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Cellular properties of nilpotent spaces
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We show that cellular approximations of nilpotent Postnikov stages are always
nilpotent Postnikov stages, in particular classifying spaces of nilpotent groups are
turned into classifying spaces of nilpotent groups. We use a modified Bousfield–Kan
homology completion tower zkX whose terms we prove are all X–cellular for any X .
As straightforward consequences, we show that if X is K–acyclic and nilpotent for a
given homology theory K , then so are all its Postnikov sections PnX , and that any
nilpotent space for which the space of pointed self-maps map�.X;X / is “canonically”
discrete must be aspherical.

55P60, 20F18; 55N20, 55R35

1 Introduction

The Postnikov tower of a nilpotent space X is considered classically as a way to
approximate X by inductively adding Eilenberg–Mac Lane spaces (basic homotopical
building blocks) via principal fibration sequences; see Example 2.4 for what we mean
by Postnikov sections. Eventually the space X itself is recovered as homotopy limit of
the Postnikov tower PnX .

In this work we change the perspective and show that, if X is nilpotent, then its
Postnikov sections can themselves be constructed out of X by means of wedges,
homotopy pushouts and telescopes (see Theorem 6.6). This is certainly not true for
arbitrary spaces and, when X is nilpotent, it allows us to deduce strong properties of its
Postnikov sections. Let us first mention a few of these consequences and then present
our methods and techniques. We provide a topological strengthening of the classical
Serre class statements on the relation between homotopy and homology groups; see
Serre [25].
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Theorem 7.11 Let K be a reduced homology theory.

(1) Assume X is K–acyclic. If PnX is nilpotent, then it is also K–acyclic.

(2) Assume X is nilpotent. Then
Q

k�1 K.�kX; k/ is K–acyclic if and only ifQ
k�1 K.Hk.X;Z/; k/ is K–acyclic.

(3) If G is a group such that K.G; 1/ is K–acyclic, then so is K.G=�nG; 1/ for
any n.

In [2; 3, Lemma 5.3] Bousfield proved the “key lemma” as a step towards understanding
the failure of preservation of fibrations by localization functors. This lemma implies
for example that, if X is a simply connected space, then the map �nW map�.X;X /!
Hom.�nX; �nX / is a weak equivalence if and only if X is weakly equivalent to
K.�nX; n/. If X is not simply connected, then this is far from being true. In this
article we offer an extension of this last result to spaces with a nilpotent fundamental
group.

Theorem 7.8 Let X be a connected space whose fundamental group �1X is nilpotent.
Assume that the map �1W map�.X;X / ! Hom.�1X; �1X / is a weak equivalence.
Then X is weakly equivalent to K.�1X; 1/.

For arbitrary fundamental groups, this fails as illustrated by the third and fourth authors
in [20, Example 2.6] by a space X with �1X Š †3 whose universal cover is the
homotopy fiber of the degree-3 map on the sphere S3 . We come back to this space in
Example 7.7.

To prove the above results we use cellularization techniques. Looking at spaces through
the eyes of a given space A via the pointed mapping space map�.A;�/ is the central
idea; see the second author [16] and the first author [5]. Recently cellularization has
found applications in other contexts: Dwyer, Greenlees and Iyengar used it to investigate
duality in stable homotopy [14] (see also Shamir [26]); periodicity phenomena in
unstable homotopy theory are the subject of the first author, Dwyer and Intermont [9];
cellularity has also been intensively studied in group theory (see for example the
second author, Göbel and Segev [18] for an early general reference, and Blomgren,
the first and second authors and Segev [1] for a recent point of view on finite (simple)
groups); in [22] Kiessling computed explicitly the cellular lattice of certain perfect
chain complexes, refining the Bousfield lattice.

Classically A is the zero-sphere S0 and we are doing standard homotopy theory. In
this context the cellularization of a space is nothing else than the cellular approximation
of the space, the best approximation built out of S0 and its suspensions Sn via pointed
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homotopy colimits. Changing the sphere for another space A allows us to modify
our point of view and we do now A–homotopy theory. The cellularization functor
cellAW Spaces�! Spaces� on pointed spaces retains from a space its essence from the
point of view of A. A space of the form cellA Y is A–cellular in the sense that it can
be constructed from A and its suspensions by pointed homotopy colimits. When a
space X is A–cellular we write X �A.

It turns out that to prove the above theorems we need to show that cellA behaves nicely
on Postnikov sections of any space X provided that these sections are nilpotent. A
result of the first author [5, Corollary 20.7] says that the structure map cellA X !X is
a principal fibration. Hence, the cellularization of a nilpotent space is always nilpotent,
which hints at the tame behavior of cellA on nilpotent spaces. The tame behavior on
nilpotent Postnikov sections is our main concern here.

We show in particular in Corollary 6.5 that if X is a nilpotent n–Postnikov stage (see the
end of Section 2), then so is cellA X . When nD 1, this result is in perfect accord with
a purely group-theoretical result, [18, Theorem 1.4(1)], showing that in the category
of groups any cellularization of a nilpotent group is nilpotent. To understand how
cellularization functors affect Postnikov sections, we rely on the following statement
which we regard as the main result of this paper.

Theorem 6.6 Let X be a space. If PnX is nilpotent, then PnX � X , namely any
nilpotent Postnikov section is X–cellular.

This theorem is a consequence of preservation of polyGEMs, as such, by cellularization
functors. A space is called a 1–polyGEM if it is a GEM, ie a product of Eilenberg–
Mac Lane spaces K.Ai ; i/ for abelian groups Ai . It is called an n–polyGEM, for
n> 1, if it is weakly equivalent to a retract of the homotopy fiber of a map f W X ! Y

where X is an .n� 1/–polyGEM and Y is a GEM. We prove in Theorem 6.4 that
cellularization functors turn polyGEMs into polyGEMs.

To prove the preservation of polyGEMs, namely that any cellularization of a polyGEM
is again a polyGEM, we need detection tools for polyGEMs which behave well with
respect to cellularity. It is well known that a space X is a GEM if and only if it is a
retract of ZX , where ZX is the free abelian group construction on X (see for example
Curtis [12, Definition 3.5]) the simplicial version of the Dold–Thom infinite symmetric
product SP1X (see also Dold and Thom [13]). We need similar functors that detect
the property of being a polyGEM. As a first attempt one might try to consider the
functors ZkX in the Bousfield–Kan completion tower with respect to the integral
homology [4]. Although the spaces in this tower are polyGEMs, they are very special
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polyGEMs, so-called thin; see Libman [23]. Furthermore we do not know the needed
cellularity properties of ZkX .

For our purposes, instead of the classical Bousfield–Kan completion tower, we consider
the modified Bousfield–Kan tower fzkX g constructed by the second author in [17].
We do that in Section 5. The following two properties of this tower are essential in our
work. First, it detects polyGEMs.

Proposition 5.5 A space W is a polyGEM if and only if it is a retract of znW for
some n.

Second, the functors in the modified tower are cellular, a property that we are unable
to prove for the functors in the classical Bousfield–Kan tower.

Proposition 5.6 For all k � 0 the coaugmented functor zk is cellular. In particu-
lar zkX is X–cellular for any X .

We define and study cellular functors in Section 4. The functor zk being cellular tells
us much more than the fact that zkX is X–cellular. It says that the homotopy cofiber of
the augmentation X ! zkX is †X–acyclic, so that zkX can be built from X starting
from X and adding higher cells †iX for i � 1. This concept allows an inductive
argument about zkX to proceed using a version of Bousfield’s key lemma.

Acknowledgements We would like to thank the referee for helpful comments and
Bill Dwyer for enlightening discussions and suggestions. W Chachólski was partially
supported by Göran Gustafsson Stiftelse and VR grants. R Flores and J Scherer were
partially supported by FEDER/MEC grant MTM2013-42293-P, and UNAB10-4E-378
“Una manera de hacer Europa”. All authors thank the KTH in Stockholm for its
hospitality.

2 Notation and setup

In this section we will recall basic definitions related to cellularity and acyclicity of
spaces and state their fundamental properties. For more information about these notions
we refer the reader to [16].

The category of pointed simplicial sets with the standard simplicial model structure
is denoted by Spaces� . Its objects are called pointed spaces or simply spaces, and
morphisms are called maps. The space of maps between two pointed spaces X and Y

is denoted by map�.X;Y /.
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We say that a class C of pointed spaces is closed under weak equivalences if, when X

belongs to C , then so does any pointed space weakly equivalent to X . We say that C
is closed under homotopy colimits if, for any functor F W I ! Spaces� whose values
belong to C , the homotopy colimit hocolimI F in Spaces� also belongs to C . A class
of pointed spaces C which is closed both under weak equivalences and homotopy
colimits is called cellular.

Cellular classes were called closed classes in [16], but we believe that the name “cellular”
is more descriptive in our context. For a class C to be cellular it is sufficient if it is
closed under weak equivalences, arbitrary wedges and homotopy pushouts. This is
so since all pointed homotopy colimits can be built by repeatedly using these two
special cases. Furthermore, a retract of a member of a cellular class also belongs to the
cellular class, [16, 2.D.1.5], where X is a retract of Y if there are maps f W X ! Y

and r W Y !X 0 whose composition rf is a weak equivalence.

The symbol C.A/ denotes the smallest cellular class in Spaces� containing a given
space A. If X belongs to C.A/, then we write X �A and say that X is A–cellular
or that A builds X . For example, C.S0/ consists of all pointed spaces and C.Sn/ of
all .n� 1/–connected pointed spaces.

A weaker notion than cellularity is given by acyclicity (see [5] for the origin of the
terminology). For a map f W X ! Y of pointed spaces, Fib.f / denotes the homotopy
fiber of f over the basepoint. A cellular class C is called acyclic if, for any map
f W X ! Y such that Y and Fib.f / belong to C , the space X belongs to C . We also
say that C is closed under extensions by fibrations.

Given a pointed space A, the symbol C.A/ denotes the smallest acyclic class in
Spaces� containing A. If a space X belongs to C.A/, then we write X >A and say
that X is A–acyclic. There is an obvious inclusion C.A/ � C.A/ which in general
is proper. For example, if p is a prime number and G a finite p–group, K.G; 1/ is
always K.Z=p; 1/–acyclic; however, K.G; 1/ is K.Z=p; 1/–cellular if and only if G

is generated by elements of order p ; see the third author [19, Section 4] for details.

In [5], the first author proved that cellularity can be detected by means of a universal
property:

Theorem 2.1 A pointed space X is A–cellular if and only if, for any map f between
fibrant spaces such that map�.A; f / is a weak equivalence, then map�.X; f / is also a
weak equivalence.

The analogous universal property for acyclicity is the following; see for example [5, Sec-
tion 18].
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Theorem 2.2 A space X is A–acyclic if and only if, for any choice of basepoint
in A and X , and any fibrant space Z such that map�.A;Z/ is contractible, then
map�.X;Z/ is also contractible.

The present paper deals with possible values of the A–cellular approximation or A–
cellular cover of spaces. The existence and basic properties of these cellular cover
functors cellA are guaranteed by the following result proved in [16, Section 2]; see
also [5].

Theorem 2.3 Let A be a pointed space.

(1) There is a natural fibration cA;X W cellA X � X in Spaces� such that:
� cellA preserves weak equivalences.
� cellA X is A–cellular.
� The map map�.A; cA;X / is a weak equivalence.

(2) A pointed space X is A–cellular if and only if the map cA;X W cellA X � X is
a weak equivalence.

The map cA;X W cellA X � X , given by Theorem 2.3, is called the A–cellular cover
of X and the functor cellAW Spaces�! Spaces� the A–cellularization.

Example 2.4 Let SnC1 be an .nC 1/–dimensional sphere. The SnC1 –cellular cover
cSnC1;X W cellSnC1 X !X coincides with the n–connected cover and fits into a fibra-
tion sequence

cellSnC1 X
c

SnC1;X

������!X
pn;X

���! PnX;

where pn;X W X ! PnX is the nth Postnikov section. We call a space X an n–
Postnikov stage if the map pn;X W X !PnX is a weak equivalence, that is, if �iX D 0

for i � nC 1. Thus a 0–Postnikov stage is homotopically discrete, and a connected
1–Postnikov stage is an Eilenberg–Mac Lane space K.�; 1/.

Similarly to the n–connected cover, for any A, the map cA;X W cellA X � X is always
a principal fibration, [5, Corollary 20.7].

3 Basic cellular inequalities

This section contains fundamental cellular and acyclic inequalities. The idea is to use
these inequalities as basic moves to obtain more involved ones. Although our basic
result is an inequality PnX �X for a nilpotent PnX , we will use on the way many
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general inequalities that hold without any nilpotency condition. The following results
describe our basic dictionary of cellular inequalities, which in most cases admit direct
proofs.

Our first statements, formulated for cellular inequalities �, hold also as stated for the
weak inequality >. The weak, acyclic inequalities can be deduced from the cellular
ones and the fact that, for any space A, there is a space B such that C.A/D C.B/;
see the first author, Parent and Stanley [10, Corollary 6.2].

Proposition 3.1 Let A and X be pointed spaces.

(1) If X �A, then, for any space E , E ^X �E ^A.

(2) If X is connected, then �X �A if and only if X � S1 ^A.

(3) If X �A and A is connected, then �X ��A.

(4) For any X and n� 1, �n.Sn ^X /�X .

Proof The first cellular inequality follows from the universal property in Theorem 2.1
(see also the first author [7, Theorem 4.3]) while the corresponding acyclic universal
property in Theorem 2.2 implies the weak inequality. The cellular inequality (2) is
proved in [5, Theorem 10.8] and the acyclic one is [5, Theorem 18.5]. The inequalities
(3) and (4) are easy consequences of (1) and (2).

Our second set of inequalities concerns homotopy fibers and homotopy cofibers of a
map f W X ! Y . The last one tells us that the “fiber of the cofiber” is close to the
space X from a cellular point of view.

Proposition 3.2 Let f W X ! Y be a map to a connected pointed space Y .

(5) Cof.f /� S1 ^Fib.f /.

(6) For any E , Fib.E ^f /�E ^Fib.f /.

(7) If ˛W Y ! Cof.f / is a homotopy cofiber of f , then Fib.˛/�X .

Proof Inequality (5) is [5, Proposition 10.5] while (6) follows from the case of a
circle (see the second author [15]), and induction on a cell decomposition. Finally (7)
is [16, Corollary 9.A.10] (see also [5, Proposition 4.5(4)]).

In fibration and cofibration sequences we can sometimes relate the cellularity type
of the spaces involved in the sequence. The main difficulty for a fibration sequence
F !E! B is that in general we cannot extract information about the total space of
the type E�A knowing that B;F �A.
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Proposition 3.3 Let Z!X ! Y be either a cofibration or a fibration sequence.

(8) If Z >A and Y >A, then X >A.

(9) If Z�A and Y > S1 ^A, then X �A.

(10) If Z >A and X �A, then Y �A.

Proof For a fibration sequence inequality (8) holds by definition of the relation >. The
cofibration sequence case follows from (7) and the fibration sequence case. Inequality
(9) is [5, Corollary 20.2] for a fibration sequence, and the cofibration case follows again
from (7) and the fibration sequence case. Finally, inequality (10) may be deduced from
statements (5) and (9).

The following inequalities, that put in relation fiber and cofiber from the cellular point
of view, will be specially relevant in the rest of the paper.

Proposition 3.4 (11) Let X be a connected pointed space and n be a positive integer.
Let en;X W X ! �n.Sn ^X / be the adjoint to idW Sn ^X ! Sn ^X . Then
Fib.en;X /� S1 ^�X ^�X and Cof.en;X /�X ^X .

Proof If n D 1, then the statement for the homotopy fiber is proved by the first
author [6, Theorem 7.2]. We proceed by induction on n. Let n > 1. The map en;X

factors as the composition

X

en;X

22

en�1;X
// �n�1.Sn�1 ^X /

�n�1.e
1;Sn�1^X

/
// �n.Sn ^X /;

which leads to a fibration sequence

Fib.en�1;X /! Fib.en;X /! Fib.�n�1.e1;Sn�1^X //

and a cofibration sequence

Cof.en�1;X /! Cof.en;X /! Cof.�n�1.e1;Sn�1^X //:

Let us analyze Fib.�n�1.e1;Sn�1^X //'�
n�1.Fib.e1;Sn�1^X //. According to state-

ments (2) and (3) the following cellular relation holds:

�n�1.S1
^�.Sn�1

^X /^�.Sn�1
^X //��n�1.S1

^Sn�2
^X ^Sn�2

^X /:

For this last space �n�1.S2n�3^X ^X /, by the same argument, we have the relation

�n�1.S2n�3
^X ^X /� Sn�2

^X ^X � Sn
^�X ^�X � S2

^�X ^�X:
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Thus Fib.en;X /� S1 ^�X ^�X is a consequence of the inductive step and state-
ment (9). The case of the homotopy cofiber is an analogous induction based on the
proof of [6, Theorem 7.2], which analyzes the James construction.

We arrive now at more delicate inequalities involving diagrams. Consider a homotopy
pushout square:

A
f
//

g

��

B

h
��

C
k
// D

Let ˇW Fib.g/! Fib.h/ and  W A! T WD holim.C
k
�!D

h
 �B/ be the maps induced

by the commutativity of this square.

Theorem 3.5 (12) If C and D are connected, then Fib.h/� Fib.g/.

(13) If Fib.k/ is connected, then Cof.ˇ/� S1 ^Fib.g/^�Fib.k/.

(14) If B , C , T and Fib. / are connected, then Fib. />S1^�Fib.f /^�Fib.g/.

Proof Inequality (12) is [7, Theorem 3.4]. To check (13), observe that according to
Puppe’s theorem we can form the following homotopy-pushout square of homotopy
fibers

Fib.g/
h0

%%

ˇ

!!

Fib.hf /
f 0
//

g0

��

Fib.h/

��

Fib.k/ // �Œ0�;

where the map h0W Fib.g/! Fib.hf / is a homotopy fiber of g0W Fib.hf /! Fib.k/.
Let Fib.k/ ,!R Fib.k/ be a weak equivalence into a fibrant space. Since the compo-
sition g0h0 factors through a contractible space, by taking the cofibers of h0 and ˇ , we
can form a new homotopy pushout square

Cof.h0/

g00

��

// Cof.ˇ/

��

R Fib.k/ // �Œ0�:

By Ganea’s theorem [21], Fib.g00/' S1 ^Fib.g/^�Fib.k/. Under the assumption
that Fib.k/ is connected, we can then apply statement (13) to this last homotopy
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pushout square to get Cof.ˇ/� S1 ^ Fib.g/^�Fib.k/. Finally, inequality (14) is
by Werndli, the first and fourth authors [11, Theorem 5.1].

4 Cellular functors and Bousfield key lemma

An essential tool to understand the failure of preservation of fibrations by localizations
and cellularizations is the so-called “key lemma” of Bousfield [3, Theorem 5.3] and the
second author [16]. In its original form it states that if, for connected pointed spaces X

and Y , map�.X;Y / is weakly equivalent to a discrete space and �1Y acts trivially on
the set of components �0 map�.X;Y /, then the Hurewicz map hX W X !ZX induces
a weak equivalence between map�.X;Y / and map�.ZX;Y /. The space ZX is the
simplicial abelian group freely generated by the simplices of X where the basepoint
of X is put equal to zero. This construction is left adjoint to the forgetful functor
from simplicial abelian groups to pointed simplicial sets. It is the simplicial model
for the Dold–Thom infinite symmetric product SP1X '

Q
K.Hn.X IZ/; n/; see for

example [12, 3.11].

The assumptions of the key lemma are equivalent to the statement that the inclusion
S1_X ,!S1�X induces a weak homotopy equivalence between the mapping spaces
map�.S

1 _X;Y / and map�.S
1 �X;Y / which means that Y is local with respect to

S1_X ,! S1�X . The key lemma states therefore that, for a connected space X , the
Hurewicz map hX W X!ZX is an LS1_X ,!S1�X –equivalence (see [16]). One way to
prove this lemma is to show a stronger statement: the map hX W X!ZX is constructed
inductively starting with X and taking pushouts along the inclusion S1_X ,!S1�X

or its suspensions. Since the cofiber of the map S1 _X ,! S1 �X is S1 ^X , it
follows that Cof.hX />S1^X (in fact a stronger relation Cof.hX /�S1^X holds in
this case) [16, Section 4.A]. Furthermore if X is simply connected, the same argument
can be used to show that the Hurewicz map hX W X ! ZX is constructed inductively
starting with X and taking pushouts along the inclusion S2 _X ,! S2 �X or its
suspensions. By the Ganea theorem [21], Fib.S2_X ,!S2�X /'S1^�S2^�X .
Thus, if X > S1 ^A, for a connected A, then

Fib.S2
_X ,! S2

�X / > S1
^S1

^�X > S1
^S1

^AD S2
^A:

We can then use Theorem 3.5(12) to infer that Fib.hX / >S2^A. These two properties
of the Hurewicz map play an important role in this paper and therefore we are going
to give them a name. Recall that a coaugmented functor KW Spaces� ! Spaces� is
equipped by definition with a natural transformation �X W X ! K.X / between the
identity idW Spaces�! Spaces� and K .
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Definition 4.1 A coaugmented functor �X W X ! K.X / is called cellular if:

(1) Cof.�X W X ! K.X // > S1 ^X for any connected X .

(2) Fib.�X W X ! K.X // > S2 ^A for any X > S1 ^A and connected A.

The following is a consequence of Proposition 3.3(9).

Corollary 4.2 If K is a coaugmented cellular functor, then K.X / is X–cellular for
any X .

Example 4.3 The natural unit map X !�n.Sn^X / given by the “loop-suspension”
adjunction defines a cellular functor, and so does the map X ! QX D �1†1X .
Further examples can be constructed from connective ring spectra. If the unit map
S ! E induces an isomorphism on �0 , the functor �1.E ^X / is cellular. The
coaugmentation X!SPnX DX n=†n to the n–symmetric space satisfies requirement
(1) of Definition 4.1 [16, Section 4.A], and one might ask if this map is also cellular.
We believe it is, although we do not have a clear argument at the time of writing this
paper.

Our main example of a coaugmented cellular functor is given by the Hurewicz map
hX W X ! ZX . This follows from the discussion at the beginning of this section. We
sum up the cellular properties of the functor Z in a proposition for future reference.

Proposition 4.4 The functor Z is cellular. In particular ZX � X for any space X .
Moreover if X >A, then ZX > ZA.

Proof The second statement is Corollary 4.2. Finally we learn from [16, Proposi-
tion 7.B.5] that PZAZX D PAZX . Thus, if A<X , then A< ZX by the previous
cellular inequality and so PZAZX is contractible, ie ZA< ZX .

How can we construct new coaugmented cellular functors out of old ones? For that
we are going to use the following proposition. Let f W X ! Y be a map. Take its
homotopy cofiber ˛W Y ,! Cof.f / and the homotopy fiber Fib.˛/� Y of ˛ . These
maps fit into the commutative diagram

Fib.˛/

(( ((

��

X� _

��

f //

xf 77

Y � _

˛

��

CX 0

(( ((

pt CX
�
oooo //

* 

� 77

Cof.f /;
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where the front square is a (homotopy) pushout, the right back square is a (homotopy)
pullback and the indicated maps are weak equivalences, fibrations and cofibrations.
The map xf W X ! Fib.˛/ is called the comparison map.

Proposition 4.5 Let f W X ! Y be a map, xf as above, and A be a connected space.

(15) If X is connected and Cof.f / is simply connected, then Cof. xf /� S1 ^X .

(16) If Fib.f / is simply connected and X > S1 ^A, then Fib. xf / > S2 ^A.

Proof We prove (15) first. By the assumption Cof.f / is 1–connected. Thus its loop
space, which is the homotopy fiber of CX ! Cof.f /, is connected. We can therefore
apply Theorem 3.5(13) to the homotopy pushout square

X� _

��

f
// Y � _

˛
��

CX // Cof.f /

to get Cof. xf /� S1 ^X ^�2 Cof.f /� S1 ^X .

To prove (16), assume X > S1 ^A. This implies X is 1–connected. According to
Proposition 3.2(7) Fib.˛/�X and thus Fib.˛/ is also 1–connected. The hypothesis
of Theorem 3.5(14) is thus satisfied and we get Fib. xf / > S1^�X ^�Fib.f /. Since
Fib.f / is simply connected, its loop space �Fib.f / is connected and we can conclude
that Fib. xf / > S1 ^�X ^�Fib.f / > S2 ^�X > S2 ^A.

The cofiber-fiber construction applies to any coaugmented functor K , taking first the
homotopy cofiber of the coaugmentation �X W X !K.X / and then the homotopy fiber.

Definition 4.6 Let K be a coaugmented functor and X any space. We denote by xK.X /
the homotopy fiber of K.X / ,! Cof.�X /. The natural map x�X W X ! xK.X / defines
a new coaugmented functor xKW Spaces�! Spaces� .

Here is the main result of this section:

Proposition 4.7 Let �X W X ! K.X / be a coaugmented functor. Assume that:

� If X is connected, then Cof.�X / is simply connected.

� If X is simply connected, then so is K.X / and �2.�X / is an epimorphism.

Then xK is a cellular coaugmented functor and thus xK.X / is X–cellular for any X .
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Proof Requirement (1) of Definition 4.1 follows from Proposition 4.5(15) and re-
quirement (b) from Proposition 4.5(16). The fact that xK.X / is X–cellular is a direct
consequence of Corollary 4.2.

For example the assumptions of Proposition 4.7 are satisfied if K is cellular:

Corollary 4.8 If K is a coaugmented cellular functor, then so is xK .

5 The modified Bousfield–Kan tower

The aim of this section is to show that the coaugmented functors �k;X W X ! zkX in
a modified version of the integral Bousfield–Kan completion tower, as defined by the
second author in [17], are cellular (see Definition 4.1). The modified tower was built
originally as an elementary construction that models the pro-homology type of any
space by a tower of much simpler spaces called polyGEMs.

Definition 5.1 A 1–polyGEM is defined to be a GEM, ie a space weakly equivalent
to a product of abelian Eilenberg–Mac Lane spaces. For n� 2, an n–polyGEM is a
space which is weakly equivalent to a retract of the homotopy fiber of a map from an
.n� 1/–polyGEM to a GEM. A space is a polyGEM if it is an n–polyGEM for some
integer n.

The above definition of n–polyGEM hides our ignorance of whether closing that class
as we did under any retraction is necessary or not. PolyGEMs are examples of nilpotent
spaces, and in a sense, universal such examples:

Proposition 5.2 A connected space X is nilpotent if and only if, for any n� 1, the nth

Postnikov section PnX is a polyGEM.

Proof If X is nilpotent its Postnikov tower admits a refinement by principal fibrations
whose fibers are Eilenberg–Mac Lane spaces. Conversely, if PnX is a polyGEM,
it is nilpotent. Hence its fundamental group is nilpotent and acts nilpotently on all
homotopy groups. This is true for all integers n, so X itself is nilpotent.

How can we detect that a space is a polyGEM? This can be done using the integral
Bousfield–Kan homology completion tower or, and this is the option we choose here,
its modified version:

X �0;X

""

�1;X

!!

�k;X

��

� � �
qkC1

// // zkX
qk
// // � � �

q2
// // z1X

q1
// // z0X
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Recall from [17] the inductive construction of the tower. For k D 0, z0X D ZX and
�0;X W X ! z0X is the Hurewicz map hX W X ! ZX . For k � 0, the space zkC1X

is the homotopy fiber of the composition

zkX
˛
�! Cof.�k;X /

hCof.�k;X /
�������! Z Cof.�k;X /;

and the map �kC1;X W X ! zkC1X fits into the following commutative diagram in
which the horizontal sequences are homotopy fiber sequences:

(�)

X
�k;X

��

x�k;X

##

�kC1;X

%%

xzkX // //

��

zkX
� � ˛

// Cof.�k;X /� _

hCof.�k;X /

��

zkC1X
qkC1

// // zkX
� � h˛

// Z Cof.�k;X /

Observe that z0X is a GEM by definition, z1X is a 2–polyGEM as it is the homotopy
fiber of a map between GEMs, and, more generally zkX is a .kC 1/–polyGEM for
any k � 0, as it is by induction the homotopy fiber of a map from a k –polyGEM to a
GEM. Moreover, this new tower mimics the behavior of the classical Bousfield–Kan
tower in the following sense:

Proposition 5.3 For any space X the maps �k;X W X ! zkX , taken together as a
map of towers, induce a pro-homology and ind-cohomology isomorphism between the
constant tower X and the modified integral Bousfield–Kan tower .� � �� z1X � z0X /.
Moreover, if X is a polyGEM, then this map of towers induces a pro-isomorphism on
pro-homotopy groups.

Proof The pro-homology isomorphism (and therefore also ind-cohomology isomor-
phism) holds by [17, Theorem 2.2]. As a corollary, see [17, Proposition 2.13], the map
of towers induces a pro-isomorphism on pro-homotopy groups for any polyGEM, ie
the kernel and cokernel are pro-isomorphic to zero. For more details see also the proof
of Proposition 5.5.

Remark 5.4 A useful way to reformulate Proposition 5.3 is by saying that there is an
ind-equivalence of towers of mapping spaces

map�.X;K.A; n//!map�.zkX;K.A; n//

for any abelian group A and any natural number n.
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We can now state our detection criteria:

Proposition 5.5 A space W is a polyGEM if and only if it is a retract of znW for
some n.

Proof (Compare with [17, 2.9]) Since znW is a polyGEM, by definition so is any
of its retracts. That proves one implication.

Assume now that W is a polyGEM. The maps �k;W W W ! zkW induce an ind-
cohomology equivalence as we just have seen in Proposition 5.3. Thus, for a fibrant
GEM P , the maps of mapping spaces map�.�k;W ;P /W map�.zkW;P /!map.W;P /

induce an ind-homotopy equivalence. By induction, the same holds for any fibrant
polyGEM P . To obtain the desired retraction, we can now use this ind-homotopy
equivalence when P is a fibrant replacement of W . The ind-isomorphism yields a
map zkP !P that corresponds to the identity P !P , thus we get that P is a retract
of znP for some natural number n.

We have only used in the above proof properties shared by the modified and the original
Bousfield–Kan towers. The main result of the section, that is not known to hold for the
original tower, is the following cellularity statement.

Proposition 5.6 For all k � 0, the coaugmented functor zk is cellular. In particu-
lar zkX is X–cellular for any X .

Proof The proof is by induction on k . The cellularity of z0DZ was already discussed
in Section 4; see Proposition 4.4. Assume the claim holds for some k � 0. Let us
denote by ˇW xzkX ! zkC1X the left vertical map in the diagram (�). This map fits
into a commutative triangle

X
x�k;X

##

�kC1;X

%%

xzkX

ˇ

��

zkC1X

which exhibits �kC1;X as a composition of two maps, yielding both a cofibration and
a fibration sequence:

Cof.x�k;X /! Cof.�kC1;X /! Cof.ˇ/; Fib.x�k;X /! Fib.�kC1;X /! Fib.ˇ/:
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We will see in a moment that the sequence of three homotopy fibers above has a
connected base space Fib.ˇ/, so it makes sense to speak about a fibration sequence
since the homotopy fiber is well defined. We now use the cofibration sequence to prove
part (1) of Definition 4.1 and then the above fibration sequence to prove part (2) of that
definition of cellular functors.

Assume that X is connected. Since the functor zk is cellular (by induction hypothesis),
Cof.�k;X / > S1 ^X . We thus get the following inequality from the cellularity of the
functor Z (part (2) of Definition 4.1):

� Cof.�k;X / WD Fib.Cof.�k;X /
hCof.�k;X /

�������! Z Cof.�k;X // > S2
^X:

It follows that

Fib.ˇW xzkX ! zkC1X /'�� Cof.�k;X / > �.S
2
^X / > S1

^X:

This implies that Fib.ˇ/ is 1–connected, hence connected as needed. In addition it
follows that Cof.ˇ/>S1^Fib.ˇ/>S2^X (see Proposition 3.3(8)). As xzk is cellular
(see Corollary 4.8), we also have Cof.x�k;X / > S1 ^X . These last two inequalities
imply Cof.�kC1;X / > S1 ^X which is requirement (1) of Definition 4.1.

Assume now that X > S1 ^ A for a connected space A. Since xzk is a cellular
functor, Fib.x�k;X / > S2 ^ A. We have already seen that Fib.ˇ/ > S1 ^ X , and
hence Fib.ˇ/ > S2 ^A. These inequalities imply Fib.�kC1;X / > S2 ^A, which is
requirement (2) of Definition 4.1. This concludes the induction step and the proof of
the proposition.

We end this section with a useful lemma.

Lemma 5.7 Let X be any connected space. For any k � 0 we have ZX < zkX .

Proof For k D 0 there is nothing to prove. We proceed by induction. Assume that
k � 1 and recall that, by definition, zkX fits into a fibration sequence:

�Z Cof.�k�1;X /! zkX ! zk�1X:

As zk�1 is cellular by Proposition 5.6, Cof.�k�1;X / > S1 ^ X and therefore we
also have Z Cof.�k�1;X / > Z.S1 ^X / by Proposition 4.4. This then implies that
�Z Cof.�k�1;X / > ZX . By induction we have zk�1X > ZX , and we can then
conclude zkX > ZX .

Geometry & Topology, Volume 19 (2015)



Cellular properties of nilpotent spaces 2757

6 Cellularity of Postnikov sections

Recall that the Postnikov sections and highly connected covers are basic occurrences
of nullifications and cellular covers: PSnC1X is the nth Postnikov section PnX and
cellSnC1 X is the n–connected cover. We turn to the proof of the main theorem of this
article. Consider an arbitrary, not necessarily nilpotent space. Of course, a priori not
a single Postnikov section need be nilpotent, but if there are some, they are built by
the space we started with. This is in contrast with the situation for higher connected
covers, as the following example illustrates.

Example 6.1 In general, an n–connected cover cellSnC1 X — even of a nilpotent
space X — is not X–cellular. Consider for example K.Z; 2/_K.Z; 2/ whose cel-
lular class is that of K.Z; 2/. Its 2–connected cover is S3 and the 3–sphere is not
K.Z; 2/–cellular, in fact not K.Z; 2/–acyclic. To see this let M.Z=2; 3/ be the
double suspension of RP2 . This is a finite complex so, by the Sullivan conjecture (see
Miller [24]),

map�.K.Q=Z; 1/;M.Z=2; 3//' �:

The space K.Q=Z; 1/ is the homotopy fiber of the map K.Z; 2/!K.Q; 2/ induced
by the inclusion Z�Q. By the above consequence of the Sullivan conjecture we then
have

map�.K.Z; 2/;M.Z=2; 3//'map�.K.Q; 2/;M.Z=2; 3//:

However, since K.Q; 2/ is a rational space, map�.K.Q; 2/;M.Z=2; 3// is contractible
and consequently so is map�.K.Z; 2/;M.Z=2; 3//. This shows that M.Z=2; 3/ can
not be K.Z; 2/–acyclic since this equation implies that its K.Z; 2/–nullification is
equivalent to itself, and thus cannot be contractible as required by the definition of
A–acyclic space. As M.Z=2; 3/ > S3 , S3 can not be K.Z; 2/–acyclic either.

The following cellular and acyclic properties of polyGEMs are central to the proof of
our main result. In Example 6.1 we have seen that in general the n–connected cover
cellSnC1 X of a nilpotent space X can fail to be X–acyclic. This however can not
happen when X is a polyGEM:

Proposition 6.2 Let W be a polyGEM. Then for any n� 0:

(1) cellSn W >W .

(2) K.�nW; n/ >W .

(3) PnW �W and in particular K.�1W; 1/�W .

(4) C.W /D C.ZW /D C.
Q

k�0 K.�kW; k//.
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We first prove a version of Proposition 6.2(1) above for very special polyGEMs:

Lemma 6.3 Let X be a space. For any k � 0 and n� 0, cellSn zkX >X .

Proof If X is not connected, then the lemma is clear as all spaces are X–acyclic.
Assume X is connected. The proof is by induction on k . For k D 0, the space
z0X D ZX is a GEM. Thus for any n � 0, cellSn ZX is a retract of ZX and
since ZX is X–cellular, then so is cellSn ZX .

Take now k > 0. Since X is connected, then so is zkX and hence cellS0 zkX and
cellS1 zkX are weakly equivalent to zkX , which is X–acyclic (even cellular) by
Proposition 5.6. Suppose n� 2 and form the following commutative diagram where
the horizontal sequences are fibration sequences and both the left and right vertical
maps are (the usual higher connected) cellular covers (see [16, Theorem E2]):

(��)

cellSn zkX

��

// E

��

// cellSnC1 Z Cof.�k�1;X /

��

zkX
qk

// zk�1X // Z Cof.�k�1;X /

Explicitly, the space E is the .n�1/–connected cover of the homotopy pullback of the
right hand side pullback diagram. Since zk�1 is a cellular functor (see Proposition 5.6),
Cof.�k�1;X / > S1 ^X . This, together with the case k D 0, gives

cellSnC1 Z Cof.�k�1;X / > Cof.�k�1;X / > S1
^X

or equivalently, by Proposition 3.1(2), � cellSnC1 Z Cof.�k�1;X / > X . To show
cellSn zkX >X it is therefore enough to prove E >X (see Proposition 3.3(8)).

The space E is .n� 1/–connected and the map E! zk�1X induces an isomorphism
on homotopy groups �i for i � nC 1. We have thus a fibration sequence

cellSnC1 zk�1X !E!K.�nE; n/:

By the inductive assumption cellSnC1 zk�1X >X . The inequality E >X will then
follow once we show K.�nE; n/ >X .

Let G D �nzk�1X , H D �nZ Cof.�k�1;X / and f W G ! H be the group homo-
morphism induced on �n by the map zk�1.X /! Z Cof.�k�1;X /. By the inductive
assumption cellSn zk�1X > X and cellSnC1 zk�1X > X . These spaces fit into the
fibration sequence

cellSnC1 zk�1X ! cellSn zk�1X !K.G; n/:
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It follows that K.G; n/ >X . As K.H; n/ is a retract of Z Cof.�k�1;X /, we also have
K.H; n/ > Cof.�k�1;X / > S1 ^X . These inequalities imply

K.Ker.f /; n/�K.Coker.f /; n� 1/' Fib.K.f; n/W K.G; n/!K.H; n// >X:

Hence, as a retract of Fib.K.f; n//, the space K.Ker.f /; n/ is also X–acyclic. The
long exact sequences in homotopy for the fibrations in the above diagram (��) allow
us to identify �nE with Ker.f W G!H /. We conclude that K.�nE; n/ >X .

Proof of Proposition 6.2 If W is not connected, then all four statements are clear.
Assume then that W is connected.

(1) Since W is a polyGEM, Proposition 5.5 implies that it is a retract of zkW for
some k . By functoriality, cellSn W is then a retract of cellSn zkW and we conclude
by Lemma 6.3 that cellSn W >W .

(2) This is a consequence of (1) and the fact that we have a fibration sequence

cellSnC1 W ! cellSn W !K.�nW; n/:

(3) For nD 0 the result is immediate as P0W is a retract of W . Let n� 1. In this
case the statement follows from (1) and Proposition 3.3(10) applied to the fibration
sequence cellSnC1 W !W ! PnW .

(4) We proved in Lemma 5.7 that zkW > ZW . Moreover, since W is a polyGEM,
there is an integer k for which W is a retract of zkW . For such a k we then have
the relations W � zkW > ZW �W which proves the equality C.W / D C.ZW /.
The inequality

Q
K.�kW; k// > W follows from statement (2) since the infinite

product is a pointed homotopy colimit of the finite ones. To conclude that the acyclic
classes C.W / and C.

Q
K.�kW; k// coincide what remains is the proof of the relation

ZW >
Q

K.�kW; k/. For any n� 0, the inequality K.Hn.W /; n/�Z.PnW / holds
since W and PnW have isomorphic nth integral homology groups by the Whitehead
theorem. Therefore

K.Hn.W /; n/� Z.PnW /� PnW >
Y
k�0

K.�kW; k/:

This implies that ZW >
Q

k�0 K.�kW; k/.

Before proving our main cellular inequality we start with the preservation of polyGEMs
by general cellularizations. These are direct consequences of Proposition 6.2.

Theorem 6.4 If X is a polyGEM, then so is cellA X for any space A.
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Proof Assume X is a polyGEM. It is thus a retract of znX (see Proposition 5.5), for
some n, ie there is a homotopy retraction r of �n;X to a space Y weakly equivalent
to X . Hence we can form the (undotted part of the) following diagram with the
indicated maps being weak equivalences and which, with the dotted arrow removed, is
commutative by the functorial nature of the constructions:

cellA X
�n;cellA X

//

cA;X

""

cellA �n;X

))

'

((

zn cellA X //

zn.cA;X /

$$

cellA znX
cellA r

//

cA;znX

zz

cellA Y

cA;Y

||

X
�n;X

//

'

33znX
r

// Y

To construct the dotted arrow, note that since zn is a cellular functor (see Proposition 5.6),
zn cellA X � cellA X �A. We can then use the universal property of the A–cellular
cover cA;znX to obtain the existence of the dotted arrow that makes the entire diagram
homotopy commutative. Commutativity of this diagram shows that cellA X is a retract
of zn cellA X and hence by Proposition 5.5 cellA X is a polyGEM.

An analogous result to Theorem 6.4 holds also for finite nilpotent Postnikov stages.

Corollary 6.5 If X is a nilpotent n–Postnikov stage, then so is cellA X for any A.

Proof Assume pn;X W X ! PnX is a weak equivalence and PnX is nilpotent.
Consider the following (solid arrows) diagram where the indicated maps are weak
equivalences and, with the dotted arrow removed, it is commutative by functoriality of
the constructions:

cellA X

cA;X

��

pn;cellA X

//

'

cellA pn;X

**

Pn cellA X

PncA;X

%%

// cellA PnX

cA;PnX

yy

X
'

pn;X
// PnX

Since X is a polyGEM (see Proposition 5.2), then so is cellA X by Theorem 6.4. We
can then use Proposition 6.2(3) to conclude that Pn cellA X � cellA X � A. The
universal property of the cellular cover cA;PnX gives the existence of the dotted arrow
making the above diagram homotopy commutative. The map pn;X is an equivalence
by assumption and thus so is the curved arrow. This implies that cellA X is a homotopy
retract of a Postnikov stage and hence is itself an n–Postnikov stage as claimed.
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We now turn to more general spaces. The following is our main new cellular inequality
and in a sense the most easily stated result of the present work:

Theorem 6.6 Let X be a space. If PnX is nilpotent, then PnX �X .

Proof If X is not connected, then the conclusion is clear. So assume X is connected
and PnX is nilpotent. The map X ! PnX factors through cellX PnX since X is
X–cellular, but we have seen in Corollary 6.5 that cellX PnX is an n–Postnikov stage.
Thus the map X ! cellX PnX factors through PnX , which implies that PnX is a
retract up to homotopy of an X–cellular space, and hence it is X–cellular.

7 Applications

In this section we state various consequences of Proposition 5.6 and Theorem 6.6. We
start with results related to polyGEMs and Postnikov sections. Theorem 6.4 can be
used to give a description of all cellular covers of the classifying space of a nilpotent
group in terms of the group-theoretical covers, see [1; 18], and the first and second
authors, Damian and Segev [8]. In general of course, cellA K.G; 1/ can have rich
higher homotopy groups, eg the stable homotopy groups of spheres.

Proposition 7.1 Assume that G is a nilpotent group and A a connected space. Then
cellA K.G; 1/ ' K.cell�1A G; 1/, where cell�1A G is the group theoretical �1A–
cellularization of G (see [1; 8; 18]).

Proof Corollary 6.5 implies that cellA K.G; 1/'K.H; 1/, where H is a nilpotent
group. Furthermore we claim that since K.H; 1/ is A–cellular, the group H must be
�1A–cellular. To see this note that, by the Seifert–van Kampen theorem, the collection
of all connected spaces with �1A–cellular fundamental group is a cellular class. Since
it contains A, it has to include the smallest cellular collection C.A/, and in particular
it contains K.H; 1/.

By the universal property of the cellularization and Theorem 2.3(1), the following map
is a weak equivalence:

map�.A; cA;K.G;1//W map�.A;K.H; 1//!map�.A;K.G; 1//:

Thus, on �1 , we get that the homomorphism �1cA;K.G;1/W H !G induces a bijection

Hom.�1A; �1cA;K.G;1//W Hom.�1A;H /Š Hom.�1A;G/:

This homomorphism �1cA;K.G;1/W H!G is therefore the �1A–cellularization and H

is isomorphic to cell�1A G .
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By [18, Theorem 1.4 (2)], the group-theoretical cellularizations of a finite nilpotent
group N are always subgroups of N .

Corollary 7.2 Let P be a finite p–group. Then cellA K.P; 1/ is a K.P 0; 1/ for some
subgroup P 0 of P .

It is sometimes possible to compute all possible such cellularizations.

Example 7.3 Let D2n denote the dihedral group of order 2n for n� 2. This is the
group of symmetries of a regular polygon with 2n�1 sides and it is nilpotent of class
n� 1. The third author showed in [19, Proposition 5.1] that D2n is Z=2–cellular. We
hence have only two possible cellularizations: cellA K.D2n ; 1/ can be contractible or
cellA K.D2n ; 1/'K.D2n ; 1/. The latter is obtained for example for ADK.Z=2; 1/.
For n� 3, we were able to perform these computations by hand, but already for nD 4

we do not know of a direct calculation of all cellularizations of K.D16; 1/ without
showing first that they must be K.G; 1/’s.

The following is a particular case of Theorem 6.6, for nD 1. Examples in which this
result holds motivated the present work.

Corollary 7.4 If �1.X / is nilpotent, then K.�1X; 1/�X .

We can also use Theorem 6.6 to get a Serre class-type statement that describes a global
relation between the integral homology groups and the homotopy groups of a nilpotent
space. No spectral sequence is needed in our proof, even though it seems that one
could also obtain the mutual acyclicity of the homotopy and homology groups by a
spectral sequence argument.

Corollary 7.5 If X is nilpotent, then C.Z.X //D C
�Y

k�0

K.�kX; k/

�
.

Proof If X is not connected, the statement is clear. Thus assume X is connected.
Even without the nilpotency assumption on X , for any n� 0, we have

K.Hn.X /; n/DK.Hn.PnX /; n/� Z.PnX /� PnX >
Y
k�0

K.�kX; k/:

Consequently Z.X / >
Q

k�0 K.�kX; k/. For the opposite inequality, we need the
assumption that X is nilpotent, which, according to Proposition 5.2, is equivalent
to PnX being a polyGEM for any n � 0. We can then use Theorem 6.6 and
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Proposition 6.2(2) to obtain K.�nX; n/ > PnX � X which, for n > 1, implies
K.�nX; n/� Z.K.�nX; n// > Z.X /, where the last inequality is Proposition 4.4.
For n D 1, since �1X is nilpotent, we also have K.�1X; 1/ > Z.X /. This showsQ

k�0 K.�kX; k/ > Z.X /.

We can also strengthen Corollary 7.4. Instead of assuming that the fundamental group
of X is nilpotent we make it nilpotent by taking the quotient by some stage of the
lower central series.

Corollary 7.6 For any space X and any n� 1, K.�1X=�n�1X; 1/�X .

Proof Let G be the fundamental group �1X . If X is not connected, the corol-
lary is clear. Assume X is connected. In this case according to Proposition 7.1,
cellX K.G=�nG; 1/'K.cellG.G=�nG/; 1/. However G=�nG is a G –cellular group
(see [8, Proposition 7.1(3)]). We conclude cellX K.G=�nG; 1/ ' K.G=�nG; 1/,
which proves that K.G=�nG; 1/ is X–cellular.

The statement of the next result does not involve cellularity, however we do not
know of a proof which does not use this tool. This is the extension to nilpotent
fundamental groups of the Bousfield key lemma we presented in the introduction;
see also Section 4. It implies for example that, if X is simply connected, then the
map �nW map�.X;X /! Hom.�nX; �nX / is a weak equivalence if and only if X is
weakly equivalent to K.�nX; n/. If X is not simply connected, then the situation is
much more complicated.

Example 7.7 The K.Z=2; 1/–cellularization of K.†3; 1/ has already been computed;
see [20, Example 2.6]. It is a space X whose fundamental group is the symmetric
group †3 and its universal cover is the homotopy fiber of the degree-3 map on the
sphere S3 . In particular its homotopy groups are non trivial in infinitely many degrees.
By the universal property of the cellularization we have weak equivalences of mapping
spaces

map�.X;X /'map�.X;K.†3; 1//' Hom.†3; †3/:

The mapping space of pointed self-maps of X is homotopically discrete, but X is far
from being a K.G; 1/. This example also shows that the cellularization of nonnilpotent
K.G; 1/–spaces can become quite complicated.

This is in contrast with what we prove for nilpotent fundamental groups. If the pointed
mapping space of self-maps map�.X;X / is homotopically discrete via the evaluation
on the fundamental group, then X must be a K.G; 1/.
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Theorem 7.8 Let X be a connected space whose fundamental group �1X is nilpotent.
Assume that the map �1W map�.X;X / ! Hom.�1X; �1X / is a weak equivalence.
Then X is weakly equivalent to K.�1X; 1/.

Proof The assumptions imply that map�.X;p1;X /W map�.X;X /!map�.X;P1X /

is a weak equivalence. Thus X ' cellX K.�1X; 1/, which by Proposition 7.1, means
that X 'K.�1X; 1/.

Here is another way to restate this result. If the first Postnikov section X!K.G; 1/ in-
duces a weak equivalence on pointed mapping spaces map�.X;X/'map�.X;K.G; 1//
and G is nilpotent, then X is a K.G; 1/. We also offer a version for higher Postnikov
sections. The very same argument as in the proof of Theorem 7.8 can be used to show:

Corollary 7.9 Let X be a connected space whose nth Postnikov section PnX is
nilpotent. Assume that the map PnW map�.X;X / ! map�.PnX;PnX / is a weak
equivalence. Then pn;X W X ! PnX is a weak equivalence, ie X is an n–Postnikov
stage.

Here is another application of Theorem 6.6 and the characterization of cellularity in
Theorem 2.1. Notice however that the statement is not true for a general space X .
Neither is the analogous statement for higher connected covers of a nilpotent X as we
have seen in Example 6.1.

Corollary 7.10 Assume X is nilpotent. If map�.X;Y / is contractible, then so is
map�.PnX;Y / for any n� 0.

As a last application we offer a few results which state simple — but not obvious —
homological properties of nilpotent spaces. All are immediate consequences of the
main theorem above.

Theorem 7.11 Let K be a reduced homology theory.

(1) Assume X is K–acyclic. If PnX is nilpotent, then it is also K–acyclic and so is
K.�iX; i/ for i � n.

(2) Assume X is nilpotent. Then
Q

k�1 K.�kX; k/ is K–acyclic if and only ifQ
k�1 K.HkX; k/ is K–acyclic.

(3) If G is a group such that K.G; 1/ is K–acyclic, then so is K.G=�nG; 1/ for
any n.
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