
J. Torres Æ J. A. Ortega Æ M. Toro

Interactions among dynamic sets of objects

Abstract In this paper, we present an operator to model
interactions among objects. Our proposal allows a
variable number of participant objects in an interaction,
and this number will be fixed during the execution of the
model. This provides a very flexible interaction model
based on synchronous interactions among several
objects. Our interaction model is based on events and
allows a multiple-way communication among objects.
Concrete values of a communication are generated
through constraints which are imposed locally on each
participant object. The proposed interaction (and com-
munication) model is very versatile and can be used as
an abstract specification mechanism.

Keywords Communication Æ Event Æ Interaction
constraints Æ Object orientation Æ Specification Æ
Synchronisation

1 Introduction

Object orientation is based on the definition of a system
by means of entities (objects) related among themselves.
The properties of a system are expressed through
mechanisms like classification (which groups objects
into classes), association, generalisation, specialisation
and aggregation. These mechanisms capture static re-
lationships among objects, but they do not capture
dynamic relationships among them. This type of feature
is expressed by means of interactions that describe the
way in which several objects can collaborate in a
common action.

In object-oriented programming languages, these
collaborations are carried out by means of methods. In

object-oriented specification languages, a more abstract
concept is used: the event. An event describes an
important moment of the system that characterises two
states: the previous state to the event and the state after
the event. Besides causing state changes, events are also
good at coordinating objects. This happens when two or
more objects coincide in the same event.

The study of events has its origin in process specifi-
cation languages [1–3], but their ideas are perfectly
applicable to object-oriented models. Object-oriented
specification languages usually use theclient/server
model to specify the interactions among objects.

In this paper, an alternative for the specification of
interactions among objects is presented. Our proposal
is based on an n-way communication mechanism. This
approach appears in the literature in different forms:
rendezvous multiple-way in SR [4], n-ary rendezvous in
LOTOS [3], relationships in TROLL [5, 6] andmulti-
party synchronous interactions in IP [7], among others.

Nevertheless, all these proposals contemplate a fixed
number of objects (processes) in the interaction. Our
proposal allows a variable number of participant objects
in an interaction and this number will be fixed during the
execution of the model. This provides a very flexible
interaction model, with synchronous interactions among
several objects.

The paper is organised as follows. In Section 2, the
main ideas of the interaction among objects and some
typical interaction operators used to express the con-
current behaviour of a system are discussed. Section 3
explains how communication features associating con-
straints to events can be described. Section 4 presents a
complete application example of our interaction model.
Finally, in Section 5 the conclusions of this work are
presented.

2 Interactions

A system can be seen as a set of objects interacting with
one another concurrently. When the system is relatively

J. Torres (&) Æ J. A. Ortega Æ M. Toro
Department of Languages and Computer Systems,
Seville University, Avda Reina Mercedes,
S/N Sevilla CP 41012, Spain.
E-mail: jtorres@lsi.us.es

complex, the object approach is very useful because it
allows mechanisms such as inheritance, association and
aggregation (permitting a system to be defined at several
levels of abstraction).

Each object has a local state, on which local con-
straints can be imposed. In specification languages, the
interaction among objects is usually based on events.
Events also allow communicating parameters among the
different objects implied.

An example is the dining philosophers’ problem,
which is a typical problem in concurrent programming
[4]. To specify this problem, the classes Philosopher and
Fork will be defined. The objects of the Philosopher
class will have a cyclical behaviour which consists on
thinking and eating. Each philosopher has to catch the
forks placed on his left and on his right to eat. The
events are takeFork and releaseFork. These names
already give an idea of the intention of each one. The
corresponding class diagram (in UML notation [8, 9]) is
shown in Fig. 1.

An important factor is the number of objects which
participate in a communication. The communication is
usually 1:1, following the client-server approach, with
one-way parameter transfer. A more interesting ap-
proach is two-way (n-way in general) communication
among objects.

In order to model a system, a synchronous model is
preferred to an asynchronous one because the execu-
tion of a synchronous communication event im-
mediately provides the participating objects with the
information that communication has taken place
[10, 11]. This facilitates the specification for the detec-
tion of deadlocks. Moreover, communication among
several objects is easier in a synchronous model, while
an asynchronous model is more focused on one-to-one
communications [2, 3]. If the modification of the object
state is carried out in an atomic way when it partici-
pates in an event, then synchronous interactions can
also be used to model transactions. Thus, each object
involved in an interaction changes its state in an atomic
way. This is considered as a change of the system state
in an atomic way.

There are many operators for expressing the con-
current behaviour of a system. The most popular ones
have been defined traditionally for process algebra [1–3].
LOTOS, for example, which is a language quite rich in
this sense, has three operators to express the parallelism
of processes: pure interleaved, full synchronisation and
explicit synchronisation.

If A and B are two processes, pure interleaved A
||| B denotes their independent composition. In other
words, both processes do not synchronise in any
event.

Full synchronisation A || B is a new process that
denotes a parallel composition in which A and B must
synchronise in all their events. Therefore, we have a full
synchronisation at the process level (A and B have to
participate, as well as their subprocesses) and at the
event level (they have to synchronise in all events). Since
an entire subsystem has to evolve at the same time, if
some of the parts cannot evolve this blocks the rest of
the subsystem.

Explicit synchronisation A |[g1, . . ., gn]| is a new
process in which A and B must synchronise in each event
occurring through the gates (communication channels)
g1, . . ., gn. Then, we have a complete synchronisation at
the process level and a partial synchronisation at the
event level (they do not have to synchronise in all
events). This operator allows a more flexible interaction
among processes than the operator ||. However, the
previous problem continues to arise.

These operators describe the interaction of several
processes (or classes) through a certain event. A single
object or all those of the class can only participate for
each class. Specifying these situations with the above
operators may require specifications at a lower level,
which can be complex and difficult to understand. Even
worse, these specifications can readily lead to certain
problems, such as deadlocks.

For example, if we solve the dining philosophers’
problem with this kind of interaction, a philosopher
can only catch a fork at the same time. The incon-
venience of this approach is that, since a philosopher
first has to catch a fork (either the left or the right),
and later the other one, a deadlock may take place
(for example, where all philosophers catch a fork).
This is usually solved by adding some synchronisation
mechanism like semaphores or monitors [4], or by
adding new processes of coordination, which takes us
to a less clear specification. For example, in Mañas
[14] a solution is presented in LOTOS with three
processes:

• users, which represents philosophers. Each philoso-
pher first takes the left fork and later the right. Then,
it releases them in the same order. The philosophers’
behaviour is interleaved among them.

• service, which represents forks. Each fork can be
caught (either from the right or from the left) and
later released.

• watchdog, which monitors the philosophers’ beha-
viour, and forbids picking more than four left forks
simultaneously. Therefore, there would no be dead-
locks.

There are two disadvantages of this specification: (1) a
new process is added to avoid deadlocks, and (2) phi-
losophers are obliged to take forks in a certain order
(first the left and then the right).Fig. 1 Class diagram of the philosophers problem

3 Modelling interactions among dynamic sets of objects

The proposed interaction operator carries out the syn-
chronisation in an individual way for events. However,
the key difference from other approaches is that the
number of objects of a class participating in an inter-
action is not limited. All objects verifying their con-
straints participate in an event, allowing interactions
among a dynamic set of objects.

There are many situations where a dynamic set of
objects must interact in an atomic way:

• The coach of a team summons all his uninjured
players.

• A professor calls all those students who failed.
• A bank cancels all the accounts of one particular

customer.

For example, an easier specification from the dining
philosophers’ problem can be made. To avoid dead-
locks, the two forks that correspond to a philosopher
are assigned at the same time, in the same interaction
[15]. This should be reflected in the class diagram in
Fig. 1, changing the cardinality of the association
uses from 0..2 to 0,2 (see Fig. 4). The specification
of this problem will be studied in more detail in
Section 4.

The main advantage of this approach is that there is
no need to add new processes to ensure the coordina-
tion. Specifications at a higher abstraction level can be
obtained with it.

In our model, objects evolve when they synchronise
in events. Interaction constraints define the way in which
objects of several classes synchronise in events.

Each object has a local state, which can only be
modified for the participation in events. Communication
has to happen synchronously. An event will occur only if
each object that has to participate in this event agrees on
doing it. Furthermore, objects must reach an agreement
about the values of the parameters that will commu-
nicate among themselves. For this, each one of these
objects establishes their participation constraints. This
allows us to model more complex interactions than the
traditional client/server approach.

Events are described in our model by means of
communication channels, which have the same names as
the events. All objects of a class share the communica-
tion channels defined in this class. A channel is defined
with a name and the types of parameters communicated
with the events. In short, the definition of a channel is
the definition of an events template.

3.1 Views of a channel

From the point of view of interclass communication, it
can be said that channels constitute the interface of
a class. Concrete events in which objects of a class
participate occur through channels. When a channel is

defined, it is given a name and its parameters are en-
umerated.

This is the most interesting vision of a channel from
the local point of view of classes. When more than one
object must synchronise in an event through a channel,
not all of them need to have the same vision of this
channel, but the event that occurs will be unique. This
unique event in which several objects synchronise is
called a global event. Local views of events in the spe-
cification of a class allow us to ignore the aspects of
global events that are not relevant to this class. This fact
makes this class independent from the rest of the system.
Moreover, objects of a class can see different global
events in the same way, and with the same effects under
the same conditions. They may then correspond to a
single local view.

The structure of a global channel is extracted from the
different views that classes have of that event (local
views). These local views of channels may have different
names, and even the number of parameters may be
different in each class. All this is unified by means of
interaction constraints among classes. Thus, each class
sees what interests them from a global channel.

The local behaviour of objects of the class cli will be
described with the notation {prei} cni {posti}. This in-
dicates that objects of the class which verify the condi-
tion prei, evaluated on their current state, will participate
in the event cni. If the event occurs, the state of parti-
cipant objects will become the one described in posti.
The notation ob.at will be used to refer to the attribute at
of an object with identification ob. The notation ob.exp
will also be used to denote the expression exp evaluated
on the state of the object ob. The value of an attribute
after the occurrence of an event is represented by adding
a quotation mark (’) to attributes.

For example, in a system of automatic banking there
are a lot of interactions, such as opening an account,
depositing money and withdrawing money. As the
problem is quite extensive, only the close account event
will be studied.

The simplified class diagram with three classes is
shown in Fig. 2. Customer class represents clients of
some bank. It has two associations to indicate that a
client can have multiple accounts and several cards.
Account class represents clients’ accounts. An account
can have several owners and can be accessible by dif-
ferent cards. This class has an attribute to denote the

Fig. 2 Partial class diagram of the banking problem

balance. Card class represents clients’ credit cards. Each
credit card is personal. It can only belong to one client
and it is associated with one account.

The association roles are not shown in Fig. 2. Like
role names of an association, the class names that are in
the corresponding end of that association (for instance,
the set of associated credit cards to an account a is
denoted by the role a.card) will be used.

The behaviour of the classes Customer, Account and
Card for the close account event is described by the
following rules:

1. {a [c.account}
Customer(c).closeAccount(a)
{a [/ c.account’}

2. {a.balance = 0}
Account(a).close

3. {crd.account = a}
Card(crd).invalidate(a)

The first rule means that a customer can close an ac-
count if the account is his. After closing an account, it is
not found among the customer’s accounts. The second
rule allows closing an account if its balance is 0. Finally,
the third rule specifies that a credit card is invalidated
(the object is destroyed) when the account passed by
parameters coincides with the associated account.

3.2 Specifying interaction constraints

Interaction constraints are specified as follows:

Interaction constraints
cng(par): cl1(id1).cn1(par1)[rng1] = . . . =

cln(idn).cnn(parn)[rngn];
...

end;

where

• cli is the name of the classes whose objects are going
to participate in the interaction;

• idi is the identification of the object of the class cli that
must participate in the event. It is only defined when
a single object of cli is going to participate and its
identification is known. In another case, if the event
occurs, all objects fulfilling their constraints will
participate;

• cni is the name of the local channel in the class cli, and
pari its parameters (one variable for each parameter);

• rngi indicates the cardinality or number of objects of
the class cli that must participate through the channel
cni. The range notation min..max will be used, where
min indicates the minimum number of objects and
max indicates the maximum number of objects which
must participate in the interaction. To indicate that
there is not a maximum limit, max will be an asterisk
(*). The notation num will also be used to indicate the
exact number of objects. When rngi is not defined, it
denotes the implicit range 1..*;

• cng is the name of the global channel whose para-
meters are par. These parameters are obtained from
the local views.

The graphical notation of an interaction among objects
of two classes is shown in Fig. 3. Interactions among
more classes are obtained by generalising this case.

An event can only occur if each class participating in
the interaction has the minimum number of objects
indicated in the corresponding range. In the other case,
the event will not be able to happen.

For example, the specification of interaction con-
straints to close an account is as follows:

Interaction constraints
close(c,a): Customer(c).closeAccount(a) =

Account(a).close = Card.invalidate(a);
...

end;

This interaction specifies that a customer, the account
indicated by the customer and all associated credit cards
to the account should interact.

3.3 Examples of interactions

Let us consider two interacting classes cl1 and cl2
through the local channels cn1 and cn2. Let us consider
the parameters par1 and par2 of those channels. Some
kinds of basic interactions that can be specified are as
follows:

• An object of cl1 interacts with an object of cl2. Both
objects fulfil their constraints and they agree also in
the values of the parameters par1 \ par2. There are
two possibilities to specify this:
– Participating objects of each class can be anyone

fulfilling their local constraints and they may be
known by the others participating. This case is
specified as follows:

cn(par): cl1(id1).cn1(par1) = cl2(id2).cn2(par2);

– Participating objects of each class can be anyone
fulfilling their local constraints and they are un-
known by the others participating. This case is
specified as follows:

cn(par): cl1.cn1(par1)[1] = cl2.cn2(par2)[1];

• All objects of cl1 fulfilling their constraints interact
with all objects of cl2 that also fulfil their constraints.
This case is specified as follows:

cn(par): cl1.cn1(par1) = cl2.cn2(par2);

Fig. 3 Graphical representation of an interaction between two classes

Here, all objects of cl1 must have the same values for
the parameters par1. All objects of cl2 must also have
the same values for par2. Furthermore, all objectsmust
agree on the values of the parameters par1 \ par2.

• A number of objects of cl1 fulfilling their constraints
interact with all objects of cl2 fulfilling their con-
straints. This case is specified as follows:

cn(par): cl1(id1).cn1(par1)[rng1] =
cl2(id2).cn2(par2);

If for cl1 there are more ready objects to participate
than the ones defined in rng1, then the maximum
number possible of them will be arbitrarily chosen.

• Some objects of a class interact with other objects of
the same class. For example, let us consider two
channels cna y cnb of the class cl. The following
interaction establishes the communication between
two objects of cl through both channels:

cn(par): cl(ida).cna(para) = cl(idb).cnb(parb);

Here, we are implicitly defining two subclasses of
objects from cl: (1) objects fulfilling preconditions of
cna and (2) objects fulfilling preconditions of cnb.
This kind of communication is similar to an interac-
tion defined between two different classes.

• Any combination of previous cases. This can be
generalized by making it so that the number of classes
can to participate in an interaction.
For example, the following interaction:

cn(a, b, c): cl1.cn1(a, b) = cl2.cn2(b)[2..4]
= cl3(c).cn3(a);

denotes that one object of the class cl1 will participate
with as many objects as possible, one object of the
class cl2 must have between two and four objects, and
one object of the class cl3 a single object. Furthermore,
the global channel cn will have three parameters:

• a comes from the channels cn1 and cn3. This
parametermust take the same value in the objects
that participate in the corresponding classes;

• b comes from the channels cn1 and cn2. The
same thing must be fulfilled as in the previous
case; and

• c comes from the identification of an object of
the class cl3.

The flexibility of our operator is simulated in some other
approaches by means of the use of transactions or
groups of actions that are all carried out all or none of
which are carried out. However, transactions, still being
a quite potent mechanism, are clearly of a lower level.
For example, it is necessary to detail intermediate states
composing the transaction, or the order in which it is
necessary to carry out each action. In the proposed in-
teraction operator only the different elements that in-
tervene in an interaction are indicated, without giving
the concrete details of how the transaction itself is
carried out. This belongs to a later refinement process,

which will be obtained starting from defined interactions
[16].

3.4 Global behaviour of a system

In order to define the global behaviour of a system, it
has to be considered what condition must be verified so
that a global event can occur and what effects this will
have on the objects participating in this event.

Let us suppose that we have defined the following
interaction:

cng(par): cl1.cn1(par1)[rng1] =...= cln.cnn(parn)[rngn];

where the classes cli can participate with the local views
cni, Vi [{1..n}. We will denote cli the population or
extension of the class cli, and cli.cni the objects of the
class cli that participate in an interaction through the
channel cni. This set is composed by all objects verifying
their preconditions:

V ob [cli . ob.prei) ob [cli.cni

If the size of cli.cni is greater than the number of objects
allowed to participate, then the maximum number pos-
sible of objects will be (arbitrarily) chosen.

The global behaviour of the system with regard to
event cng is the following:

{pre} cng {post}

where

pre : ^(i [{1..n})((Vob [cli.cni . ob.prei) ^
(#cli.cni} [{rngi}))

post :^(i [{1..n}) (Vob [cli.cni . ob.posti)

Therefore, to allow the occurrence of a global event, it
must be fulfilled that each object participating verifies its
constraints for each local view. It must also have the
number of objects required to participate. On the other
hand, if the event occurs, all participant objects in this
event will modify their state (in atomic way) according
to the local definition of the corresponding class.

For example, let us consider the automatic banking
system shown previously in Section 3.1 with the fol-
lowing three rules

1. {a [c.account}
Customer(c).closeAccount(a)

{a [/ c.account’}
2. {a.balance = 0}

Account(a).close
3. {crd.account = a}

Card(crd).invalidate(a)

and the following interaction to close an account:

close(c,a): Customer(c).closeAccount(a) =
Account(a).close = Card.invalidate(a);

The global event close(c, a) will be defined as:

{(a [c.account) ^ (a.balance = 0) ^
(Vcrd [Card.invalidate(a)} . crd.account = a)}

close(c, a)
{a [/ c.account’}

i.e., it must be fulfilled that the account a belongs to the
customer c, that this account has a balance equal to zero
and that all cards associated with this account will be
cancelled.

The events that can occur in each instant will be
obtained. A global event can occur in each instant. If
there is more than one event enabled, the election will be
non-deterministic. If no event can occur, then the system
is blocked (in the case of non-terminating systems).

4 Example: the dining philosophers’ problem

The dining philosophers’ problem will be specified using
our interaction operator, already described in Section 2.
The definitive class diagram is shown in Fig. 4.

Since the number of philosophers is irrelevant, it can
be supposed that there are numPhil philosophers (and,
therefore, the same forks), being numPhil 5 2. Also
attributes are needed to denote the current states of
philosophers and forks. Let stp be the attribute for the
philosophers. It will be able to take the values {thinking,
eating}. Let stf be the attribute for the forks. It will be
able to take the values {free, busy}.

Local events are takeForks and releaseForks for the
philosophers, and isTaken and isReleased for the forks.
The behaviour of the classes Philosopher and Fork is
described by the following rules:

1. {p.stp=thinking}
Philosopher(p).takeForks

{p.stp’=eating}
2. {(p.stp=eating)}

Philosopher(p).releaseForks
{p.stp’=thinking}

3. {(f=p.forkLeft _ f=p.forkRight) ^ f.stf=free}
Fork(f).isTaken(p)

{f.stf’=busy}
4. {(f=p.forkLeft _ f=p.forkRight) ^ f.stf=busy}

Fork(f).isReleased(p)
{f.stf’=free}

The first rule establishes that a philosopher must be
thinking to take his forks. If the event occurs, the phi-
losopher will pass to eat. The second rule defines that a

philosopher p must be eating in order to release his
forks. If this event occurs, the philosopher will pass to be
thinking. The third rule indicates when a philosopher
can catch the fork f. This fork must be free and also
must be a fork that is on the left or on the right of a
philosopher whose identification is passed as a para-
meter. If the event occurs, the fork will pass to be busy.
Similarly, the fourth rule establishes that a fork f must
be busy in order to be released. When this event occurs,
the fork will pass to be free.

Two interactions among objects of the two classes are
needed:

1. When a philosopher takes a fork, it must disappear
from the table (so that another philosopher cannot
take it). Also, to avoid problems of deadlocks, a
philosopher must take the two forks that he needs at
the same time.

2. When a philosopher releases a fork, it must be
available on the table again. The philosopher must
release the two forks that he has at the same time.

The graphical representation of these interactions is
shown in Fig. 5. The specification of the interaction
constraints is as follows:

Interaction constraints
take(p): Philosopher(p).takeForks=

Fork.isTaken(p)[2];
release(p): Philosopher(p).releaseForks=

Fork.isReleased(p)[2];
end;

As can be seen, each global channel has a parameter. It
indicates the philosopher that wants to take or to release
his forks.

According to defined interaction constraints and lo-
cal constraints imposed on each class (and following the
definitions made in Section 3.4), the global behaviour of
the system is defined as follows:

{pret} take(p) {postt}
{prer} release(p) {postr}

where

pret : (p.stp=thinking) ^ (V f [Fork.isTaken .
(f=p.forkLeft _ f=p.forkRight) ^
(f.stp=free)) ^ (#Fork.isTaken = 2)

postt : (p.stp’=eating) ^
(Vf [Fork.isTaken . f.stf’=busy)

prer : (p.stp=eating) ^ (Vf [Fork.isReleased .
(f=p.forkLeft _ f=p.forkRight) ^
(f.stp=busy)) ^ (#Fork.isReleased = 2)

Fig. 4 Definitive class diagram of the philosophers problem
Fig. 5 Interaction constraints between the classes Philosopher and
Fork

postr : (p.stp’=thinking) ^
(Vf [Fork.isReleased . f.stf’=free)

Here, precondition pret indicates that the event take
could happen if the philosopher p is thinking and he has
two free forks in his hands, the forks at his left and at his
right. Postcondition postt indicates that if the event take
occurs, then the philosopher p will be eating and the
forks that he has in his hand will be busy. Precondition
prer indicates that the event release could occur if the
philosopher p is eating and he has two busy forks in his
hands, the forks at his left and his right. Postcondition
postr indicates that if the event release occurs, then the
philosopher p will be thinking and the forks that he has
in his hand will be free.

5 Conclusions and future work

A flexible model of interaction among objects in which
multiple classes of objects are allowed to interact
through a same event has been presented in this paper.
Events are units of synchronisation and (n-way) com-
munication among objects.

A specification in our model is made defining con-
straints locally imposed on objects. The global vision of
a system is obtained, defining the existent interaction
constraints among objects. For each class, all objects
satisfying their constraints will be able to participate in
an interaction.

The imposition of global constraints on a system or
on a part of it (subsystem) may be carried out by means
of objects keeping these constraints locally. Further-
more, these objects must interact in a synchronous way
with the rest of the system.

This paper contains two illustrative examples: the
dining philosophers’ and the automated banking pro-
blems. We have made a specification of the systems by
means of rules that define the possible transitions of
state of the objects composing these systems. To give a
global vision of each system, interaction constraints
have been defined. Finally, we have described the con-
ditions that have to be fulfilled in order that an event of
the system can occur.

Our interaction mechanism has been implemented in
two different ways: firstly using the LOTOS language
[15] and secondly making an extension of the IP lan-
guage [7]. This extension allows a dynamic number of
processes [17]. Our future work is focused on obtaining
implementations in an automatic way by means of me-
chanisms of a lower level, as communication client/ser-
ver and transactions, which in a transparent way assure

the same properties as the original specification. We also
plan to develop a methodology that allows us to
use interaction constraints in a process of software
development.

References

1. Hoare CAR (1985) Communicating sequential processes. Pre-
ntice-Hall International Series in Computer Science, Engle-
wood Cliffs, NJ

2. Milner R (1989) Communication and concurrency. Prentice-
Hall International Series in Computer Science, Englewood
Cliffs, NJ

3. ISO (1989) Information processing systems: open systems
interconnection. LOTOS: a formal description technique
based on the temporal ordering of observational behaviour.
ISO 8807

4. Andrews GR (1991) Concurrent programming: principles and
practice. Benjamin/Cummings, Redwood City, CA

5. Jungclaus R, Hartmann T, Saake G (1993) Relationships be-
tween dynamic objects. In: Information modelling knowledge
bases IV: concepts, methods and systems. IOS Press, Am-
sterdam pp 425–438

6. Jungclaus R, Saake G, Hartmann T, Sernadas C (1996)
TROLL – A language for object-oriented specification of in-
formation system. ACM Transactions on Information Systems,
14(2): 175–211

7. Francez N, Forman IR (1996) Interacting processes: a multi-
party approach to coordinated distributed programming.
Addison-Wesley, Reading, MA

8. Booch G, Jacobson I, Rumbaugh J (1999) The Unified Mod-
eling Language user guide. Addison-Wesley, Reading, MA

9. Rumbaugh J, Booch G, Jacobson I (1999) The Unified Mod-
eling Language reference manual. Addison-Wesley, Reading,
MA

10. Jonkers hbm (1999) Communication and synchronisation using
interaction objects. Lecture Notes in Computer Science, Vol
1709, pp 1321–1331

11. Manna Z, Pnueli A (1992) The temporal logic of reactive and
concurrent systems: specification. Springer, Berlin

12. Denker G, Köster-Filipe J (1996) Towards a model for asyn-
chronously communicating objects. In: Proceedings of the
second international Baltic workshop on databases and
information systems, Tallinn, p 182–193

13. Eugster A, Guerraoui R, Sventek J (2000) Distributed asyn-
chronous collections: abstractions for publish/subscribe inter-
action. Lecture Notes in Computer Science, Vol 1850, pp 252–
270

14. Mañas JA (1989) Dining philosophers: a constraint oriented-
specification. In: The formal description techniques LOTOS.
Elsevier Science, Amsterdam

15. Torres J Object oriented specifications based on constraints.
PhD thesis, Department of Languages and Computer Systems,
University of Seville, December 1997

16. Soundarajan N (2001) Refining interactions in a distributed
system. Lecture Notes in Computer Science, Vol 1871, pp 209–
220

17. Corchuelo R Prototyping distributed systems specifications
based on constraints. PhD thesis, Department of Languages
and Computer Systems, University of Seville, December 1999

