA, 0.75TA, 0.9TA}, we calculate the conditional
distribution of the time until failure minus tk, given survival
up until time tk, based only on the Bayesian prior distribu-
tions. In other words, we take the best available prediction
of the residual-life distribution at time tk, given no condi-
tion monitoring. The result is a residual-life distribution
that can be used as a benchmark to assess the advantage
of the Bayesian updating method developed in this paper.
We refer to this distribution as CNU (Conditioned: No
Updating).

Recall that we have 34 bearings in our degradation sig-
nal database. When we implemented the Bayesian updat-
ing for each bearing, we used the set of 33 other bearings
to estimate the parameters of the prior distributions for
θ ′ and β (β ′), i.e., to estimate µθ ′ , σ 2

θ ′ , µβ (µβ ′), and σ 2
β

(σ 2
β ′). To estimate these prior means and variances we cal-

culated the sample means and variances of the 33 estimated
θ ′ and β (β ′) values. We estimated σ 2, the error variance, in
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Table 1. Failure times evaluated at three prediction intervals using BM, iid, and CNU residual-life distributions

Bearing
Actual

life
Prediction

time
BM

model
IID

model
CNU
model

1 408 5% 50% 95% 5% 50% 95% 5% 50% 95%
204 0.5TA 232 346 1610 226 534 >10000 232 422 1890
306 0.75TA 320 396 1606 330 960 >10000 322 496 2572
368 0.9TA 373 421 1561 400 1768 >10000 382 562 3592

2 328 5% 50% 95% 5% 50% 95% 5% 50% 95%
164 0.5TA 184 258 830 188 316 1014 206 414 1934
246 0.75TA 250 276 744 256 372 2746 266 452 2258
296 0.9TA 311 383 1109 308 498 >10000 312 492 2710

3 208 5% 50% 95% 5% 50% 95% 5% 50% 95%
104 0.5TA 156 290 1158 146 212 330 188 410 1802
156 0.75TA 186 284 1010 184 310 916 202 416 1838
188 0.9TA 191 215 665 204 334 1438 220 424 1896

4 270 5% 50% 95% 5% 50% 95% 5% 50% 95%
135 0.5TA 149 213 787 175 297 790 192 408 1896
204 0.75TA 225 311 1095 212 296 844 230 428 2036
244 0.9TA 251 301 947 254 386 >10000 264 450 2234

5 230 5% 50% 95% 5% 50% 95% 5% 50% 95%
116 0.5TA 209 411 1797 360 732 >10000 198 412 1462
174 0.75TA 187 251 811 226 356 774 216 418 1490
208 0.9TA 213 247 731 290 290 514 236 428 1534

6 314 5% 50% 95% 5% 50% 95% 5% 50% 95%
158 0.5TA 193 313 1357 168 234 440 202 410 1912
236 0.75TA 274 410 1756 248 412 >10000 258 444 2182
284 0.9TA 293 351 1203 298 528 >10000 300 480 2560

7 508 5% 50% 95% 5% 50% 95% 5% 50% 95%
254 0.5TA 270 346 1062 284 562 >10000 272 452 2250
382 0.75TA 399 485 1461 402 774 >10000 396 580 4542
458 0.9TA 479 589 1861 486 1166 >10000 472 680 >10000

8 148 5% 50% 95% 5% 50% 95% 5% 50% 95%
74 0.5TA 108 218 1166 142 292 1124 186 404 1840

112 0.75TA 147 265 1341 244 1862 >10000 190 406 1848
134 0.9TA 157 249 1175 212 1044 >10000 194 408 1860

9 228 5% 50% 95% 5% 50% 95% 5% 50% 95%
114 0.5TA 142 254 1656 168 502 >10000 190 402 1724
172 0.75TA 185 263 1475 202 688 >10000 210 410 1774
206 0.9TA 221 305 1703 226 630 >10000 232 422 1850

10 286 5% 50% 95% 5% 50% 95% 5% 50% 95%
144 0.5TA 153 205 727 164 220 322 198 412 1764
216 0.75TA 233 309 1041 222 274 476 240 434 1904
258 0.9TA 259 273 779 264 346 860 278 458 2098

11 360 5% 50% 95% 5% 50% 95% 5% 50% 95%
180 0.5TA 206 296 992 200 330 1180 214 412 1874
270 0.75TA 290 374 1150 290 610 >10000 288 466 2320
324 0.9TA 336 398 1140 348 824 >10000 340 516 2944

12 414 5% 50% 95% 5% 50% 95% 5% 50% 95%
208 0.5TA 245 379 1861 260 1218 >10000 234 420 1746
312 0.75TA 357 529 2879 388 >10000 >10000 326 496 2334
374 0.9TA 377 419 1509 420 >10000 >10000 386 562 3168

13 326 5% 50% 95% 5% 50% 95% 5% 50% 95%
164 0.5TA 205 359 2551 264 >10000 >10000 204 406 1712
246 0.75TA 273 401 2489 292 676 >10000 264 442 1952
294 0.9TA 297 331 1505 328 2194 >10000 310 482 2280

14 400 5% 50% 95% 5% 50% 95% 5% 50% 95%
200 0.5TA 224 308 974 206 272 504 228 420 1946

(Continued on next page)
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Table 1. Failure times evaluated at three prediction intervals using BM, iid, and CNU residual-life distributions (Continued)

Bearing
Actual

life
Prediction

time
BM

model
IID

model
CNU
model

300 0.75TA 322 410 1228 316 562 >10000 316 492 2656
360 0.9TA 380 470 1382 384 413 >10000 374 556 3738

15 360 5% 50% 95% 5% 50% 95% 5% 50% 95%
180 0.5TA 242 424 2320 294 >10000 >10000 214 412 1778
270 0.75TA 320 490 2500 332 >10000 >10000 288 462 2164
324 0.9TA 328 368 1260 376 >10000 >10000 340 512 2692

16 360 5% 50% 95% 5% 50% 95% 5% 50% 95%
180 0.5TA 234 360 1074 212 290 446 216 414 1714
270 0.75TA 292 372 956 278 366 730 288 462 2040
324 0.9TA 336 394 944 332 432 1062 340 510 2492

17 220 5% 50% 95% 5% 50% 95% 5% 50% 95%
110 0.5TA 144 248 1034 238 524 >10000 188 408 1852
166 0.75TA 173 215 831 378 378 8166 206 416 1906
198 0.9TA 204 248 830 338 338 2198 228 426 1984

the manner described above. We then used the degradation
signal data for the remaining individual bearing (the 34th
bearing) to test our residual-life models by assuming that
this 34th bearing is the functioning bearing.

In order to evaluate the performance of the residual-
life distribution for these three different models, at each
bearing and each model, at each of the three values of
tk, i.e., for tk ∈ {0.5TA, 0.75TA, 0.9TA}, we first calculated
an approximate 90th Percentile Interval (PI) for the resid-
ual life, T . We define the 90th PI to be the interval (a, b)
where a denotes the fifth percentile and b denotes the 95th
percentile of the residual-life distribution. Since for each
bearing and each model we consider three different val-
ues of tk, we obtain three different percentile intervals,
constructed at different points in the life of the function-
ing bearing. We let (aj, bj) denote these percentile inter-
vals, where j represents the jth chosen prediction time, tj,
j = 1, 2, 3. In other words, j = 1 refers to prediction time
0.5TA, j = 2 refers to prediction time 0.75TA, etc. At each
time, tj, j = 1, 2, 3, to obtain these 90th PIs, we use the
residual-life distributions calculated in our spreadsheet to
search for the values of aj and bj that satisfy the following
equalities:

P{T ≤ aj | S(t1), S(t2), . . . , S(tj)} = 0.05,

P{T ≤ bj | S(t1), S(t2), . . . , S(tj)} = 0.95.

Table 1 presents the median, the fifth percentile and 95th
percentile of the residual-life distribution plus the current
operating time for each of the 15 bearings and each model
(Brownian, iid and CNU) at tk = 0.5TA, 0.75TA, 0.9TA.
For a complete table for all the 34 bearings, please refer
to Table 1 in Gebraeel et al. (2003). Figure 6 displays the
same information in graphical form for a typical bearing.

For further evaluation, we used the median of each
residual-life distribution as a predictor of failure time. Let

TP1, TP2, TP3 denote the predicted (median) life at times
0.5TA, 0.75TA, 0.9TA, respectively, for a given model. We
used:

√(∑3
j=1(TA − TPj)2

3

)
,

as a measure of prediction error for that model. Figure 7
plots these errors for each of the three models applied to
each of the 34 bearings. The figure shows that the Brownian
model outperforms both the iid and CNU models for this
predictor. This illustrates the following important point.
Condition information in the form of degradation signals
can significantly improve our estimates of remaining life.
However, accurate modeling of the signal error is essen-
tial. Conveniently assuming that error terms in a random
coefficients model are iid, as is done in much of the lit-
erature, can lead to very poor results if the assumption is
incorrect.

Fig. 6. Prediction intervals for the Brownian Motion (BM), iid
and CNU models for bearings 1–3.
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Fig. 7. Prediction errors for the BM, iid and CNU models for the
34 bearings.

5. Conclusions

In this paper, we presented methods that combine two
sources of information: (i) the reliability characteristics of
a device’s population; and (ii) real-time sensor information
from the functioning device, to periodically update the dis-
tribution of the device’s residual life. To do this, we devel-
oped a Bayesian approach for updating our estimates of the
stochastic parameters in exponential random-coefficient
models. We then used these models with their updated pa-
rameters to develop residual-life distributions for a partially
degraded device. Finally, we applied these models to bearing
degradation signals that we collected through accelerated
testing.

We believe that the major contributions of this work are:
(i) a method to compute residual-life distributions for a
functioning component by combining information from a
degradation database with real-time condition information;
(ii) models that work for components with exponential-like
degradation signals that exhibit either iid or Brownian error
characteristics; and (iii) an approach to apply these mod-
els to real-world data and evaluate their effectiveness. We
believe that the results presented in Section 4.4 clearly indi-
cate the value of using the Bayesian approach to incorpo-
rate real-time condition information into our remaining life
models. Furthermore, as noted above, we believe that our
work illustrates the importance of accurately modeling the
degradation signal error. Future research directions include
sensitivity analysis for the exponential models presented
here, developing new types of error models, and formulating
condition-based component replacement and spare parts
inventory models given these residual-life distributions.

Finally, in this paper we have focused on developing spe-
cific degradation signal models for which we can obtain
easy-to-compute residual-life distributions. For example,
because we have assumed normal or lognormal prior dis-
tributions for the unknown parameters in our degradation
signal models, all of the models developed in this paper
are quite easy to compute using a standard spreadsheet.

We note, however, that the Bayesian-updating approach we
present in this paper could be applied to much more general
models. For example, if we are not worried about obtaining
closed-form expressions for the posterior distributions, we
can assume any form for the prior distributions on the un-
known parameters. This, of course, would require numerical
integration in order to compute the posterior distributions.
The general approach, however, would remain unchanged.
Similarly, we have also applied our Bayesian approach to
degradation signal models of other forms, e.g., linear and
polynomial models.
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