
Defeasible Argumentation of Software Architectures

José Miguel Cañete-Valdeón∗, Antonio Ruiz-Cortés† and Miguel Toro‡
Department of Computer Languages and Systems

University of Sevilla, Spain
∗jmcv@us.es †aruiz@us.es ‡mtoro@us.es

Abstract—Defeasible argumentation is typical of legal and
scientific reasoning. A defeasible argument is one in which
the conclusion can be accepted tentatively in relation with the
evidence known so far, but may need to be retracted as new
evidence comes in. This paper analyses the role of defeasible
argumentation in the explanation and evaluation of architectural
decisions. We analyse technical explanations offered by engineers
at Twitter and eBay about several architectural decisions adopted
in those systems. We generalize these examples in four argu-
mentation schemes. We also study the typical case of reasoning
with a formal model of an architecture, and we infer a fifth
argumentation scheme. Finally, we apply Hastings’ method of
attaching a set of critical questions to each scheme. We show
that the existence of critical questions reveals that the inferred
schemes are defeasible: in argumentation theory, if a respondent
asks one of the critical questions matching a scheme and the
proponent of an argument fails to offer an adequate answer, the
argument defaults and the conclusion is retracted. This dialogical
structure is the basis of typical architectural evaluations. We
conclude that the provided evidence supports the hypothesis that
defeasible argumentation is employed in architectural evaluation.
In this context, a rich catalogue of argumentation schemes is a
useful tool for the architect to organize his or her reasoning;
critical questions assist the architect in identifying the weak
points of his or her explanations, and provide the evaluation
team with a checklist of issues to be raised.

Index Terms—Software architectures, design rationale, ar-
chitectural evaluation, defeasible argumentation, argumentation
schemes.

I. INTRODUCTION

The defense of a software architecture can be framed under

the theory of argumentation, a rich interdisciplinary area of

research spanning philosophy, communication studies, linguis-

tics, artificial intelligence, and psychology [1, p.1]. Software

engineers may be more familiar with design rationale, which

can be regarded as a subfamily of argumentative research

focused on design objects. Lee and Lai define it, in its most

general sense, as an explanation of why an artifact is designed

the way it is [2, p.257].

This paper contributes to design rationale research by ap-

plying recent results from the broader field of argumentation

theory, with the aim of analysing how architects explain their

designs to a specialized audience. With this purpose in mind

we analyse some technical explanations offered by engineers

at Twitter and eBay in public interviews, blog entries, and

articles. We show that the analysed examples are cases of

defeasible argumentation. In legal and scientific reasoning, a

defeasible argument is one in which the conclusion can be

accepted tentatively in relation with the evidence known so

far, but may need to be retracted as new evidence comes in

[1, p.2]. Similarly, we find that the analysed arguments are

non-deductive and may be retracted if additional knowledge

is provided.

With the aim of supporting this hypothesis, we borrow what

Walton et al. regard as “the most useful and widely used

tool so far developed in argumentation theory”: argumentation
schemes [1, p.1]. Schemes “represent structures of common

types of arguments used in everyday discourse, as well as in

special contexts like those of legal argumentation and scien-

tific argumentation” [1, p.1]. A scheme relates one or more

premises with a conclusion. In the context of a dialogue, if an

argument put forward by a proponent meets the structure of a

scheme, and the premises are acceptable to a respondent, then

the respondent is obliged to tentatively accept the conclusion.

From the case studies we infer four argumentation schemes

for software architectures. Figure 1 shows the first one, ar-
gument from scenario; we will explain it in Section II. We

reason that these schemes are defeasible by applying Hastings’

method [3] of attaching a set of critical questions to each one

[1, p.9]. In argumentation theory, if a respondent asks one of

the critical questions matching a scheme and the proponent

fails to offer an adequate answer, the argument defaults and

the conclusion is retracted [1, p.9]. The existence of a set

of critical questions which can make an argument default is

enough to consider it defeasible. Verheij argues that questions

that simply criticize the premises of a scheme are redundant

because they merely ask whether the premises are true, which

is already done implicitly when an argument is evaluated [1,

p.374]. Therefore, in this paper we will not consider that

specific category of critical questions.

The concept of argument has long been part of the design

rationale body of research in different forms, such as claims
in DRL [2], justifications in RLM [4], and arguments in IBIS

[5], REMAP [6], and QOC [7]. The meaning closest to our

paper is the one used in the Goal Argumentation Method by

Jureta et al. [8] in the context of requirements engineering,

who distinguish premises and conclusions in arguments. Nev-

ertheless their approach differs from ours in that they do not

employ argumentation schemes, and in that they borrow the

concept of defeasible consequence from artificial intelligence

[9, p.129], which does not consider critical questions. Another

related research is the recent work by Yuan and Kelly [10]

who do identify argumentation schemes and critical questions

in the context of safety requirements. As an example from the

field of architectures, the AREL approach [11], [12] combines



Argument from scenario
Premise 1: Scenario s is a possible behaviour of architecture A.

Premise 2: Scenario s contributes positively to/satisfies requirement R.

Conclusion: Therefore, architecture A contributes positively to/satisfies R.

Critical questions:

CQ1: Are there any exceptions to scenario s that could invalidate its contribution to R?

CQ2: Are there any other scenarios of A that could contribute negatively to/prevent R?

CQ3: Is there any other requirement R′ that is negatively contributed (or even prevented)

by scenario s?

Fig. 1. Argument from scenario: scheme and some critical questions

both qualitative and quantitative design rationale. The former

considers, for each design issue, the following parameters:

assumptions, constraints, strengths, weaknesses, trade-offs,

risks, and nonrisks. The qualitative design rationale considers

cost, benefit, implementation risk, and outcome certainty risk.

However, the AREL approach does not address the structure

of the arguments (or “assessments”) for explaining why the

selected decisions satisfy their associated design concerns.

We base on Lee and Lai’s partitions of design rationale to

organize our argumentation schemes. The authors distinguish

three different (although related) uses of the phrase “design

rationale” [2, p.256]: (1) a historical record of the reasons

for the choice of an artifact; (2) a set of claims that would

have to be true if the artifact is to be successful; and (3)

a description of the design space of alternatives. Under the

second meaning we categorize those arguments oriented to

explain that an architecture satisfies (or contributes to) a given

requirement. Section II presents two argumentation schemes

in this sense. The first and third meanings can be regarded as

forms of practical reasoning: the agent’s goal is to evaluate an

action through its consequences in order to decide whether or

not to carry it out [1, p.94]. We present two schemes related

with practical reasoning in Section III.

Section IV presents a discussion on the role of defeasible

argumentation in architecture evaluation, based on the identi-

fied schemes and on results from other fields, particularly legal

reasoning. It also addresses the question of formal reasoning

in architectures, introducing a fifth argumentation scheme.

Finally, the paper closes with conclusions, acknowledgements,

and references.

II. ARGUMENTS FOR SATISFACTION OF REQUIREMENTS

The simplest way of explaining why an artifact satisfies

a claimed property is by describing a sample execution that

achieves that property. The respondent is expected to accept

that the (possibly infinite) remaining executions will similarly

achieve the claimed result, or at least will not contradict

it. This form of explanation is present in many fields. For

example, in their account of mechanisms in Biology, Bech-

tel and Abrahamsen state that “people, including scientists,

understand diagrams of mechanisms by animating them” [13,

p.430]. In the case of software architectures, a scenario in-

volving one or several components may be described and then

claimed to satisfy a requirement. Figure 1 shows the scheme

of the argument from scenario and some critical questions.
An example of the scheme is the explanation that Twitter

Engineering offers of Blender, a component that replaced the

search engine front-end in 2011 [14]. According to the authors,

the new component achieved an improvement of the overall

user latency by a three-times drop and halved the CPU load

of the front-end servers. We can map these two goals to

requirement R in Premise 2 of the scheme. How does Twitter

Engineering explain that the new search architecture achieves

these goals? They offer a description of a typical scenario,

since the arrival of a search query to Blender until the response

is returned. Figure 2 summarizes the argument as an instance

of the scheme (additional details can be found in [14]). The

steps correspond to the description of scenario s in Premise 1

of the scheme. After describing the scenario, the authors claim

that the requirement is satisfied and generalize this result to the

search architecture. The respondent can refute this conclusion

by asking the critical questions shown in Figure 1, which

makes the burden of proof [15] going back to the argument

proponent.
Another typical form of explaining why an architecture

satisfies a requirement is the use of an architectural tactic, such

as those proposed by the Software Engineering Institute1. The

argument begins by claiming that some architectural decision

is an instance of a certain tactic. As tactics are well-known

approaches to achieve quality attributes, they are used as

intermediate points for arriving at the conclusion that the

architecture contributes to some quality attribute. Figure 3

presents the scheme of the argument from tactic and two

critical questions.
This scheme is employed by Randy Shoup (formerly chief

architect at eBay) in his detailed explanation of the archi-

tectural decisions taken in the auction system [18], [19].

Shoup begins by introducing a number of “best practices” that

contribute to scalability; each one corresponds to a tactic T in

Premise 2 of Figure 3. Then he explains that the architecture of

eBay includes a realization D for each one of these best prac-

tices (Premise 1); this is argued by example. The conclusion is

that the whole architecture contributes positively to scalability

(quality attribute Q in Premise 2). We will highlight two of

1In 2003, the Software Engineering Institute (SEI) published a catalogue of
roughly fifty architectural tactics, categorized according to the quality attribute
they contribute to [16]. The catalogue was updated in 2012 [17].



Example of argument from scenario: front-end of Twitter’s search engine
Background: In Twitter’s terminology, a workflow is a set of back-end services with

dependencies between them, which must be processed to serve an incoming client request

to the search engine. Dependencies between services are resolved by pre-computing the

execution order of every workflow as a sequence of batches (services in the same batch

can be called in parallel, while services in different batches must be processed in the order

of the sequence). Finally, each workflow with resolved dependencies is mapped to a Netty

pipeline (Netty is an asynchronous event-driven network application framework for Java;

a Netty pipeline is a sequence of asynchronous handlers of input-output). Each workflow

batch is associated to a pipeline handler.

Step 1: When a search query arrives, a proxy layer reads it, figures out which workflow is

requested, and routes it to the appropriate pipeline. This process makes use of asynchronous

events.

Step 2: At the pipeline, the service handler corresponding to the first batch of the workflow

constructs the appropriate back-end requests and issue them to the servers. The input-output

(I/O) thread that is processing the client query is freed when all the back-end requests have

been dispatched.

Step 3: A timer thread checks every few milliseconds to see if any of the back-end responses

has returned from the remote servers and sets a flag indicating if the request succeeded,

timed out, or failed.

Step 4: When all the responses from the first batch have successfully arrived, they are

aggregated and passed to the next batch in the workflow pipeline.

Step 5: The previous steps are repeated until the workflow is completed or its timeout has

elapsed.

Step 6: The response is returned to the client.

Conclusion: “Throughout the execution of a workflow, no thread busy-waits on I/O. This

allows us to efficiently use the CPU on our Blender machines and handle a large number

of concurrent requests. We also save on latency as we can execute most [client] requests

to back-end services in parallel” [14].

Fig. 2. An instantiation of the scheme argument from scenario

Argument from tactic
Premise 1: Architecture A includes design decision D which is an instance of architectural

tactic T .

Premise 2: Tactic T contributes positively to quality attribute Q.

Conclusion: Therefore, architecture A contributes positively to Q.

Critical questions:

CQ1: Does architecture A contain any other design decision D′ which contributes negatively

to (or even prevents) quality attribute Q?

CQ2: Does architecture A realize another tactic T ′ which contributes negatively to (or even

prevents) Q?

Fig. 3. Argument from tactic: scheme and some critical questions

these practices together with Shoup’s justification by example:

(1) functional segmentation: “we [...] have the selling systems,

distinct from the buying systems, distinct from the search

systems, distinct from various back-end systems, and so on”

[19]; (2) horizontal split (applied to computations): “within the

search pool [...], within the selling pool, etc, all the application

servers, all the hundreds or thousands of application servers

that are in that pool are all entirely equal, and each can serve

the load” [19].

Functional segmentation is a specialization of the SEI’s

tactic “maintain semantic coherence”, consisting in ensuring

that all the responsibilities of an architectural module work

together without excessive reliance on other modules, with the

aim of having modifications localized. This tactic positively

contributes to modifiability [16, p.106], and, therefore, to scal-

ability. Horizontal split (applied to computations) corresponds

to the SEI’s tactic “maintain multiple copies of computations”

[16, p.114]. Application servers in a pool are replicas of com-

putations whose purpose is to reduce the contention that would

occur if all computations took place on a central server. This is

a resource management tactic which contributes positively to

performance [16, p.114], and, in turn, to scalability. Figure 3



proposes a couple of critical questions for the argument from

tactic.

III. ARGUMENTS FOR DESIGN DECISIONS

This section deals with practical reasoning: the explanation

of the reasons why a design decision was taken, or why a

certain choice was made among a set of alternative design

decisions, and the consequences of such actions. We have

extracted two argumentation schemes in this category from

Randy Shoup’s explanation of the architecture of eBay. The

first one is the argument from compensation (Figure 4). It is

based on defending that an apparently bad design decision has

been taken for achieving a greater benefit than what it could

have been initially expected.

According to Shoup, data in eBay is partitioned by func-

tional area (e.g. users, items, etc) and, within each area,

data is segmented in databases according to different schemes

(modulo of a key, range of identifiers, etc) [18], [19]. The

CAP principle states that any networked shared-data system

can have at most two of the following properties at the same

time: “consistency, equivalent to having a single up-to-date

copy of the data; high availability of that data (for updates);

and tolerance to network partitions” [20, p.23]. Therefore, the

decision of partitioning data (D1 in Figure 4) carries a negative

consequence (N in Figure 4): it prevents either high availabil-

ity or immediate consistency. This corresponds to Premise 1

in the scheme. However, Shoup defends data partitioning by

claiming that it enables to independently increase resources

(hosts) as necessary (D2 in Premise 2): “User data, for ex-

ample, is currently divided over 20 hosts [...] As our numbers

of users grow, and as the data we store for each user grows,

we add more hosts, and subdivide the users further” [18]. The

ability to independently increase the resources as necessary

contributes positively to scalability (desirable property P in

Premise 3). As Shoup explains it: “if you can’t split it, you

can’t scale it [...] Regardless of the details of the partitioning

scheme, though, the general idea is that an infrastructure which

supports partitioning and repartitioning of data will be far

more scalable than one which does not” [18]. Scalability (P in

Figure 4) is “one of [eBay’s] primary architectural forces [...]

It colors and drives every architectural and design decision”

[18]. Contributing to scalability is so important for eBay that

it may mean sacrificing either immediate consistency or high

availability (N in Figure 4), as Premise 4 states. Some critical

questions for this argument are presented in Figure 4.

Another pattern of argumentation, argument from weakening
(Figure 5), can be inferred by analysing Shoup’s explanation to

why global, immediate data consistency was given up in eBay.

Consider said requirement as R in Premise 1 of the argumen-

tation scheme. According to CAP, meeting R is incompatible

with simultaneously satisfying high availability and partition

tolerance (the conjunction of both requirements corresponds

to P in Premise 2). Shoup proposes renouncing to R and

embracing instead a spectrum of degrees, from immediate

consistency (local to specific data which are non-partitioned),

through eventual consistency for some other partitioned data,

and no-consistency for the remaining partitioned data. The new

requirement (R′ in Premise 3) is a weakened version of the

original requirement R. This is how Shoup explains it: “The

reality of large-scale systems is that [...] [consistency is] a

spectrum [...] There are some operations that need to be very

highly consistent and the 100% is the absolutely appropriate

number, and nothing less will do. But there are other cases –in

fact, again, the majority of cases– where [consistency] doesn’t

need to be transactional, certainly at that moment [...]. And

then there are plenty of situations [...] where consistency is [...]

just not all that important. It’s okay to lose some information

because we got the stuff that was really important, and if

somebody has to redo an operation, that’s unfortunate, and we

wish it didn’t happen, but that’s the cost and the price that we

pay for having a [partitioned,] available system and a scalable

system” [19]. As Shoup clearly states, it is preferable that

the architecture satisfies this weakened version of consistency,

provided that high availability and partitions are maintained

(Premise 4). Figure 5 shows some critical questions for this

argument.

IV. ARGUMENTATION SCHEMES AND ARCHITECTURAL

EVALUATION

Typical frameworks such as the Architecture Tradeoff Anal-

ysis Method (ATAM) [16] organize architectural evaluation

as a dialogue among several participants. This is similar to

argumentation theory, where argumentation is viewed as a

dialogical process for making justified decisions: “the goal of

the process is to clarify and decide the issues, and produce

a justification of the decision which can withstand a critical

evaluation by a particular audience” [15, p.239].

In argumentation theory, the concept of proof is weaker

than it is in mathematics and, as in legal reasoning, it is

not primarily deductive [15, p.240]. In this context, a proof

is a structure which demonstrates to a particular audience

that a proposition is sufficiently satisfied. To this aim, in the

legal domain, four proof standards for factual issues exist

in common law jurisdictions, each one denoting a different

degree of sufficiency [15, p.241].

In this paper we have analysed examples of architectural

explanations and showed that they are defeasible arguments.

It is reasonable to assume that defeasible argumentation is

also employed in typical architectural evaluations. In this

context, a rich catalogue of schemes could be useful for the

architect to organize his or her reasoning, while the critical

questions might make him or her realize weak aspects of

the argumentation –or even detect flawed design decisions.

The evaluation team could employ the critical questions as a

checklist of issues that need to be addressed by the architect;

if no acceptable response is provided, the architect’s argument

would be retracted and the issue would be treated as an

architectural risk. Empirical studies suggest that architects tend

to focus on the reasons that justify a design over those that

explain why the design might have negative issues [21], [22].

The employment of critical questions in argumentation could

greatly help to change this attitude.



Argument from compensation
Premise 1: Architectural decision D1 carries undesirable property N .

Premise 2: D1 enables the application of architectural decision D2.

Premise 3: D2 achieves desirable property P , or contributes positively to P .

Premise 4: It is preferable meeting P and N over not satisfying P .

Conclusion: Therefore, I ought (practically speaking) to carry out decision D1.

Critical questions:

CQ1: Does decision D1 carry negative properties other than N?

CQ2: Does decision D2 carry negative properties that have not been considered?

CQ3: Is there a design decision D3 that achieves P without the need of introducing an

undesirable property in the architecture?

CQ4: Is the contribution of D2 to P enough to justify the introduction of N?

Fig. 4. Argument from compensation: scheme and some critical questions

Argument from weakening
Premise 1: R is a requirement of architecture A.

Premise 2: There exists another requirement P of architecture A such that satisfying R∧P
is impossible (or unattainable with the current resources).

Premise 3: There exists a weakening R′ of R such that R′ ∧ P is attainable.

Premise 4: It is preferable that the architecture satisfies R′ ∧ P over meeting ¬R ∧ P and

over meeting R ∧ ¬P .

Conclusion: Therefore, I ought (practically speaking) to give up R and adopt R′ ∧ P .

Critical questions:

CQ1: (In case that R ∧ P is unattainable with the current resources) Can the resources be

redistributed (or increased) in order to make R ∧ P attainable?

CQ2: Have other weakening options for R been considered such that they meet Premises

3 and 4?

CQ3: What criterion has been employed to decide to weaken R instead of P ? Have

alternative criteria, which might suggest a different choice, been considered?

Fig. 5. Argument from weakening: scheme and some critical questions

Argument from formal model
Premise 1: A correspondence has been established between architecture A and some formal

model F .

Premise 2: A correspondence has been established between F and some classes of real-

world phenomena (events, stimuli, etc) that interact with A.

Premise 3: A formal process has proved that F entails some predicate P .

Premise 4: A correspondence has been established between P and some property R of

architecture A.

Conclusion: Therefore, architecture A satisfies property R.

Critical questions:

CQ1: Does architecture A satisfy the constraints for using model F ?

CQ2: Do the classes of phenomena satisfy the assumptions for using model F ?

CQ3: Are the inputs to model F speculative?

CQ4: Is model F logically and/or mathematically sound?

CQ5: Is property R satisfied by systems based on architectures similar to A?

CQ6: Has architecture A been simulated to determine whether property R is consistent

with the simulation results?

Fig. 6. Argument from formal model: scheme and some critical questions

As in legal reasoning, defeasible arguments about archi-

tectures can only aspire to convince the evaluation team.

In the ATAM, “the goal is for the evaluation team to be

convinced that the instantiation of the approach is appropriate

for meeting the attribute-specific requirements for which it

is intended” (our italics) [16, p.282]. Convincement of the

audience has also been employed in requirements engineering:

Jackson’s correctness arguments are intended to convince a



customer that a system specification, together with an analysis

of the problem context, satisfies its functional requirements

[23]; analogously, Haley et al. employ satisfaction arguments
to convince a reader that a system can satisfy the security

requirements laid upon it [24].

Besides convicement, there is also room for formal reason-

ing in architectural evaluation. A typical case happens when

the architect employs a formalism for building a model of the

architecture or some part of it [25], [26]. A formal procedure is

employed to prove some predicate in the model, which is then

interpreted in the architecture. Nevertheless, it is important to

be cautious at this point: while a formal process can prove that

a formal model satisfies some predicate, the broader context

in which the model is built and interpreted may constitute

a defeasible argument. This consideration is pointed out by

Bass et al. [25] in their account on reasoning frameworks for

architecture evaluation. A reasoning framework is a structure

which among other components includes an analytic theory, a

model of the architecture (based on the analytic theory), and

an evaluation (proof) procedure. The authors clearly refer to

the defeasible nature of the employment of a model when

they claim that “to have any confidence that appropriate

[architectural] decisions are being made, however, engineers

must know how much they can trust a reasoning framework’s

results” [25, p.17]. To this aim they suggest some criteria for

certifying the accuracy degree of the inputs to a reasoning

framework, as well as some guidelines for validating the

obtained predictions.

As an example, Rate Monotonic Analysis (RMA) is an

analytic theory (in the sense of [25]) that can be used to

reason about worst-case latency. This formalism considers that

all event arrivals are periodic [26, p.162]. Besides, RMA tasks

have a number of constraints; for example, it is assumed that

execution times have little or no variability and that fixed prior-

ity scheduling is being used [25, p.8]. If RMA is employed for

modelling some behavioural view of an architecture, and both

the architecture and the real-world domains in the problem

context do not completely match these constraints and assump-

tions, the confidence degree on the model predictions may

be reduced. For a more detailed account on the relationship

between formal models and software artifacts, the reader may

be interested our research on the topic [27].

Figure 6 shows an argumentation scheme, argument from
formal model, where formal reasoning is put in the broader

context of determining whether an architecture satisfies a

certain property. For elaborating the critical questions of this

scheme we have based on the certification and evaluation

criteria of reasoning frameworks proposed by Bass et al. [25,

pp.17-18].

Another typical situation of formal reasoning happens when

a formal procedure is employed to prove some property of

the architecture itself (instead of proving it on a model). This

requires the architecture to be defined with a formal language.

However, any formal architecture includes assumptions for the

real-world phenomena with which it interacts; for example,

the Wright architecture description language [28] considers

that events are instantaneous. Assumptions on phenomena

may be more or less similar to reality, which may make the

conclusions of the proof procedure more or less reliable. A

possible critical question could be: are the assumptions about

real-world phenomena relevant for the obtained conclusion?

V. CONCLUSIONS

Argumentation is understood in the context of a dialogue

among participants for making justified decisions [15]. This

paper has shown that this is also the case with architectural

evaluation. In the same way as styles and tactics are useful

tools for designing software architectures, we have given

reasons in favour of argumentation schemes as instruments

of great help during architectural evaluation, both for archi-

tects and the evaluation team. Four defeasible argumentation

schemes have been inferred from several explanations of

engineers at Twitter and eBay, and an additional one has been

described for showing that reasoning with formal models is

actually one part of a larger argument which is also defeasible.

Future works include enriching the catalogue of schemes as

well as studying (conflicting) relationships among arguments.

ACKNOWLEDGEMENTS

This work has been partially funded by “V Plan Propio de

Investigación de la Universidad de Sevilla (VPPI-US).”

REFERENCES

[1] D. Walton, C. Reed, and F. Macagno, Argumentation Schemes. Cam-
bridge University Press, 2008.

[2] J. Lee and K.-Y. Lai, “What’s in design rationale?” Human-Computer
Interaction – Special Issue on Design Rationale, vol. 6, pp. 251–280,
1991.

[3] A. C. Hastings, A Reformulation of the Modes of Reasoning in Argu-
mentation. PhD dissertation. Northwestern University, 1963.

[4] P. Louridas and P. Loucopoulos, “A generic model for reflective design,”
ACM Transactions on Software Engineering and Methodology, vol. 9,
no. 2, pp. 199–237, 2000.

[5] J. Conklin and M. L. Begeman, “gibis: a hypertext tool for exploratory
policy discussion,” ACM Transactions on Information Systems, vol. 6,
no. 4, pp. 303–331, 1988.

[6] B. Ramesh and V. Dhar, “Supporting systems development by capturing
deliberations during requirements engineering,” IEEE Transactions on
Software Engineering, vol. 18, no. 6, pp. 498–510, 1992.

[7] A. Maclean, R. M. Young, V. M. E. Belotti, and T. P. Moran, “Questions,
options, and criteria: elements of design space analysis,” Human-
Computer Interaction, vol. 6, no. 3, pp. 201–250, 1991.

[8] I. J. Jureta, S. Faulkner, and P.-Y. Schobbens, “Argument schemes in
computer system safety engineering,” Clear justification of modeling
decisions for goal-oriented requirements engineering, vol. 13, pp. 87–
115, 2008.

[9] G. R. Simari and R. P. Loui, “A mathematical treatment of defeasible
reasoning and its implementation,” Artificial Intelligence, vol. 53, pp.
125–157, 1992.

[10] T. Yuan and T. Kelly, “Argument schemes in computer system safety
engineering,” Informal Logic, vol. 31, no. 2, pp. 89–109, 2011.

[11] Y. J. A. Tang and J. Han, “A rationale-based architecture model for
design traceability and reasoning,” The Journal of Systems and Software,
vol. 80, pp. 918–934, 2007.

[12] A. Tang, J. Han, , and R. Vasa, “Software architecture design reasoning:
a case for improved methodology support,” IEEE Software, vol. 26,
no. 2, pp. 43–49, 2009.

[13] W. Bechtel and A. Abrahamsen, “Explanation: a mechanist alternative,”
Studies in History and Philosophy of Biological and Biomedical Sci-
ences, vol. 36, pp. 421–441, 2005.



[14] Twitter-Engineering, “Twitter search is now 3x faster,” Twit-
ter Engineering Blog, entry of April 6, 2011, available at
http://engineering.twitter.com, Apr. 2011.

[15] T. F. Gordon and D. Walton, “Proof burdens and standards,” in Argu-
mentation in Artificial Intelligence, I. Rahwan and G. R. Simari, Eds.
Springer Science + Business Media, LLC, 2009, pp. 239–258.

[16] L. Bass, P. Clements, and R. Kazman, Software architecture in practice.
Second edition. Addison-Wesley, 2003.

[17] ——, Software architecture in practice. Third edition. Addison-Wesley,
2012.

[18] R. Shoup, “Scalability best practices: Lessons from ebay, available
at http://www.infoq.com/articles/ebay-scalability-best-practices,” Info-
Queue, 2008.

[19] ——, “Transcript 109: ebay’s architecture principles with randy
shoup, available at http://www.se-radio.net/2008/09/episode-109-ebays-
architecture-principles-with-randy-shoup/,” Software Engineering Radio,
2008.

[20] E. Brewer, “CAP twelve years later: how the “rules” have changed,”
IEEE Computer, vol. 45, no. 2, pp. 23–29, Feb. 2012.

[21] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of architecture
design rationale,” The Journal of Systems and Software, vol. 79, pp.
1792–1804, 2006.

[22] M. Keil, H. J. Smith, S. Pawlowski, and L. Jin, “‘Why didn’t somebody
tell me?’: climate, information asymmetry, and bad news about troubled
projects,” SIGMIS Database, vol. 35, no. 2, pp. 65–84, 2004.

[23] M. A. Jackson, Problem Frames: Analyzing and Structuring Software
Development Problems. Addison-Wesley, 2001.

[24] C. B. Haley, J. D. Moffett, R. Laney, and B. Nuseibeh, “Arguing security:
validating security requirements using structured argumentation,” in
Proceedings of the 3rd Symposium on Requirements Engineering for
Information Security, 2005.

[25] L. Bass, J. Ivers, M. Klein, and P. Merson, Reasoning Frameworks.
Technical Report CMU/SEI-2005-TR-007. Carnegie Mellon Software
Engineering Institute, 2005.

[26] F. Bachmann, L. Bass, M. Klein, and C. Shelton, “Designing software
architectures to achieve quality attribute requirements,” IEE Proceedings
- Software, vol. 152, no. 4, pp. 153–165, 2005.

[27] J. M. Cañete-Valdeón, “On the interpretation of mathematical entities
in the formalisation of programming and modelling languages,” Mathe-
matical Structures in Computer Science, vol. 18, no. 6, pp. 1017–1030,
2008.

[28] R. Allen, R. Douence, and D. Garlan, “Specifying and analyzing
dynamic software architectures,” in Proceedings of the First Interna-
tional Conference on Fundamental Approaches to Software Engineering
(FASE’98), 1998.


