
From Wrapping to Knowledge
José L. Arjona, Rafael Corchuelo, David Ruiz, and Miguel Toro

Abstract—One the most challenging problems for Enterprise Information Integration is to deal with heterogeneous information
sources on the Web. The reason is that they usually provide information that is in human-readable form only, which makes it difficult for
a software agent to understand it. Current solutions build on the idea of annotating the information with semantics. If the information is
unstructured, proposals such as S-CREAM, MnM, or Armadillo may be effective enough since they rely on using natural language
processing techniques; furthermore, their accuracy can be improved by using redundant information on the Web, as C-PANKOW has
proved recently. If the information is structured and closely related to a back-end database, Deep Annotation ranges among the most
effective proposals, but it requires the information providers to modify their applications; if Deep Annotation is not applicable, the
easiest solution consists of using a wrapper and transforming its output into annotations. In this paper, we prove that this
transformation can be automated by means of an efficient, domain-independent algorithm. To the best of our knowledge, this is the first
attempt to devise and formalize such a systematic, general solution.

Index Terms—Enterprise information integration, wrappers, semiautomatic annotation.

1 INTRODUCTION

ENTERPRISE APPLICATION INTEGRATION (EAI)
amounts to designing a piece of software that allows

several interfaces to work together. Our research focuses on
Web applications that need to integrate several sources of
information to provide value-added knowledge. In this
context, ubiquitous protocols and languages such as HTML,
SOAP, or XML provide the foundations since they allow us
to connect heterogeneous systems so that they can exchange
data. Notice that for these data to be useful, it is commonly
necessary to transform them into a common representation
with agreed semantics [1], [2], and this is the goal of
Enterprise Information Integration (EII).

Many researchers agree that the Semantic Web might
soon become a cornerstone for EII since languages such as
RDF or OWL and their accompanying technologies provide
the foundations for working with knowledge. The idea is to
enhance current Web pages with annotations that describe
their semantics, both from an intensional and an extensional
point of view. As a result, the Web remains human-
readable, and the annotations make it easier for a machine
to interpret and process its contents [3], [4]; some
researchers are also working on making these annotations
easier to understand for humans [5]. Common annotations
range from simple flat templates to relational metadata that
make it explicit the relationships among several knowledge
entities; however, some authors have recently pointed out
that for the Semantic Web to achieve its full potential other
kinds of annotations based on implicit or soft semantics

. J.L. Arjona is with the Departamento de Electrónica, Sistemas Informáticos
y Automática, Escuela Politécnica Superior, Campus de la Rábida, Pabellón
Torreumbrı́a, Carretera Huelva-La Rábida, 21071 Palos de la Frontera
Huelva, Spain. E-mail: jose.arjona@diesia.uhu.es.

. R. Corchuelo, D. Ruiz, and M. Toro are with the Departamento de
Lenquajes y Sistemas Informáticos, ETSI Informática, Avda. de la Reina

Mercedes, s/n, 41012 Sevilla, Spain. E-mail: {corchu, druiz,
mtoro}@us.es.

should also be taken into account [6]. Whatever the kind of
annotation is, it is clear that the more interrelated, the most
valuable the knowledge [7].

However, no technology is effective unless it is inte-
grated into an appropriate methodological framework.
CREAM is such a framework, and it provides both
guidelines and tools to help software engineers benefit
from the Semantic Web [7]. Recently, the authors extended
it with a method called Deep Annotation that targets EII
projects in which the applications to integrate provide a
Web interface to a back-end database [8], [9]. The method
can be applied as long as the information providers are
cooperative and agree on changing their applications so that
the Web pages they produce are annotated with informa-
tion about the databases and the queries from which they
originate. If the information provider is not so cooperative,
be it because the costs or the benefits are not worth, or the
method is not applicable, be it because the information
comes from different sources or the data needs to be
processed by a program before it is transformed into a Web
page, several researchers have suggested that the solution
should rely on using a class of information extractors
known as wrappers [10], [11], [12], [13], [14], [15]. A
wrapper is an algorithm that extracts a predefined collec-
tion of attributes from a Web page, i.e., literals that carry the
information of interest, and organizes them into slots and
records.

Our research focuses on EII problems in which the
applications to integrate provide information that is both
structured and local, e.g., guest portfolios, NASDAQ
quotes, or medical records. By structured, we mean that
the information is presented to the user in a form whose
underlying hierarchical structure may be induced by
analyzing several related pages; by local, we mean that
the information is not likely to be broadly found on the
Web, although it may be useful in many different contexts
[16]. Fig. 1 sketches part of the architecture of our EII agents.
A typical workflow is as follows: A Web application needs a
piece of knowledge and issues a query to a retrieval agent,

which transforms it into the appropriate HTTP calls and

waits for a Web page to be returned. (Notice that this agent

may need to navigate through a series of authentication or

cataloging pages before reaching its target.) Once the server

returns the Web page, the retrieval agent passes it on to a

wrapper that is responsible for extracting the attributes of

interest and organizing them into slots and records. The

records are then passed on to the semantic translator, which

transforms them into interrelated knowledge entities by

using a minimal ontology to which we refer to as the

knowledge model, and a location map that helps relate a

record to a knowledge model. Once a knowledge entity is

built, it needs to be coreferenced in an attempt not to

produce several versions of the same real-life entity [17].

Notice that a single EII agent may serve several Web

applications that must be intimately related but need not

share the same ontology. This is the reason why the EII

agent works with a minimal ontology that includes

information about the structure of the knowledge entities

only [18]. Additional constraints are application-dependent

and must be dealt with by an appropriate knowledge

translator [1], [19], if necessary. Regarding the language

used to represent knowledge models and entities, there are

a plethora of choices, but we do not commit on any of them

[20]. Instead, we commit to a small subset of Description

Logics (DL), which seems to be the common root for many

such languages [21]; this provides plenty of leeway in

selecting the most appropriate tools for each EII problem.
The details on CREAM [7], the retrieval agent [22], the

wrappers [11], [15], [23], and the coreferencer [24] are

described elsewhere. In this paper, we focus on the

semantic translators, and prove that they can be imple-

mented in Oðn �m � logmÞ time by means of a domain-

independent algorithm, where n denotes the number of

records to be translated and m the average number of slots

per record. As a conclusion, the proposal in this paper

complements the CREAM framework with an effective tool

that helps solve EII problems in cases in which Deep

Annotation is not applicable and the information of interest

is structured and local. The rest of the paper is organized as

follows: Section 2 provides an insight into the most closely-

related proposals; Section 3 provides the foundations of our

algorithm, which is presented in Section 4 and analyzed in

Section 5; Section 6 concludes the paper, and the Appendix

provides a short introduction to the mathematical notation

we use.

2 RELATED WORK

S-CREAM is a closely related proposal [25] that relies on
using taggers, a class of information extractors that
recognize literals that denote dates, prices, or named
entities such as actors, hotels, or countries. They usually
build on techniques that originated in the natural language
processing community, which makes them appropriate for
unstructured pages in which the information of interest is
contained in natural language passages. S-CREAM attempts
to transform a Web page into a set of knowledge entities by
applying several heuristics to the tags produced by the
Amilcare tagger [26]. The method was enhanced recently
with PANKOW [27] and C-PANKOW [28] in an attempt to
improve its precision to recognize named entities by using
redundant information in the Web. Proposals such as KIM
[29], Armadillo [30], or MnM [31] are similar in spirit to
S-CREAM.

From the above discussion, it is clear that the idea of
using information extractors has attracted many research-
ers, and this has led to quite a broad range of solutions in
domains such as news servers, departmental sites, scientific
databases, or community portals; the common underlying
theme is that the data of interest is unstructured and
contains redundant information that can be used to validate
the results, to disambiguate conflicting terms, or to infer
additional information [30], [32]. The kind of EII problems
with which we deal differs in that the information is
structured and local, which makes the above systems of
little interest since they can neither benefit from natural
language processing techniques, nor use other information
sources to improve their precision.

Regarding wrapper generators, the most classical pro-
posals include inductive methods such as Wien [12], which
can deal with multirecord pages, Stalker [14] and SoftMealy
[33], which improve in that they deal with missing
attributes and attribute permutations, or NoDoSe [34],
which improves in that it deals with records whose slots
are organized hierarchically. W4F or RoadRunner range
amongt the most recent proposals. W4F is a wrapper
generator toolkit that uses a declarative rule-based language
called HEL [15]. The rules are XPath-like expressions that
describe navigation paths to the attributes of interest. The
toolkit also provides a simple template language to map
records onto Java objects and XML documents. The
mapping onto Java is declarative if simple types such as
strings or arrays of strings are used; otherwise, it must be
defined programmatically. The mapping onto XML docu-
ments is specified by using a simple template language that
requires the XML to have the same hierarchical structure as
the source records. Although it is very effective, W4F
differentiates from the above-mentioned systems in that it
does not attempt to infer the extraction rules or the
templates, which must be devised by an engineer with the
help of a wizard. RoadRunner improves on the rest in that it
fully automates the generation of wrappers [11]. It provides
a domain-independent algorithm that analyzes the simila-
rities among several Web pages and infers their common
grammar in most common cases.

Summing up, there are a variety of wrappers available.
Unfortunately, very little has been said on how to transform

Fig. 1. Architecture of an EII agent.

their outputs into knowledge entities. This is not trivial at
all since the number of records of information per page may
vary, some attributes may be optional or missing, and the
hierarchy into which the wrapper organizes them has
nothing to do with the structure of the corresponding
knowledge entities in most common cases. The reason is
that the structure of a record is heavily influenced by the
structure of the Web page to which it corresponds, whereas
the structure of a knowledge entity must match the
structure of its underlying knowledge model [19].

3 PRELIMINARIES

In this section, we define the abstract data types (ADTs) on
which our algorithm relies. The definitions are rather
operational since our goal was to produce an implementa-
tion. This is why we represent records, knowledge models,
or knowledge entities using trees instead of a more abstract
representation based on logical formulae, for instance. The
definitions are, however, abstract enough to be independent
from specific programming languages.

3.1 Vertices, Edges, and Paths

Vertices are the simplest data structure we use in our
algorithm; they allow us to build graphs and trees and may
carry data that range from literals in a slot to the name of a
concept in a knowledge model. Building on them, we may
form edges or paths by combining pairs or sequences of
vertices, respectively.

Their formal definition is as follows:

½V ertex�
Edge ¼¼ V ertex� V ertex
Path ¼¼ fp : seq V ertexj#p � 2g:

3.2 Graphs and Trees

A graph is composed of a nonempty set of vertices and a
possibly empty set of edges between them. For instance, in
Fig. 2a, we depict a graph that is composed of vertices
fx1; x2; x3; x4; x5g and edges

fðx1; x2Þ; ðx1; x3Þ; ðx3; x1Þ; ðx3; x4Þ; ðx3; x5Þ; ðx5; x1Þg:

In theory, a graph may have an infinite number of vertices
and edges, but we restrict our attention to finite graphs
since we use them to represent the information extracted

from a Web page, which is finite by definition. Notice, too,

that the edges are directional and, thus, the existence of an

edge between any two vertices does not imply that there

must exist an inverse edge between them.
The scheme in Fig. 3 defines a graph ADT formally and

introduces several ancillary functions that facilitate the

definition of the forthcoming schemes. The first invariant

requires the set of vertices to be nonempty, and the second

one requires the vertices connected by means of an edge to

belong to the same graph. paths is an ancillary set that

holds the paths in which every vertex is connected to the

next one by means of an edge; children is an ancillary

function that returns the set of vertices to which a given

vertex is connected by means of an edge; leaves is an

ancillary set that holds the vertices that do not have any

children. For instance, in the graph depicted in Fig. 2a,

paths includes the sequences of edges hx1; x2i, hx1; x3; x4i, or

hx1; x3; x1; x2i amongst others, and leaves ¼ fx2; x4g; simi-

larly, childrenðx1Þ ¼ fx2; x3g and childrenðx3Þ ¼ fx1; x4; x5g.
Notice that the set of paths in an arbitrary graph may be

infinite if there are cycles, but this is not a problem since we

only work with graphs that are trees, i.e., graphs in which

there is a distinguished vertex called root that is connected

to every other vertex by means of a unique path, which

guarantees that cycles may not exist. For instance, Fig. 2b

shows a sample tree in which the root is vertex x6.
Building on the graph ADT, we define the tree ADT in

Fig. 4. The first invariant states that the root vertex belongs

to the set of vertices, and the second one that no other vertex

may be disconnected from the root or connected to it by

means of more than one path.

Fig. 2. Graphs and trees lie at the heart of our data structures and

algorithms. The circles denote the vertices, and the arrows the edges

between them. The vertices are usually referred to by means of a name

that is written inside them. (a) Sample graph. (b) Sample tree.

Fig. 3. A scheme to model graphs.

Fig. 4. A scheme to model trees.

3.3 Records

A wrapper is an algorithm to extract attributes from a Web
page, i.e., sets of literals that carry the information in which
we are interested. For instance, in Fig. 5a, we show a page
with information about three guest portfolios; the attributes
in which we are interested are the guests’ names, their
professional activities, and their contact addresses, which
are composed of a house number, a street, a city, and a list
of phone numbers. In practice, many attributes are optional
or multivalued, and this is the reason why we represent
them as finite sets of literals:

½Literal�
Attribute ¼¼ IF Literal:

Most recent wrappers organize the attributes into
records, which are trees that resemble the structure of the
Web page from which they were extracted. The vertices of
such trees are referred to as slots, and they must be
associated with a sequence of attributes and a label.
Intuitively, each slot must provide information about one
or more knowledge entities, and all of the slots with the
same label must provide information about the same kind
of entity; notice, however, that slots with different labels
may still provide information about the same kind of entity.
For instance, Fig. 5b shows three records that a wrapper has
extracted from our sample page; a slot with label L1

provides information about a guest’s name and his or her
professional activities; a slot with label L2, provides
information about a house number, a street, and a city;

similarly, a slot with label L3 provides information about a

phone number.
The scheme in Fig. 6 defines the record ADT we use,

which builds on the tree ADT and adds two functions called

attributes and label that return the sequence of attributes

and the label associated with each slot in a record,

respectively. The first invariant is trivial since it just requires

every vertex in a record, i.e., every slot, to have a label. The

second and the third invariant ensure that every slot has at

least an attribute, since it does not make sense to create a slot

that does not hold any attributes. The fourth invariant

attempts to capture the intuitive idea that the slots with the

same label must have information about the same kind of

entity; since we cannot model this requirement formally, we

at least require them to have the same number of attributes.

Regarding the example in Fig. 5b, it is easy to realize that

labelðw1Þ ¼ L1, labelðw3Þ ¼ L2, and labelðw7Þ ¼ L2, just to

mention a few cases; similarly,

attributesðw1Þ ¼ hf00John Doe00g; f00Catering00;00 Parties00gi;
attributesðw3Þ ¼ hf0015000g; f00Connecticut Sq:00g;

f00Harrisbugh00gi;

i.e., both slots w1 and w3 are plenty of information, but

attributesðw7Þ ¼ hf0021300g; f00Market Ln:00g; ;i since the Web

page does not have any information about the city in which

the address “213 Market Ln.” is located.
The record ADT is general enough to accommodate both

older wrappers that are not able to analyze the hierarchical

Fig. 5. A sample Web page and the records a wrapper has extracted from it. The circles represent slots, and the edges denote their hierarchical

relationships within a record; the labels are shown on the left, whereas the attributes are shown on the right. (a) Sample Web page. (b) Sample

wrapper output.

Fig. 6. A scheme to model records.

structure of a Web page and more recent wrappers that
benefit from it. The former case is dealt with by means of
trees that consist of just one slot, but this is not a special case
in our proposal since it is completely independent from
whether the record under consideration has just one or
several slots.

3.4 Knowledge Models

DL provides a rich set of constructs to represent knowledge
models by means of TBoxes, but we just need a structural
description of the concepts and properties involved in a
given problem. Thus, we first introduce two sets to denote
concept names, also known as classes, and property names,
also known as roles. The latter can relate either two
concepts, also known as object properties, or a concept
and a literal, also known as data properties. Furthermore,
we assume that there is a predefined concept name called
DATUM that denotes literal data exclusively.

½ConceptName; PropertyName�
DATUM : ConceptName:

Fig. 7a depicts a knowledge model for our running
example; it defines concepts Portfolio, Address, City, and
Phone together with several data vertices and properties to
hold information about the guests’ names, their activities,
and so on. Notice that some property names are overloaded,
which is very common in practice; for instance, property
name is ambiguous since it may refer to either the property
that assigns a guest’s name to a portfolio or the property that
assigns a name to a city. Whenever necessary, we provide
enough information to disambiguate these properties.

Our formal definition builds on an ancillary scheme that
is presented in Fig. 8. It helps us define a common
representation for knowledge that is used both to define
knowledge models and knowledge entities. This ancillary
scheme builds on the tree ADT and complements it with a
function called concept, which assigns a concept name to
every vertex, and a function called property, which assigns a

property name to each edge; furthermore, we define two
ancillary sets that allow us to refer to the data and object
vertices more easily. The first and the second invariants are
trivial since they just require every vertex in a knowledge
representation to be associated with a concept, and every
edge to be associated with a property. The third invariant
requires the set of edges not to be empty, which implies that
there must be at least a property and, consequently, an
object vertex and a data vertex; this is not a shortcoming,
but simply a requirement to avoid empty knowledge
models. The fourth invariant requires the leaves of the tree
to be the only ones that may be associated with concept
DATUM, i.e., the only ones that may carry the attributes
extracted from a Web page; this makes sense since
intermediate vertices correspond to object vertices that
may have a name, but not an attribute unless it is assigned
by means of a data property. Fig. 7b illustrates three invalid
knowledge representations; the former is invalid because it
represents a knowledge entity without any data properties,
which does not seem to be reasonable in practice since this
would imply that we would be interested in pages that do

Fig. 7. A valid knowledge model for our portfolios and several invalid ones. The vertices and the edges are labelled with the concepts and properties

they represent, respectively; squared vertices represent object vertices, whereas rounded vertices represent data vertices, which makes it

unnecessary to label them with concept DATUM. (a) A valid knowledge model. (b) Some invalid knowledge models. (c) Another invalid knowledge

model.

Fig. 8. A scheme to model knowledge representations.

not provide any data; the second is invalid because it
consists of just a data vertex, which does not seem

reasonable since this data would be isolated; the third case
is similar to the first one. The ancillary definitions introduce

the set of data vertices as the set of leaves, and the set of
object vertices as the set of intermediate vertices, which
simplifies the definition of the forthcoming schemes.

Building on this simple knowledge representation, the
scheme to define knowledge models is presented in Fig. 9.
The invariant avoids knowledge models in which there is a

subset of vertices with the same concept that have a
common parent with which they all are related by means of

the same property. This avoids a knowledge representation
from having several definitions of the same property, be

them redundant or erroneous, see Fig. 7c.
Our algorithm translates each slot independently and

recombines the results in a bottom-up manner; this leads to

many partial knowledge entities that need to conform to
their own partial knowledge models. For instance, a slot

with label L1 provides information about a guest’s name
and his or her professional activities, a slot with label L2

provides information about an address, and a slot with label
L3 provides information about a phone number; it is thus

reasonable to have the partial knowledge models in Fig. 10.
Next, we introduce a function that formalizes the set of
partial knowledge models that can be obtained from a given

knowledge model:

Notice that we have introduced this function as an
independent axiomatic definition because every knowledge

model is included in its set of partial models. If we had
included the definition of this function in scheme

KnowledgeModel, this would have led to infinite recursion
and the definition of the scheme would have been wrong.

3.5 Knowledge Entities

A knowledge entity is an instantiation of a knowledge
model in which every object vertex is identified by means of
a universal name, and every data vertex has an associated
attribute. For instance, Fig. 11 shows a knowledge entity
that has been obtained from the first record in Fig. 5b and
conforms to the knowledge model in Fig. 7a.

We begin our formal definition by introducing the set of
entity names. We do not commit to a particular representa-
tion, which may range from standard URIs to ad hoc UUIDs
depending on the context, but require every possible vertex
to have a different name. This is accomplished by means of
a name generator that must conform to the following
specification:

The scheme we use to model knowledge entities is
presented in Fig. 12. It builds on the

KnowledgeRepresentation

scheme, too, and adds two functions called name and
attribute that map each object vertex onto a name and each
data vertex onto an attribute, respectively. For instance,
regarding the example in Fig. 11, it is easy to realize that
nameðv1Þ ¼ ID1 or nameðv4Þ ¼ ID2, for instance, whereas

attributeðv2Þ ¼ f00John Doe00g and

attributeðv6Þ ¼ f00Taylor St:00g:

The invariants are trivial since they just require every object
vertex to have a name and every data vertex to have an
attribute, but we have added several ancillary predicates
and functions that are very useful to determine what the
partial knowledge model of a given knowledge entity is.
The unary predicate conformsTo checks if a knowledge
entity conforms to a given knowledge model; this holds iff
there is a total surjective mapping from the vertices of the
knowledge entity onto the vertices of the knowledge model
so that corresponding vertices have the same concept, and
corresponding edges have the same property. For instance,
Fig. 13a shows a knowledge entity and its corresponding
partial knowledge model. Notice that this knowledge entity
corresponds to an address with several phone numbers,
which implies that data vertices v12 and v13 are both
mapped onto object vertex u8 in the knowledge model, for

Fig. 9. A scheme to model knowledge models.

Fig. 10. Some partial knowledge models.

instance. Figs. 13b and 13c, however, illustrate a couple of
knowledge entities that do not conform to their correspond-
ing knowledge models due to lack of surjectivity, i.e., the
knowledge model provides more information than it is
required, or due to lack of totality, i.e., the knowledge
model does not provide enough information.

It is easy to realize that for every knowledge entity and
model, there may exist one such mapping at most; thus,
function mapping returns either a singleton or an empty set,
which eases the definition of predicate conformsTo. The
scheme also introduces a function called correspondsTo
that, given a data vertex in a knowledge entity, locates its
corresponding vertex in a given knowledge model; ob-
viously, this requires the knowledge entity to conform to
the knowledge model and uses the unique mapping
between them both to find the result. For instance, v5

corresponds to u4 in Fig. 13a, which means that the
semantics of the object vertex identified by means of ID3

in the knowledge entity is defined by vertex u4 in the
knowledge model.

3.6 Location Maps

A location map is a simple structure that maps a subset of
vertices onto a subset of labels and indices. For instance,
Fig. 15 illustrates the location map for our running example;
it states that vertex u2 in our knowledge model must be
instantiated from the first attribute of a slot with label L1;
similarly, vertex u5 must be instantiated from the second
attribute of a slot with label L2. Alternatively, the map may
also be interpreted by stating that a slot with label L1, for
instance, instantiates data vertices u2 and u3 in the knowl-
edge model.

The scheme in Fig. 14 defines this simple ADT formally.
Notice that there are no invariants regarding label or index.
The reason is that the constraints depend completely on the
record analyzed and the knowledge model under consid-
eration. Such constraints are thus part of our algorithm, and
they are explained in the following section.

4 SEMANTIC TRANSLATION

Intuitively, our algorithm consists of two steps and a driver
that combines them both: the former analyzes each slot
independently and uses the information in a location map
to determine which part of the knowledge model under
consideration must be instantiated; the second step attaches
the results of the first step by means of the appropriate
properties; the driver cares of synchronizing both steps so
that every slot in the input record is translated appro-
priately. The following sections report on the details behind
this process.

4.1 Configurations

A configuration is a triple composed of a record, a
knowledge model, and a location map. The record has the
attributes a wrapper has extracted from a Web page, and
the knowledge model provides the semantics behind the
knowledge entity into which our algorithm transforms the
record; the location map provides part of the information
required to guide the process.

Building on the previous structures, the configuration
ADT is presented in Fig. 16. In the following paragraph,

Fig. 11. A knowledge entity for portfolio “John Doe.” For the sake of simplicity, we use ID1; ID2; . . . to denote the names of the object vertices, but an

actual implementation would rather use URIs, for instance. The attributes that correspond to each data vertex are written below them.

Fig. 12. A scheme to model knowledge entities.

we provide an explanation of the invariants, which rely on

three ancillary functions, namely, attribute, which given a

data vertex in a knowledge model and a slot, returns the

attribute that the slot holds for that data vertex;

correspondingData, which is applied to a slot and returns

the maximum set of data vertices in the knowledge model

that a slot with the same label may instantiate; and

influenceArea, which is applied to a slot and returns the

minimum partial knowledge model that includes the data

vertices returned by the previous function. Intuitively, the

influence area of a slot denotes the minimum partial

knowledge model that describes the semantics of the

partial knowledge entity that may be instantiated by using

the attributes in that slot. Regarding slot w1 in Fig. 5b and

the location map in Fig. 15, for instance, it is easy to realize

that correspondingDataðw1Þ ¼ fu2; u3g; thus, its influence

area is the partial knowledge model shown in Fig. 17a.

Regarding slot w7, it is easy to realize that

correspondingDataðw7Þ ¼ fu5; u6; u9g;

thus, its influence area is the partial knowledge model shown

in Fig. 17b. Notice that the influence area for a slot is complete

even if the slot does not have enough information to

instantiate all of its data vertices, which is the case of slot w7.

The first and the second invariant in the configuration

ADT state that the location map must provide an index and

a label for every data vertex in the knowledge model, i.e.,

none of the data vertices is useless and the location map is

complete. The third invariant states that the record must

have a subset of the labels used by the location map, i.e., the

location map takes every possible label into account, but a

record is not required to have information about every

possible label since missing attributes are common in

practice and it does not make sense to create a slot that

does not hold any attributes. The fourth invariant states that

the indices assigned by the location map to each data vertex

must be different and consecutive, i.e., no attribute in a slot

is useless. The fifth invariant states that the number of

attributes assigned to each slot must coincide with the

number of data vertices the location map assigns to its label,

i.e., the slots provide enough information even if some of

Fig. 13. Valid knowledge entities must conform to a knowledge model. The dotted lines represent the (partial) mappings that associate the vertices

and edges in the knowledge entities with their corresponding vertices in the knowledge models. (a) Conformance to a knowledge model. The

mapping among the properties is not shown since it would be unreadable. (b) Nonconformance due to lack of surjectivity. (c) Nonconformance due to

lack of totality.

Fig. 14. A scheme to model location maps. Fig. 15. A location map.

the attributes are missing in the original Web page. Finally,

the sixth invariant states that for every two slots that are

connected by means of an edge, their corresponding

influence areas must be connected in the knowledge model;

otherwise, we would not be able to connect the partial

knowledge entities obtained from them.

The fourth invariant requires a little explanation:

loc:label� denotes the inverse of loc:label, i.e., when

loc:label� is applied to a label, it returns the set of data

vertices that are mapped onto that label; for instance, if we

assume that loc denotes the location map in Fig. 15, then

loc:label�ðL1Þ ¼ fu2; u3g, loc:label�ðL2Þ ¼ fu5; u6; u9g, and

loc:label�ðL3Þ ¼ fu10g. Therefore, when the index function

is applied to these results, it must return a sequence of

consecutive indices, for instance,

loc:indexðjfu2; u3gjÞ ¼ f1; 2g;
loc:indexðjfu5; u6; u9gjÞ ¼ f1; 2; 3g; and

loc:indexðjfu10gjÞ ¼ f1g:

If the index returned something different, then there would

be useless attributes in the slot.

4.2 Instantiating an Influence Area (Step 1)

The first step of the algorithm consists of creating a

knowledge entity for each slot in a record, which amounts

to instantiating their corresponding influence areas so that

each object vertex has a unique name and each data vertex

has the right attribute. This step is defined in Fig. 18 as a

new scheme that is composed of just a configuration and

two ancillary functions.
Function subareaToInstantiate determines what the

exact subarea of influence of a given slot is; it returns the

unique partial knowledge model in the influence area

associated with the slot under consideration whose data

vertices correspond to the data vertices for which it has an

attribute. Recall that every knowledge model is included in

the set of partial knowledge models obtained from it, which

makes it easier to formalize this function since the case when

there are not any missing attributes is not an exception. For

instance, the subarea to instantiate that corresponds to slot

w1 coincides with its influence area since it provides

information about every possible attribute for a slot with

label L1. In the case of w7, however, it does not provide any

information about the city in which “213 Market Ln.” is

located, which implies that the subarea to instantiate does

not coincide with its influence area, see Fig. 19a.

Fig. 16. A scheme to model configurations.

Fig. 17. Influence areas of several slots. (a) Influence area of w1. (b) Influence area of w7.

Function instantiateInfluenceArea works on a slot and
returns a partial knowledge entity that instantiates its
corresponding influence (sub)area. The definition is simple
since it just requires the resulting knowledge entity to
conform to the influence (sub)area of the slot and to provide
a name for each object vertex and an appropriate attribute
for each data vertex, see Fig. 19b.

4.3 Attaching Knowledge Entities (Step 2)

Each slot produces a parent knowledge entity that
correspond to the slot itself, and a set of child knowledge
entities that correspond to its children, if any. They must be
combined into a new knowledge entity with the same data
vertices, edges, concepts, properties, names, and attributes
as the knowledge entities to be attached, but additional

edges to connect the root vertex of the parent knowledge

entity with the root vertex of each child knowledge entity.

The property that corresponds to these additional edges

must be the same property that connects the roots of the

corresponding influence areas. For instance, Fig. 20 shows

part of the first record in Fig. 5b and the results of

instantiating their corresponding influence areas and

attaching them.
This step is defined as a new scheme in Fig. 21. It is

composed of just a configuration and three ancillary

functions. The unary predicate attachable works on two

knowledge entities and determines if they may be attached;

this is possible as long as they both conform to two partial

knowledge models obtained from the knowledge model

Fig. 19. Sample influence subareas and instantiation. (a) Subarea to instantiate with w7. (b) Instantiation of w1 and w7.

Fig. 20. Step1 and Step2 working together.

Fig. 18. A scheme to model the first step of our algorithm.

provided by the configuration on which the step is working,
and their root vertices are related by means of a property.
Building on this predicate, function attachingProperty

returns the property that is necessary to attach two given
knowledge entities, which is the property that connects the
roots of the unique partial knowledge models to which they
conform.
attachKnowledgeEntities works on a parent knowledge

entity and a set of child knowledge entities and attaches
them all. The result is built as follows:

i. its vertices are the vertices of the parent knowledge
entity plus the vertices of the child knowledge
entities,

ii. its edges are the edges of the parent knowledge
entity, plus the edges of the child knowledge
entities, plus additional edges to connect them all,

iii. its concepts are the concepts of the parent knowl-
edge entity plus the concepts of the child knowledge
entities,

iv. its properties are the properties of the parent
knowledge entity plus the properties of the child
knowledge entities and additional properties to
connect them all,

v. its names are the names used in the parent knowl-
edge entity plus the names used in the child
knowledge entities, and

vi. the attributes are the attributes used in the parent
knowledge entity plus the attributes used in the
child knowledge entities.

4.4 The Driver

The driver is responsible for coordinating the previous
steps. From a structural point of view, it is composed of two
instances of Step1 and Step2, and a function called
translateSlot that transforms a slot into its corresponding

knowledge entity. Its formal definition is presented in
Fig. 22.

The first invariant requires the two steps the driver
combines to share the same configuration. This may seem a
little odd at first, but the reason is that we assume that the
same EII agent may be working on several pages at the
same time, so there might be several instances of Step1 and
Step2 working simultaneously on different configurations;
obviously, the driver requires the steps to combine to be
working on the same configuration. The second invariant
defines function translateSlot, which is applied to a slot in
the record to be translated and traverses it in a deep-first
manner: When the recurrence reaches a slot without any
children, the function instantiates it by using the first step of
the algorithm; when it reaches an intermediate slot,
translateSlot is first applied recursively to the children
slots, and the results are then combined by using the second
step. The ancillary function translateChildren is responsible
for translating the children of a given slot.

Fig. 21. A scheme to model the second step of our algorithm.

Fig. 22. A scheme to model the driver of our algorithm.

4.5 An Entry Point

The scheme that defines the semantic translator module in
Fig. 1 is presented in Fig. 23: It includes the driver, requires
an input configuration, and produces an output knowledge
entity by applying the translateRecord function to the root
slot of the record in the input configuration. Notice that this
is just an entry point to our system, but others might be
defined similarly, e.g., an entry point that translates a
collection of records, but the details are irrelevant.

5 ANALYSIS

Theorem 1. Our algorithm terminates.

Proof. The algorithm relies on function translateSlot, which
is applied to the root slot of the record to be translated.
translateSlot instantiates a knowledge entity for the slot
being studied, and calls itself recursively by means of a
call to translateChildren. Since the number of slots in a
record is finite, and the recursion ends every time
translateSlot is applied to a leaf slot, the algorithm
terminates. tu

Theorem 2. The worst-case complexity of our algorithm is
Oðm � logmÞ, where m denotes the number of slots in the
record to which it is applied.

Proof. Notice that each label is associated with a unique
influence area, and this mapping depends solely on the
location information, which implies that this information
may be precalculated. The property used to attach the
knowledge entities obtained from any two slots can be
precalculated, too. In the worst case, a record is a
balanced k-ary tree in which every slot has the same
number of attributes. Thus, there must exist constant
upper bounds a and b to the time required to instantiate
an influence area, and the time to attach a parent
knowledge entity to its child knowledge entities,
respectively.

As a conclusion, the worst-case temporal complexity
for a k-ary record that consists of m slots is defined as
follows:

T ðmÞ ¼ k � T ðbm=kcÞ þ aþ b if m > 1
a if m ¼ 1:

�

To solve this equation, we calculate the time con-
tribution of the slots at the same depth. In a k-ary record,
there are ki slots at depth i; thus, each slot contributes
bm=kic þ aþ b to the total time. This implies that the set
of slots at the same level contribute ki � ðbm=kic þ aþ bÞ
to the total time. Since a balanced k-ary tree with
m vertices has depth logk m, there is an upper bound to
T ðmÞ, namely,

T ðmÞ �
Xlogk m

i¼0

ðmþ ðaþ bÞ � kiÞ ¼

Xlogk m

i¼0

mþ ðaþ bÞ �
Xlogk m

i¼0

ki ¼

m � logk mþ ðaþ bÞ �
klogk mþ1 � 1

k� 1

� �
:

Therefore, the worst-case complexity is Oðm � logk mþ
klogk mÞ ¼ Oðm � logk mþmÞ ¼ Oðm � logmÞ. tu

Corollary 1. In the worst case, our algorithm takes Oðn �m �
logmÞ time to translate a collection of n records with average
number of slots m.

6 CONCLUSIONS

The proposal we describe in this paper integrates seamlessly
into the CREAM framework, where previous enhancements
to target structured information sources required the
information provider to be very cooperative and the
information to come from a back-end database directly;
other enhancements were devised to work with unstruc-
tured, redundant information sources. The analysis of the
related work proves that our proposal to transform a
wrapper’s output into knowledge entities is original in the
context of structured, local information sources. We also
prove that it is quite efficient since its time complexity is
Oðn �m � logmÞ; this means that if the number of records to
translate is significatively larger than the average number of
slots per record, the algorithm then behaves linearly;
otherwise, it behaves log-linearly regarding the size of the
record to be translated.

APPENDIX

THE Z NOTATION

Throughout the paper, we use the Z mathematical notation
[35]. It extends the use of set theory and first-order predicate
calculus languages by allowing a mathematical type known
as the scheme type. Z schemes are composed of a declarative
part, which declares variables and their types, and a
predicate part, which relates and constrains those variables.
The type of any scheme can be considered as the Cartesian
product of its variables constrained by the predicates. They
are typeset using the following graphic notation:

Modularity is facilitated by allowing a scheme to be
included within other schemes or by using schemes as data
types. For example, the scheme IncludingScheme below
includes all the declarations and predicates of scheme
SampleScheme.

Fig. 23. A scheme to model our semantic translators.

When using schemes as data types, we employ a selection
operator “.” in order to refer to a particular variable. For
instance, in the following scheme, schemeInstance is an
object of scheme type SampleScheme; thus, variable var
declared in scheme SampleScheme is denoted by writing
schemeInstance:var.

To introduce a type in which we wish to abstract away

from its actual elements, we use the notion of a given set. For

instance, we write ½Identifier� to represent the set of all

identifiers, without delving into their structure or properties.

A summary of the mathematical notation used in this

paper is given in Table 1, where p or q are used to denote

predicates, and e to denote expressions; sometimes “j qðxÞ”
is omitted and it is equivalent to “j true;” sometimes

“	 eðxÞ” is omitted, and it amounts to “	 x.”

ACKNOWLEDGMENTS

The work reported in this paper was supported by the

Spanish Interministerial Commission on Science and

Technology under grant TIC2003-02737-C02-01 (Project

WebMade).

REFERENCES

[1] M. Hepp, “Products and Services Ontologies: A Methodology for
Deriving OWL Ontologies from Industrial Categorization Stan-
dards,” Int’l J. Semantic Web Information Systems, vol. 2, no. 1, pp. 2-
99, 2006.

[2] O. Kaykova, O. Khriyenko, D. Kovtun, A. Naumenko, V. Terziyan,
and A. Zharko, “General Adaption Framework: Enabling Inter-
operability for Industrial Web Resources,” Int’l J. Semantic Web
Information Systems, vol. 1, no. 3, pp. 31-63, 2005.

[3] N. Bassiliades, G. Antoniou, and I. Vlahavas, “A Defeasible Logic
Reasoner for the Semantic Web,” Int’l J. Semantic Web Information
Systems, vol. 2, no. 1, pp. 1-41, 2006.

[4] F. Bry, C. Koch, T. Furche, S. Schaffert, L. Badea, and S. Berger,
“Querying the Web Reconsidered: Design Principles for Versatile
Web Query Languages,” Int’l J. Semantic Web Information Systems,
vol. 1, no. 2, pp. 1-21, 2005.

[5] A. Naeve, “The Human Semantic Web: Shifting from Knowledge
Push to Knowledge Pull,” Int’l J. Semantic Web Information Systems,
vol. 1, no. 3, pp. 1-30, 2005.

[6] A. Sheth, C. Ramakrishnan, and C. Thomas, “Semantics for the
Semantic Web: The Implicit, the Formal and the Powerful,” Int’l J.
Semantic Web Information Systems, vol. 1, no. 1, pp. 1-18, 2005.

[7] S. Handschuh, R. Volz, and S. Staab, “Annotation for the Deep
Web,” IEEE Intelligent Systems, vol. 18, no. 5, pp. 42-48, Sept./Oct.
2003.

[8] S. Handschuh and S. Staab, “CREAM: Creating Metadata for the
Semantic Web,” Computer Networks, vol. 42, pp. 579-598, 2003.

[9] R. Volz, S. Handschuh, S. Staab, L. Stojanovic, and N. Stojanovic,
“Unveiling the Hidden Bride: Deep Annotation for Mapping and
Migrating Legacy Data to the Semantic Web,” J. Web Semantics,
vol. 1, no. 2, pp. 187-206, 2004.

[10] W. Cohen and L. Jensen, “A Structured Wrapper Induction System
for Extracting Information from Semi-Structured Documents,”
Proc. 17th Int’l Joint Conf. Artificial Intelligence (IJCAI ’01), 2001.

[11] V. Crescenzi and G. Mecca, “Automatic Information Extraction
from Large Websites,” J. ACM, vol. 51, no. 5, pp. 731-779, 2004.

[12] N. Kushmerick, “Wrapper Verification,” World Wide Web J., vol. 3,
no. 2, pp. 79-94, 2000.

[13] M. Michalowski, J. Ambite, C. Knoblock, S. Minton, S. Thakkar,
and R. Tuchinda, “Retrieving and Semantically Integrating
Heterogeneous Data from the Web,” IEEE Intelligent Systems,
vol. 19, no. 3, pp. 72-79, May/June 2004.

[14] I. Muslea, S. Minton, and C. Knoblock, “Hierarchical Wrapper
Induction for Semistructured Information Sources,” Autonomous
Agents and Multi-Agent Systems, vol. 4, nos. 1-2, pp. 93-114, 2001.

[15] A. Sahuguet and F. Azavant, “Building Intelligent Web Applica-
tions Using Lightweight Wrappers,” Data Knowledge Eng., vol. 36,
no. 3, pp. 283-316, 2001.

[16] A. Halevy, N. Ashish, D. Bitton, M. Carey, D. Draper, J. Pollock, A.
Rosenthal, and V. Sikka, “Enterprise Information Integration:
Successes, Challenges and Controversies,” Proc. 2005 ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’05), pp. 778-
787, 2005.

[17] A. Doan, Y. Lu, Y. Lee, and J. Han, “Profile-Based Object Matching
for Information Integration,” IEEE Intelligent Systems, vol. 18,
no. 5, pp. 54-59, Sept./Oct. 2003.

[18] S. Agarwal, S. Handschuh, and S. Staab, “Surfing the Service
Web,” Proc. Second Int’l Semantic Web Conf. (ISWC ’03), pp. 211-226,
2003.

[19] O. Corcho and A. Gómez-Pérez, “A Layered Model for Building
Ontology Translation Systems,” Int’l J. Semantic Web Information
Systems, vol. 1, no. 2, pp. 22-48, 2005.

[20] A. Gómez-Pérez and O. Corcho, “Ontology Specification Lan-
guages for the Semantic Web,” IEEE Intelligent Systems, vol. 17,
no. 1, pp. 54-60, Jan./Feb. 2002.

[21] F. Baader, I. Horrocks, and U. Sattler, “Description Logics as an
Ontology Language for the Semantic Web,” Mechanizing Math.
Reasoning: Essays in Honor of Jörg H. Siekmann on the Occasion of His
60th Birthday, D. Hutter and W. Stephan, eds., pp. 228-248,
Springer-Verlag, 2005.

[22] C.-H. Chang, H. Siek, J.-J. Lu, C.-N. Hsu, and J.-J. Chiou,
“Reconfigurable Web Wrapper Agents,” IEEE Intelligent Systems,
vol. 18, no. 5, pp. 34-40, Sept./Oct. 2003.

[23] D. Embley, D. Campbell, Y. Jiang, S. Liddle, Y.-K. Ng, D. Quass,
and R. Smith, “Conceptual Model-Based Data Extraction from
Multiple-Record Web Pages,” Data Knowledge Eng., vol. 31, no. 3,
pp. 227-251, 1999.

TABLE 1
Summary of the Z Notation Used in This Paper

[24] A. Harth, “SECO: Mediation Services for Semantic Web Data,”
IEEE Intelligent Systems, vol. 19, no. 3, pp. 66-71, May/June 2004.

[25] S. Handschuh, S. Staab, and F. Ciravegna, “S-CREAM: Semi-
Automatic CREAtion of Metadata,” Proc. 13th Int’l Conf. Knowledge
Eng. and Knowledge Management (EKAW ’02), pp. 358-372, 2002.

[26] F. Ciravegna, A. Dingli, Y. Wilks, and D. Petrelli, “Adaptive
Information Extraction for Document Annotation in Amilcare,”
Proc. 25th ACM SIGIR Int’l Conf. Research and Development in
Information Retrieval (SIGIR ’02), pp. 367-368, 2002.

[27] P. Cimiano, S. Handschuh, and S. Staab, “Towards the Self-
Annotating Web,” Proc. 13th Int’l Conf. World Wide Web (WWW
’04), pp. 462-471, 2004.

[28] P. Cimiano, G. Ladwig, and S. Staab, “Gimme the Context:
Context-Driven Automatic Semantic Annotation with C-PAN-
KOW,” Proc. 15th Int’l Conf. World Wide Web (WWW ’05), pp. 332-
341, 2005.

[29] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff,
“Semantic Annotation, Indexing, and Retrieval,” J. Web Semantics,
vol. 2, no. 1, pp. 49-79, 2004.

[30] F. Ciravegna, S. Chapman, A. Dingli, and Y. Wilks, “Learning to
Harvest Information for the Semantic Web,” Proc. First European
Semantic Web Symp. (ESWS ’04), pp. 312-326, 2004.

[31] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and
F. Ciravegna, “MnM: Ontology Driven Semi-Automatic and
Automatic Support for Semantic Markup,” Proc. 13th Int’l Conf.
Knowledge Eng. and Knowledge Management (EKAW ’02), pp. 379-
391, 2002.

[32] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T.
Kanungo, K. McCurley, S. Rajagopalan, A. Tomkins, J. Tomlin,
and J. Zien, “A Case for Automated Large-Scale Semantic
Annotation,” J. Web Semantics, vol. 1, no. 1, pp. 115-132, 2003.

[33] C.-N. Hsu and M.-T. Dung, “Generating Finite-State Transducers
for Semi-Structured Data Extraction from the Web,” Information
Systems, vol. 23, no. 9, pp. 521-538, 1998.

[34] B. Adelberg, “NoDoSE: A Tool for Semi-Automatically Extracting
Structured and Semistructured Data from Text Documents,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’98),
pp. 283-294, 1998.

[35] D. Lightfoot, Formal Specification Using Z. Palgrave Macmillan,
2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

