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Abstract. The aim of this work is the representation and analysis of 
semiqualitative models. Their qualitative knowledge is represented by 
means of qualitative operators and envelope functions. A semiqualitative 
model is transformed into a family of quantitative models. 
In this paper the analysis of a model is proposed as a constraint satisfac­
tion problem. Constraint satisfaction is an umbrella term for a variety of 
techniques of Artificial Intelligence and related disciplines. In this paper 
attention is focused on intervals consistency techniques. The semiqualita­
tive analysis is automatically made by means of consistency techniques. 
The presented method is applied to a industrial biometallurgical system 
in order to show how increase the capacity of production. 

1 Introduction 

In engineering and science, the models made up for the study of dynamical 
systems are normally composed of quantitative and qualitative knowledge. This 
knowledge is composed by both of them. It is known as semiqualitative know­
ledge. Real models contain quantitative, qualitative and semiqualitative know­
ledge. All this knowledge must be considered when these models are studied. 

The techniques developed to analyze and simulate quantitative models are 
well known. A great variety of techniques has been studied for the representation 
and the manipulation of qualitative knowledge, such as algebra of signs, interval 
arithmetic, fuzzy sets, and order of magnitude reasoning. 

In order to analyze industrial models, it is necessary sometimes to solve con­
flicts on the request of accuracy and flexibility. The models of dynamical systems 
should provide different levels of numerical abstraction for their elements. These 
levels may be a purely qualitative description [8), semiqualitative [2), [6), nume­
rical based on intervals [11), quantitative and mixed of all levels [7]. 

On other hand, the systems dynamics obtains the differential equations of 
a system from its structure. This technique could obtain different qualitative 
behaviors of a given structure. The analysis of these behaviors constitutes the 
qualitative analysis of dynamical systems. The mathematical qualitative theory 
of dynamical systems involved studying qualitatively the behaviour (e.g. asymp­
totic behaviour) of time evolving systems. 
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In order to automate the qualitative analysis of dynamic systems several ap­
plications have been developed. They combine techniques of numerical methods 
with symbolic computation, and methods proceeding from the knowledge of the 
science and the mathematics. These applications begin with the top-level specifi­
cations of physical model. They prepare simulation experiments, and accomplish 
them. Also they interpret the numerical results, and they formulate the results in 
qualitative terms. Among them, we can cite PLR [9], bifurcation interpreter [1], 
KAM [12], POINCARE [10], and MAPS [13]. In this paper, a method to carry 
out the analysis of dynamical systems automatically is shown. The semiquali­
tative analysis is proposed as a set of interval constraint satisfaction problems. 
They are solved applying consistency techniques [5]. 

2 Semiqualitative models 

A dynamical system can be considered as the constraints 

<P(x, x,p), x(to) = xo, <Po(p,xo) ( 1) 

being x the state variables of the system, p the parameters, x the variation 
of the state variables with the time, <Po the constraints among parameters and 
initial conditions, and <P the constraints on x, x and p. The dynamical system 
represented in (1) can symbolically be transformed into a set of contraints with 
variables, parameters and intervals. In this paper, we only study systems that 
can be transformed as 

x = l(x,p), x(to) = Xo, <Po(p, xo) (2) 

The vector field f may be composed of quantitative and qualitative variables, 
constants, arithmetic operators, functions and envelope functions, expressed as it 
is indicated in our previous paper [4], where qualitative variables and envelope 
functions are transformed to interval expressions. If we take into account the 
stablished concepts in that paper, the dynamical system (2) is transformed in 

x = f(x,r,p), x(t 0 ) = xo, <Po (p, r, xo) (3) 

where r E II are new parameters, p E II, xo E II, and f does not contain envelope 
functions, being II the set of closed intervals of JR. These functions represent a 
dynamical systems family depending on p, x 0 and r. It is denoted as semiquali­
tative model and it is represented further on 

x = f(x,p), x(to) = xo, <Po(p,xo) (4) 

where p and r have been joined in an unique parameters vector p. 
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3 Semiqualitative analysis 

Qualitative analysis of a dynamical system intends to analyze the phase portrait 
or phase space of the system. The phase space of the dynamical system is consti­
tuted by the variables of state x, and the extended phase space by variables and 
parameters x, p. The phase portrait is formed by the projection of the trajecto­
ries of the dynamical system in the extended phase space. The phase portrait is 
interpreted as a correspondence between the differential equations and the vec­
tor field. In this paper semiqualitative systems that they are stable structurally 
are studied. In them, little perturbations keep their qualitative behaviors. 

The first step of semiqualitative analysis of a dynamical system ( 4) is the 
determination of the equilibrium regions. They are defined by the constraints 

Equilibrium(x,p)::: { f(x,p) = 0, (5) 

The study of solutions of (5) let us know the structure of the phase portrait. 
Each stable equilibrium region is an attractor region. 

The stability of each equilibrium region is related to the real part of the 
eigenvalues of the Jacobian of the system. It has been demonstrated in the bibli­
ography that in the stable fixed points the real part of the eigenvalues is negative. 
In order to apply the stability criteria, it is necessary to construct the following 
determinants. They are formed with the coefficients of the characteristic polyno­
mial Pn of the Jacobian matrix A of the dynamical system. The Jacobian matrix 
of (4) is A= Dxf(x,p), and Pn is defined as 

Pn(,\) = det(A- ,\I)= aoAn + a1,\n- 1 + ... + an-1,\ +an (6) 

In order to determine the stability conditions, the matrices are defined 

(

a1 a3 as ... a2i-1) 
. _ d t ao a2 a4 ... a2;- 2 b . . _ 1 g, - e emg z - , ... , n 

... ... ... ... . .. 
0 0 0 0 a; 

(7) 

The elements ak of g; are the coefficients of Pn for k > n, and 0 for k ::S n. Both 
ak and g; are symbolic expressions dependent on x, p. 

We can apply two stability criteria. First is the Routh-Hourwitz criterion. 
For this criterion the predicate Stable_Pol is defined as 

Stable_Pol(Pn(,\)) =: { g1 > 0, ... ,gn > 0 (8) 

Second is the Lineard-Chipard criterion. It defines the predicate Stable_Pol as 

Stable_Pol(Pn(,\)) := { a 1 > O, .... ,an> O, 
gn-1 > O,gn-3 > 0, ... 

Therefore the constraints that define the stable equilibrium regions are 

Stable(x ) = { Equilibrium(x,p), A= Dxf(x,p), 
,p - Pn = Pc(A), Stable_Pol(Pn(,\)) 

(9) 

(10) 
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where Dx stands for the Jacobian, and Pc stands for the set of constraint of cha­
racteristic polynomial. If constraints (10) are satisfied by an equilibrium region, 
it is stable. Otherwise it is not stable. 

The study of the bifurcations points of a system intends to divide the param­
eters space in regions. The system has the same number and type of attractors 
in these regions. The frontiers of these regions are formed by bifurcation points. 
An at tractor appears, disappears or changes of type, when we cross a determined 
frontier. 

The most elemental classification of bifurcation points distinguishes them 
into statics and dynamics. The statics bifurcation points are the simplest. They 
appear in those points where the number of attractors points varies. The de­
terminant of the Jacobian matrix is annuled in them, that is, the characteristic 
polynomial has a null root. 

The dynamic bifurcation points involve limit cycles or strange attractors. We 
study the Hopf bifurcation, where an attractor point is converted into a limit 
cycle or vice versa. In these bifurcation points the characteristic polynomial of 
the Jacobian matrix has a pair of roots with real part equal to zero. 

{ 

E.quilibrimn(x,p), { l~quilibrium(x,p), 
A= Dxf(x,p), A= Dxf(x,p), 

Sta_Bif(x,p) := Pn = Pc(A), Din_Bif(x,p) := Pn = Pc(A), (11) 
Pn = ,\ Qn-1, Pn = (,\2 + w2 ) Qn-2, 
Stable_Pol(Qn-1) Stable_Pol(Qn-2) 

It is interesting to notice that all the predicates defined between (5) and (11) 
are formuled as interval constraint satisfaction problems. They are solved by 
adequate consistency techniques [5]. 

4 A biometallurgical system 

4.1 Description and determination of the model 

For a long time, it has been observed natural transformations of the sulphur 
and iron compounds. They are originated from the dissolution of minerals. Pres­
ence of iron-oxiding bacteria in mining areas and their acid drainages has been 
reported repeatedly. 

Thiobacillus Ferrooxidans is considered to be the most important organism 
for the bacterial leaching of minerals. In indirect leaching the bacteria generate 
ferric iron by oxidizing soluble ferrous iron. The global reaction is 

(11) 

This method for production of acidified ferric solutions is used because ferric iron 
in turn oxidizes other metals in mineral, transforming them in the soluble form, 
and because it avoids ecological contamination problem of industrial extraction 
of metals from the rocks. 
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If the equation of Michaelis-Mention is applied to the reaction ( 11), then 
oxidation rate V is calculated as follows 

[5] 
V = Vmax km + [5] (12) 

where Vmax is maximum rate that it can be reached by increasing in the substrate 
concentration, [5] is substrate concentration, and km is Michaelis constant. This 
constant stands for the concentration which the reaction rate is half of the max­
imum rate. This equation has two problems: the concentration bacterian is not 
constant and it cannot be applied to the bacterian growth because it is exponen­
cial. Due to the complexity of the factors that take part in the bacteria oxidation 
of Fe(II) in Rotating Biological Contactors ( RBC), as shown in figure (1). It has 
not been possible to determine a general mathematical model for this process. 
However, it has been proved that the bioxidation reaction continues a kinetic of 
first order with respect to the substrate concentration. In the experimentation 
there are two interconnected RBC. In them it is introduced a flow Q with an 
ferrous iron concentration. 

Disk Divisiof 
~--~---------.---. 

Drive shaft 

Outfluent 
+-C: 

:J +- Influent 

L-~--~--~--~--~ 

Lateral Raised Ground 

Fig. 1. A Rotating Biological Contactors ( RBC) 

The equations of the model of this dynamical system are 

(13) 

4.2 Experimental data 

According to the experimental results [3] it has been determined the quasi­
equilibrium points for the system. They have been obtained studying different 
influent flows p1 and values of iron concentration in such flows P2. 
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According to the data supplied by the experts P5 is similar to p9 and their 
order of absolute magnitude is moderately positive, P7 is very positive, and p3 is 
slightly greater that P7. Therefore, if it is associated the corresponding intervals 
to the previously expressed qualitative operators, it is obtained 

P1 = 0.61ljh,p2 = 3.96gjl, P3 = [5.6,5.8),p4 = 0.741, P5 = [0.4,0.5), 
P6 = 0.015, P7 = [5.3, 5.6), Ps = 0.781, pg = [0.4, 0.5), Plo = 0.01 

Using these data and applying the exposed techniques, we carry out the semi­
qualitative analysis of these dynamical systems. 

4.3 Semiqualitative analysis 

The semiqualitative analysis of this system is carried out to study how to increase 
the capacity of production, when systems parameters are varied. The equilibrium 
regions of the system are determined solving the network of contraints 

! (P1P2- P3P4x,"'+ps- P1x1) P6 = 0, 

(Pl X1- P7 Ps x2".[:P• - P1X2) PlD = 0, 
Equilibrium(x,p) ::::= 0.4:::; p5 :::; 0.5, 0.4:::; p9 :::; 0.5, 5.6 :=:; P3 :=:; 5.8, 

5.3 :S P7 :S 5.6, P1 = 0.61, P2 = 3.96, 
P4 = 0.74, P6 = 0.015, Ps = 0.78, P10 = 0.01 

If it is applied interval arithmetic the results obtained are too wide. Nevertheless 
it is applied interval consistency techniques developed in [5] and we will obtain 
a narrowing equilibrium region 

Equilibrium(x,p) = {[0.397,0.49], x [0.0198,0.034]} 

This solution includes all experimental results obtained from different experience 
data. 

The Jacobian matrix of this model is 

The characteristic polynomial of A is 

Pn(..\) = ao..\2 + a1..\ + a2 = ..\2 + (-au- a22)..\ + aua22- a12a21 

and according to the Lienard-Chipard criterion, 

Stable_Pol(Pn(..\)) ::::= {(-au- a22) > 0, aua22- a12a21 > 0 

Substituting Pi for their values and simplifying, the constraints that define the 
stability are 
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These constraints are satisfied with the obtained equilibrium region and therefore 
it is conclude that the region is stable. 

The constraints that define the bifurcations are 

St B .f( ) = {Equilibrium(x,p), D. B"f( ) = {Equilibrium(x,p), a_ z x, p _ 0 0 zn_ z x, p _ 0 0 a1 > , a2 = a1 = , a2 > 

When it is applied constraint satisfaction techniques to these constraints, there 
are no solutions, and hence the system has no bifurcations. 

5 Conclusions 

This paper proposes a method to carry out automatically the semiqualitative 
analysis of dynamical systems by interval consistency techniques. Qualitative 
knowledge is represented by intervals, and they are qualitative operators and 
envelope functions. 

It has been applied the proposed approach to systems appeared in the bibli­
ography and the obtained results are quite similar to them. In this paper, it has 
been studied a real biometallurgic system. The achieved results have allowed to 
know how to increase the capacity of production. 

In the future, we are going to apply the previous techniques to other real prob­
lems. We also want to extend the analysis process with the study of other types 
of attractors, dynamic bifurcations, and the incorporation of multiple scales of 
time, and delays. 
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