
An order-based algorithm for implementing
multiparty synchronization

José A. Pérez∗,†, Rafael Corchuelo and Miguel Toro

The Distributed Group, University of Seville, Spain

SUMMARY

Multiparty interactions are a powerful mechanism for coordinating several entities that need to cooperate
in order to achieve a common goal. In this paper, we present an algorithm for implementing them that
improves on previous results in that it does not require the whole set of entities or interactions to be known
at compile- or run-time, and it can deal with both terminating and non-terminating systems. We also
present a comprehensive simulation analysis that shows how sensitive to changes our algorithm is, and
compare the results with well-known proposals by other authors. This study proves that our algorithm still
performs comparably to other proposals in which the set of entities and interactions is known beforehand,
but outperforms them in some situations that are clearly identified. In addition, these results prove that
our algorithm can be combined with a technique called synchrony loosening without having an effect on
efficiency.

KEY WORDS: multiparty synchronization; coordination; concurrency control

1. INTRODUCTION

Since Hoare’s work on how to coordinate sequential processes [1], interactions have become a
fundamental feature in many frameworks for distributed computing because they allow entities to
synchronize and communicate in an abstract way, independently from the underlying primitives used to
implement interactions. (Hereafter, the term ‘entity’ refers to any single-threaded computing artefact,
e.g. a thread, a process, an object or a component.) Thus, programmers can focus on the higher-
level protocols their business objects have to implement, instead of the low-level details concerning
synchronization and communication primitives.

∗Correspondence to: José A. Pérez, ETSI Informática, Avda. de la Reina Mercedes s/n, Sevilla E-41012, Spain.
†E-mail: jperez@lsi.us.es

Contract/grant sponsor: Spanish Ministry of Science and Technology; contract/grant number: TIC-2003-02737-C02-01,
FIT-150100-2001-78

Languages such as CSP [1], Ada [2], SR [3,4] and some Java concurrency frameworks [5,6] support
bipartite interactions only, but this can be easily extended to an arbitrary number of entities [7–19].
Such interactions are usually said to be multiparty, and they provide a higher level of abstraction
because they allow the expression of complex cooperations as atomic actions that can be refined
automatically into efficient message-passing or shared-memory protocols [20–28].

Since entities are single-threaded, they cannot execute more than one interaction at a time.
Implementing multiparty interactions thus requires an algorithm to be devised to synchronize several
entities and execute interactions in mutual exclusion. The execution of an interaction usually entails
the exchange of data amongst the entities that have synchronized on that interaction, and this is usually
carried out by means of a temporary shared state that acts as a blackboard [12]. In the literature, there
are a variety of centralized and distributed techniques for dealing with multiparty synchronization and
exclusion. For instance, synchronization may be solved by means of polling [22], message-counts [20],
or auxiliary resources like tokens [21]; the exclusion problem may be solved by using priorities [26],
time stamps [23], auxiliary resources [20,26], probabilistic techniques [24,25], queues [27], and so on.
Very little work, however, has been reported on how to implement the multiparty exchange of data [28].

Although the implementation techniques have reached a rather elaborate status, most of them suffer
from a common drawback: the set of entities and interactions needs to be known at compile time,
and, as reported in [23], none of them are well suited to be adapted to a dynamic setting in which
new entities may be created or some of them may terminate. The proposal in [23] differs in that the
set of entities may change at run-time, but they all need to know each other, which simply moves
the gathering of information from compile-time to run-time. Care must be taken to ensure that new
entities that are created or destroyed concurrently do not interfere with each other, which complicates
the solution. Furthermore, some algorithms, e.g. [25], cannot be applied to systems in which an entity
works locally for increasing periods of time.

In this paper, we propose α-core‡. It is an algorithm for implementing multiparty synchronization
that addresses the problems mentioned above and solves them efficiently. It improves on other
approaches in that it does not require the whole set of entities or interactions to be known either at
compile-time or at run-time; interactions only need to be known by the entities that may participate in
them. Furthermore, it can deal with both terminating and non-terminating systems or systems in which
entities can perform local computation for arbitrarily long periods of time. We also present the results of
an experimental analysis on the performance of the algorithm, and compare it with some state-of-the-
art proposals. The experiments show that our proposal performs comparably to other algorithms, but
outperforms them in some situations that are clearly identified. In addition, our algorithm can be used
in a system to which synchrony loosening [12] has been applied, but, in contrast to other proposals,
this does not have an effect on its performance.

The rest of the paper is organized as follows. In Section 2 we motivate the need for multiparty
interactions, provide a thorough description of their semantics, and present an example that may help
realize their benefits. In Section 3 we present a formal definition of the algorithm, and prove that it is

‡α-core is the first algorithm in a series of proposals we are developing to implement CAL [29]. This aspect-oriented
coordination language supports the Partners-Named Enrolement Model [23,30,31], and its implementation relies on an algorithm
called α, which is composed of two subalgorithms referred to as α-core and α-solver. Subsequent versions of the algorithm are
referred to as β and γ , and they deal with fault tolerance and fairness issues, but they are still under hot development.

correct in Section 4. We compare our proposal with other authors’ work in Section 5, and evaluate it
empirically in Section 6. Finally, we report on our main conclusions and future research directions in
Section 7.

2. MULTIPARTY INTERACTIONS IN A NUTSHELL

Our goal in this section is to provide the reader with a good understanding of multiparty interactions.
First, we motivate the need for such interactions, then we present a description of their semantics, and,
finally, we present a classical example that may help realize their benefits.

2.1. Motivation

Primitives such as remote procedure call or message passing are the de facto industrial standard
for communicating entities, and new materializations such as SOAP [32,33] are sprouting out at an
increasing pace. Roughly speaking, such primitives may be viewed as directional binary interactions.
Unfortunately, they are difficult to apply in a context in which several entities need to cooperate
simultaneously in order to achieve a common goal [11,12]. Such problems include: transferring money
from one bank to another by means of a point of sales terminal (three entities) [11,34]; paying taxes on-
line (three entities in Spain: a taxpayer, the Exchequer, and Spain’s Certification Authority); filtering
in e-commerce [35] (a customer, a filter system, and several service providers); or reaching a virtual
agreement in an auction sale (multiple entities).

Furthermore, most object-oriented analysis and design methods recognize the need for coordinating
several entities and provide designers with tools to model such multi-object collaborations. Different
terms are used to refer to them: entity diagrams [36]; process models [37]; message connections [38];
data-flow diagrams [39]; collaboration graphs [40]; scenario diagrams [41]; or collaborations [8,18].
These proposals are accompanied by a rich set of examples that show the adequacy of such modelling
tools in fields including finance, telecommunication, insurance, manufacturing, embedded systems,
process control, flight simulation, travel and transportation, or systems management. Recently, this
need for multi-entity interaction has also been recognized in the field of multiagent systems [42–46]
and parallel programming [19], where they have been proven to achieve optimal parallelism.

It is thus not surprising that multiparty interactions have also attracted the attention of researchers in
the field of Java concurrency frameworks. For instance, in [15] the authors proposed a framework that
supports barrier synchronization, which may be viewed as a simple form of multiparty interaction; this
framework has become the basis for the Java Specification Request #166 within the Java Community
Process [47]. In [11] the authors presented a framework that supports one-to-n interactions in which
an object may request several objects to interact with it atomically. The proposal in [6] leverages SR
[3,4] and extends Java to provide a rich concurrency model that includes Ada-like biparty interactions.
Such interactions were generalized to the multiparty case in [48]. In [5], another Java framework that
supports CSP-like biparty interaction is also presented.

Unfortunately, none of these Java frameworks can be viewed as a full implementation of multiparty
interactions since either interactions are not symmetric [6,11], or they cannot guard the execution of
an alternative in a multi-choice command [11,15]. Ada-like interactions are not symmetric since they
involve two roles, one assumed by a fixed server and the other by various clients. If interactions cannot

guard an alternative, the resulting entities can offer to participate in only one interaction at a time,
which results in a reduction of concurrency in the general case [23,49].

Beyond Java and Ada, there are many research languages that support multiparty interactions.
A taxonomy can be found in [13], but the most recent are IP [12] and CAL [29]. IP is intended to have a
dual role because, on the one hand, it provides a flexible notation to describe distributed, concurrent or
parallel systems [19], but, on the other hand, it is also amenable to formal reasoning. CAL is a language
that aims at separating the interaction model from the basic functionality an object encapsulates, thus
promoting reusability [7].

Summing up, the idea behind multiparty interactions is to allow a number of entities to cooperate
so that they can carry out a common task. Although such cooperations can be described in terms of
low-level primitives, the concerns of reusability and abstractness argue for a solution in which such
cooperations can be expressed in terms of higher-level multiparty interactions that can be refined
automatically into low-level, efficient protocols, thus relieving the programmer from the burden of
coding, testing and maintaining them.

2.2. Semantics

In this section, we introduce the main features of the multiparty interaction model with which we deal.
It is a standard description except for the fact that the identities of the entities that may participate in
an interaction need not be known beforehand, which makes the model more general and introduces
several problems that have not been addressed by other authors.

The terms entity or participant refer to any computing artefact that is able to perform local
computations and decide autonomously when to participate in an interaction. Multiparty interactions
are usually provided as guards in multi-choice commands, so that an entity may offer to participate
in several interactions at a time, although only one can be executed at a time since entities are single-
threaded. This is not a shortcoming, since an object with two threads may be viewed as two related
entities. This model is thus also well suited to coordinate processes, threads, objects or components.

Each interaction is identified by a unique name, and has a fixed number of participants referred to
as its cardinality. Note that the set of entities that may participate in an interaction need not be known
in advance. Often, we refer to interactions with cardinality n as n-party interactions. In general, n can
be greater than or equal to two, although the results we show work well with single-party interactions.
For an n-party interaction to become enabled, n participants need to be offering participation in it.
Once several entities have been coordinated, communication depends completely on the constructs
provided by the language under consideration, but most have been designed so that it is relatively easy
to determine data communication requirements [12].

Roughly speaking, a multiparty interaction can be viewed as a set of data exchange actions that need
to be executed jointly and coordinately by a number of entities, each of which must be ready to execute
its own action so that the interaction can occur. An attempt to participate in an interaction delays an
entity until all other participants are available, and after an interaction is executed, the participating
entities exchange some data and continue their local computations on their own accord.

It is worth noting that an interaction being enabled does not amount to its execution. Figure 1 depicts
a simple system composed of four participants, a two-party interaction and a three-party interaction.
Note that participant P1 is offering participation in I1, whereas P3 and P4 are offering participation
in I2, and P2 is offering participation in either I1 or I2. This means that these interactions cannot be

P1 P2

P3P4

I1

I2

Figure 1. A system composed of four participants and two conflicting interactions.

executed simultaneously and they are said to be conflicting. Thus an election needs to be held to decide
which should be executed. The one that is executed is referred to as the winner interaction and the
others as the loser interactions.

In summary, every interaction has three associated events: (i) enablement, which occurs when all of
its participants are offering to participate in it; (ii) execution, which occurs when an enabled interaction
is selected for execution (probably out of a set of conflicting interactions); (iii) disablement, which
occurs either after execution or when a participant withdraws its offer because it executes a conflicting
interaction.

In order to implement multiparty interactions, we need to devise an algorithm that satisfies the
following properties [20].

• Exclusion: when an interaction in a group of conflicting interactions is executed, the rest become
disabled.

• Progress: if an interaction is enabled, it will eventually become disabled, because it is executed
or an entity offering participation in it executes another interaction.

• Synchronization: if an entity executes an interaction, the remaining entities participating in that
interaction will execute it.

• Idleness: an entity that is performing local computations cannot execute any interaction, i.e. it
has to be idle to offer any of them.

2.3. A classical example

We illustrate multiparty synchronization by means of the well-known Dining Philosophers
problem [50], which is a classic multiparty synchronization problem. It consists of a number of
philosophers sitting at a table who do nothing but think and eat. There is a single fork between each
philosopher, and they need to pick up both forks to eat. This problem is the core of a large class of
problems in which an entity needs to acquire a set of resources in mutual exclusion. This situation
can be the case of a debit card system in which there is a set of point-of-sales terminals and several
computers that hold customer or merchant accounts. When a clerk inserts a debit card into a terminal
(philosopher), a three-party interaction needs to be carried out to transfer funds from a customer’s
account (left fork) to the corresponding merchant’s account (right fork).

DIN PHIL :: [‖n
i=1 Philosopheri ‖ ‖n

i=1 Forki], where

Philosopheri ::

*[get forksi [] →
eat (); release forksi[]; think ()

],

Forki ::

*[get forksi [] → release forksi[]

| get forksi+1[] → release forksi+1[]

].

get_forks1

get_forks3 get_forks2

Fork3 Fork1

Fork2
Philosopher3 Philosopher2

Philosopher1

Figure 2. A solution to the Dining Philosophers problem in IP.

The obvious solution to this problem, using two-party interactions, consists of picking up both forks
in sequence. Nevertheless, a problem arises if each philosopher grabs the fork on their right, and then
waits for the fork on their left to be released. In this case, a deadlock has occurred, and all philosophers
starve. In [51], the authors proved that assuming no means of communication amongst philosophers
other than through information attached to their forks, any solution in which all philosophers are
programmed identically must have a possibility of deadlock. Thus, correct solutions must rely on some
distinction to be made amongst the philosophers. These solutions are usually not scalable or reusable
since the distinction a philosopher has to implement depends heavily on the topology of the problem
under consideration.

If we used multiparty interactions, the solution would be conceptually simpler since each
philosopher would pick up their two forks at a time when no deadlock could arise. Figure 2 shows
a solution to this problem in IP. The philosophers are represented by processes Philosopheri , and
the forks by Forki (i = 1, 2, . . . , n). Philosopheri eternally tries to get their associated forks by
interacting in the three-party interaction get forksi together with Forki and Forki−1. (We assume that
index arithmetic is cyclic, i.e. 1 − 1 = n and n + 1 = 1.) Thus, acquiring a resource is specified
as synchronizing with the corresponding processes in an interaction. After Philosopheri has picked
their forks up, they eat, release the forks and spend some more time thinking. (Note that interactions
get forksi and get forksi+1 are always in conflict when they are both enabled, but only one can be
executed.)

3. OUR PROPOSAL: α-CORE

In this section we present a comprehensive description of our algorithm. First, we present an overall
picture of the protocols it implements, then we describe the notation we use and the algorithm.

PARTICIPATE
PARTICIPATE

LOCK

LOCKOK

REFUSE

ACKREF

OFFER OFFER

START START

P 2P 1 P 3
P 4

 PARTICIPATE

I1
I2

Figure 3. A possible scenario for the system in Figure 1.

Finally, we present some remarks on some subtle details. The introduction to the algorithm in
Section 3.1 was presented previously in [52].

3.1. The overall picture

α-core was devised to detect enabled interactions and select amongst conflicting interactions in a
simple, effective way. We assume that each entity participating in an interaction runs independently,
and that each interaction is managed by its own coordinator. (We refer to coordinators using the same
name assigned to the interaction they manage wherever this is not misleading.) The communication
between coordinators and participants is modelled by means of asynchronous messages because this
communication primitive is available on almost every platform. An entity that offers participation in
more than one interaction is considered as a shared resource amongst the coordinators responsible
for managing those interactions. For an interaction to be executed, its corresponding coordinator
must ensure exclusive access to all of its participants, i.e. coordinators must compete for their shared
participants so that they can execute the interaction they manage.

Figure 3 shows a typical scenario for the system depicted in Figure 1, and Table I describes the
messages α-core uses. In this scenario, P1 is the first entity ready to participate in I1. Since it is only
interested in this interaction, it notifies its offer to coordinator I1 by means of a PARTICIPATE message,
and then waits for a START message before beginning the execution of this interaction. Assume that P2
then gets ready to participate in either I1 or I2. Since it offers participation to more than one coordinator,
it sends two OFFER messages by means of which those coordinators can infer that this participant is
shared with others, although they need not know each other directly.

As soon as coordinator I1 receives the offers from its two participants, it detects that I1 is enabled and
tries to lock P2 by sending it a LOCK message. There is no need to lock P1 because this participant is
interested in only one interaction; thus it is not a shared participant. Assume that P3 and P4 then decide

Table I. Messages used by α-core.

Message Description

PARTICIPATE If a participant is interested in only one interaction, it uses this message to inform its
corresponding coordinator.

OFFER If a participant is interested in more than one interaction, it then sends OFFER messages to
their coordinators.

LOCK Message sent from a coordinator to a shared participant to request exclusive access to it.
OK Message sent from a participant to a coordinator to notify that it grants it exclusive access.

This message is sent as a reply to a LOCK message.
START Message sent from a coordinator to a locked participant to notify it that the interaction it

manages may start.
UNLOCK Message sent from a coordinator to a shared participant to release exclusive access.
REFUSE Message sent from a participant to a coordinator to cancel an offer or to inform that it cannot

be locked.
ACKREF Message sent from a coordinator to acknowledge it has got a REFUSE message from a

participant.

to participate in I2 and send a PARTICIPATE message to its coordinator. It then detects that it is also
enabled, and tries to lock P2 too.

Unfortunately, the LOCK message sent to P2 by I1 is received before the LOCK from I2 arrives.
Thus, P2 notifies I1 that it accepts to be locked by means of an OK message, but it does not
acknowledge the LOCK message received later from coordinator I2, although it has to record it just
in case I1 cannot be executed. Coordinator I2 waits until it gets an answer from P2 before continuing;
that is, it cannot lock a participant if another lock is still pending. When I1 receives the OK message,
it knows that it has exclusive access to its shared participants, and sends a START message to both
P1 and P2. When the shared participant P2 receives the START message from I1, it knows that it can
execute that interaction and cancels the offer made to I2 by sending it a REFUSE message that is
acknowledged with an ACKREF message.

Therefore, the idea behind α-core consists of locking shared participants, and an interaction may
be executed as long as its corresponding coordinator has acquired exclusive access to all of its
shared participants. The problem is that entities have to be locked carefully to avoid deadlocks.
We use the Hierarchical Ordering of Sequential Processes Principle presented in [50,53] to solve
this problem since α-core assumes that coordinators may sort their participants according to a given
immutable property, e.g., their net address, their universally unique identifier (UUID) [54] or their
universal/uniform resource identifier (URI) [55], so that lock attempts are made in increasing order.
This idea is also the basis of the well-known two-phase lock protocol in the database world [11,56].

3.2. Notation and assumptions

We describe our algorithm by means of state transition diagrams, which are finite deterministic
automata composed of a finite number of states and atomic transitions amongst them. The initial state

is labelled by an arrow without origin, and every transition is labelled by a specification of the form

[guard] message

action

message denotes the message that causes a transition to occur if the guard holds. If it is omitted, a
transition depends solely on its guard. action is the list of sentences to be executed if a transition
occurs. We use assignments, and sentences of the form Send(recipient,message) to send messages.
The word Sender refers to the identifier of the coordinator or participant that sent the message that
caused a transition to occur. Finally, guard is a boolean expression over the state of the automaton
that evaluates it. The state of an automaton is a set of local variables that we declare in a box. For a
transition to occur, its corresponding message must be received and the guard must hold. If a guard is
omitted it is assumed to be true by default.

We only need to make the three usual safety and liveness assumptions about the underlying message-
passing system: (i) if a message is sent, then it is received at the destination within a finite period of
time; (ii) if a message is received, then it was sent previously; (iii) if messages m1 and m2 are received
in this order from same origin, then m1 was sent beforem2. Regarding the system itself, we only need
to assume that the number of entities and interactions is finite, although it may be arbitrarily large.

3.3. α-core in a participant

The state transition diagram for participants is shown in Figure 4, and a short description of its
variables is shown in Table II. Initially, participants are performing local computations in state ACTIVE
until they assign the set of interactions in which they are interested to variable IS. If |IS| = 1, a
participant is interested in one interaction only, so it sends a PARTICIPATE message to its coordinator
(transition 2). Since the target state of this transition is LOCKED, this means that the participant gets
locked automatically once the offer is made. If |IS| > 1, it then sends an OFFER message to each
coordinator whose identifier is in IS and reaches the WAITING state (transition 1).

In the WAITING state, a participant waits to be locked and leaves it when it receives a LOCK
message from a coordinator that then becomes a prospective winner (transition 3). On receipt of this
message, participants acknowledge with an OK message and reach the LOCKED state. Subsequent
LOCK messages are temporarily stored in locks without acknowledging their receipt (transition 4).
This behaviour allows the prospective winner to have exclusive access to a shared participant until it
can reach a decision and decide whether the interaction it manages may start or not.

In the LOCKED state, a participant waits for the prospective winner coordinator to send it an
UNLOCK message indicating that it is a loser and the interaction it manages will not be executed,
or a START message indicating that it is the winner and the interaction it manages can start. We have
to deal with the former case depending on the availability of other coordinators in the locks set. If there
is at least one coordinator in this set (transition 5), one of them is chosen arbitrarily and becomes the
new prospective winner. (It is important to choose randomly because if it is not the case, variability
amongst consecutive executions would only depend on network latency.) Then, an OK message is sent
to it, and the participant remains in the LOCKED state. If unlocks = ∅ (transition 6), this means that
no coordinator can be elected as a new prospective winner, and the participant has to return to the
WAITING state. During this transition, offers are re-sent to the coordinators that have already rejected
the participant because it has not executed any interaction and is still interested in them.

ACTIVE LOCKED

WAITING

IS: Set of Coordinator
locks: Set of Coordinator
locker: Coordinator
unlocks: Set of Coordinator
n: integer

SYNC

1

2

3

4

5

6

7

8

10
11

OFFER)(i, SendISi

1] |IS[|

→∈∀
>

∅=
∅=

=

=
=

:unlocks

 :locks

i:locker

E)PARTICIPAT(i, Send

(IS)Element : i

1] |IS[|

OK)(locker, Send

:unlocks

:locks

Sender:locker

LOCK

∅=
∅=

=

{Sender} locks:locks

LOCK

∪=

{Sender} unlocks :unlocks

{locker} \ locks :locks

OK) (locker, Send

(locks)Element :locker

 UNLOCK][locks

∪=
=

=
∅≠

OFFER) (i, Send {Sender} unlocks i

 UNLOCK][locks

→∪∈∀
∅=

cker)execute(lo

|| :n

REFUSE) (i, Send i

{locker}\unlocks\IS:

START

α
α

α

=
→∈∀

=

1n:n

ACKREF

−=

LOCK

∅=
=
:IS

0][n

∅=: IS

9

UNLOCK

Figure 4. α-core state diagram for participants.

When a START message is received from the current prospective winner coordinator in the LOCKED
state (transition 7), the interaction this coordinator manages has been selected for execution and may
start. However, a REFUSE message has to be sent to the coordinators of the interactions in the set IS,
except for the winner and those that are known to be losers (those that sent an UNLOCK message),
in order to inform them that this participant is no longer interested in them. Note that on receiving
a START message, the participant cannot return to the ACTIVE state immediately because it first has
to wait for the coordinators to which it has sent a REFUSE message to acknowledge its receipt by
means of an ACKREF message. This is essential, because if the participant executed the interaction and
offered participation in other interactions immediately after, ACKREF messages from the coordinators
that were sent a REFUSE message before might be misunderstood if another interaction was executed
too soon. Consequently, the participant has to remain in an intermediate state called SYNC until every
coordinator that was sent a REFUSE message acknowledges its receipt.

Table II. Variables used by α-core in participants.

Variable Description

IS A set with the identifiers of the coordinators that manage the interactions in which a participant is
interested.

locker A variable that identifies the coordinator that has locked a participant, i.e. the current prospective
winner coordinator.

locks A set of identifiers that allow us to refer to each coordinator from which a participant has received
a LOCK message after the one received from the current prospective winner coordinator.

n A counter used to determine when every involved coordinator has acknowledged a REFUSE
message from a participant.

unlocks A set of identifiers that allow us to refer to prospective winner coordinators that had to release
a participant. When a participant receives an UNLOCK message from its prospective winner
coordinator, it is said that it has been rejected by the coordinator.

LOCK and UNLOCK messages may also be received in state SYNC. For the moment, it is difficult
to realize the reason why, because they stem from some intricacies in the coordinators that will become
clear in Section 3.5.

3.4. α-core in a coordinator

Figure 5 shows the state transition diagram for coordinators, and Table III gives a brief explanation
of its variables. A coordinator may be in two different states called ACCEPTING and LOCKING,
and accepts offers from participants whilst it is in the former. Those offers can be made by means
of PARTICIPATE messages, in the case of non-shared participants (transition 2), or by means of
OFFER messages, in the case of shared participants (transition 1). In the former case, since non-shared
participants lock themselves automatically, they are directly stored in the set locked. In the latter, the
participant that made the offer is waiting to be locked, so the coordinator stores its identifier in set
shared. In both cases, n, the offer counter, is increased.

ACCEPTING state is a bit more complex than it might seem, because whilst a coordinator is still
waiting for offers, it may receive a REFUSE message from a participant that wants to cancel its
offer because another coordinator in which it was interested has reacted more quickly (transition 3).
Since this participant is shared, the coordinator needs to remove it from the shared set because no
LOCK message has been sent to it. An ACKREF message is sent in order to acknowledge the REFUSE
message, and the offer counter is decreased. The reason why n is decreased conditionally stems from
an intricacy of α-core, and we explain this further in Section 3.5. When n equals the cardinality of
the interaction a coordinator manages in the ACCEPTING state, it becomes enabled and there are
two possible continuations depending on the existence of shared participants. If there are no such
participants (transition 4), it does not have to compete for any of them; thus, it can send them a
START message immediately so that they can start executing the interaction it manages. Otherwise
(transition 5), it needs to lock shared participants carefully to avoid deadlocks. The solution we use

ACCEPTING LOCKING

waiting: Set of Participant
locked: Set of Participant
shared: Set of Participant
current: Participant
n: integer

1
2

3

4

5

6

7

8

0:n

:shared

:locked

=
∅=
∅=

{Sender} shared :shared

1n :n

 OFFER y]Cardinalit [n

∪=
+=

<
{Sender} locked :locked

1n :n

EPARTICIPAT y]Cardinalit [n

∪=
+=

<

{Sender} \ shared:shared

ACKREF) r,Send(Sende

0) : 1n ? 0 (n :n

REFUSE

=

−>=

0:n

:shared

 :locked

START) (i, Send locked i

] shared y Cardinalit [n

=
∅=
∅=

→∈∀
∅=∧=

LOCK)(current, Send

{current}\shared:waiting

 (shared) Smallest :current

] shared y Cardinalit [n

=
=

∅≠∧=

0:n ;:shared

: waiting; :locked

START) (i, Send locked i

{current} locked : locked

OK] aiting[

=∅=
∅=∅=

→∈∀
∪=
∅=�

||n :n

 \ locked :locked

\shared:shared

ACKREF) (Sender, Send

UNLOCK)(i, Send}Sender{\i

Sender} {current,shared)(locked:

REFUSE

α
α
α

α
α

−=
=
=

→∈∀
∪∩=

LOCK)nt,Send(curre

{current}\waiting:waiting

(waiting)Smallest :current

{current} locked : locked

OK] aiting[

=
=

∪=
∅≠�

OK

9

Figure 5. State transition diagram for coordinators.

was suggested in [50,53], and it consists of establishing a strict total order relationship amongst
shared resources so that they have to be acquired in increasing order. Thus, for a coordinator to lock
participant P , it must have previously locked every shared participant Q such that Q ≺ P , ≺ being
the total order under consideration; if it cannot lock it because it receives a REFUSE message, then
it must unlock every preceding participant. In both cases, the answer may be delayed for some time
if the participant is currently locked by another coordinator. Therefore, in transition 5, the smallest
participant in the waiting set is removed from it and sent a LOCK message. This participant may reply
with an OK message, indicating that it has been locked, or a REFUSE message, indicating that it is no
longer interested in the interaction it manages.

Processing an OK message depends on the number of participants waiting to be locked. If there is
a participant in the waiting set (transition 6), the participant that has sent the OK message is stored in
the locked set, and the next waiting participant in the waiting set is selected to be locked. Otherwise,
every shared participant has been locked. Thus, the interaction can be executed and a START message
is sent to every participant (transition 7).

Table III. Variables used by α-core in coordinators.

Variable Description

current The participant that a coordinator is currently trying to lock, i.e. a LOCK message has been sent to
it, but no reply has yet arrived.

n An offer counter, which is used to detect when the interaction a coordinator manages is enabled.
shared The set of participants shared with other coordinators.
waiting The set of participants not yet locked.

Processing a REFUSE message is quite different (transition 8), because this means that one of the
shared participants that has not yet been locked cancels its offer or the shared participant currently
being locked refuses to be locked because it has committed to another interaction. Thus, all the shared
participants that are already locked have to be unlocked in order to prevent deadlocks. The coordinator
then sends an UNLOCK message to every locked participant, to the participant currently being locked
(unless it is the sender), and an ACKREF to the participant that sent the REFUSE message before
reaching the ACCEPTING state again.

In the preceding discussion, we have intentionally left out transition 9 and some details of transition 3
that are further explained in the following section.

3.5. Remarks

Transitions 8 and 9 in participants, as well as transitions 3 and 9 in coordinators stem from some
intricate features of our algorithm. In this section, we justify the reason why such transitions are
necessary.

Figure 6 shows a scenario that proves that LOCK messages may be received whilst a participant
is in the state SYNC (transition 8). Note that once coordinator I2 has received the OFFER message
from P2 and the proper PARTICIPATE message from P3, it sends a LOCK message to try to lock its
first participant, but this message may take an arbitrary long time to reach its recipient. Thus, when P2
receives the START message from coordinator I1, it enters state SYNC and sends a REFUSE message
to coordinator I2 to cancel its offer. Note that when P2 sends this message, the LOCK message from
I2 has not yet arrived to P2 due to transmission delays, thus proving that a LOCK message may be
received whilst a participant is in the state SYNC. Note also that such a message may not be processed
after the ACKREF, because we are assuming that messages sent from the same origin to the same
destination are processed in order.

Figure 7 shows a scenario that proves that UNLOCK messages may also be received whilst a
participant is in the state SYNC (transition 9). Note that once coordinator I2 has received the OFFER
messages from P1 and P2, it sends a LOCK message to try to lock P1, which is its smallest participant.
Assume that this message takes an arbitrarily long time to reach its recipient. In this context, both I1
and I3 might succeed in locking their shared participants, and they would send REFUSE messages to
I2 in order to cancel their offers. When I2 receives the first REFUSE message from P2, it executes
transition 8 and sends an UNLOCK message to P1 and an ACKREF message to P2. Note that the

PARTICIPATE
PARTICIPATE

LOCK

LOCK

OK

 REFUSE

ACKREF

OFFER OFFER

START START

P 2P 1 P 3

SYNC

I1 I2

Figure 6. A scenario that proves that a LOCK message may be received whilst a participant is
waiting for ACKREF messages in state SYNC.

LOCK

LO
CK

OK

REFUSE

ACKREF

OFFER OFFER

START

P 1 P2

OFFEROFFER

LOCK

OK

START

REFUSE

UNLOCK
ACKREF

SYNC
SYNC

I2I1 I3

Figure 7. A scenario that proves that UNLOCK messages may be received whilst a participant is in the state SYNC,
as well as REFUSE or OK messages whilst a coordinator is in the state ACCEPTING.

UNLOCK message must necessarily arrive at P1 after the LOCK message, and that they both must be
received whilst P1 is in the state SYNC, because messages sent from the same origin are processed in
order and P1 will not leave the state SYNC until it receives an ACKREF message.

The scenario in Figure 7 also justifies the need for transitions 3 and 9 in coordinators. On receipt
of the first REFUSE message, I2 reaches state ACCEPTING immediately. Note that on receipt of a
REFUSE message from P2, coordinator I2 does not know if participant P1 has accepted to be locked or
not, thus its answer must be processed in the state ACCEPTING, which justifies the need for transitions
3 and 9 in coordinators.

It should also be pointed out that counter n is decreased in transition 3 if and only if it is strictly
greater than zero, which might seem superfluous as long as we have defined n as a counter that records
the number of offers a coordinator has got, so that each offer should be cancelled by exactly one
REFUSE message. The reason is that if transition 8 occurs in a situation in which current �= Sender,
then the answer from participant current has not yet been processed. However, current is removed from
set shared and n is decreased as if the answer from current had been processed. This is the reason why
we need to be careful before updating counter n.

It is also worth noting that a coordinator in state LOCKING can only receive an OK message from
the participant to which it sent a LOCK message. In other words, a coordinator in state LOCKING
cannot receive an OK message from a participant other than current. The reason is that a coordinator
may receive an OK message whilst it is in state ACCEPTING if it received a REFUSE message from a
participant other than current whilst it was in the state LOCKING. Then, if the current participant had
already sent its OK message, such message would be received by the coordinator when it is already
in the state ACCEPTING. The coordinator cannot change again to the LOCKING state without having
received this OK message because to do so, it needs to receive again an OFFER message from every
shared participant (including that which sent the OK message) and such an OFFER is sent after the
OK message. (Recall that we assume that the network does not alter the order of messages between a
source and a destination.)

In order to avoid these sets of intricate transitions, we might have added a CANCEL message to
sort out the difference between a REFUSE message indicating that a participant does not accept to
be locked and another indicating that a participant decides to cancel an offer because it commits to
another interaction. The problem is that adding this message leads to a solution with more states and
transitions, which is undesirable.

4. CORRECTNESS

In this section, we prove that α-core is correct, i.e. it guarantees the exclusion, progress,
synchronization and idleness properties presented in Section 2.2. We begin with a number of
preliminary definitions and lemmas, and then present and prove the theorems we need to state that
our algorithm is correct.

4.1. Preliminaries

Definition 1. Let {P1, P2, . . . , Pn} be a finite set of participants. ≺ is a total order over this set, or
simply an order, as long as ≺ is a transitive, irreflexive binary relation over this set.

Definition 2. We define a predicate that is denoted by locks(I, P) and holds as long as coordinator I
has sent a LOCK message to participant P and has received an OK message from it.

Definition 3. We define a predicate that is denoted by waits(I, P) and holds as long as coordinator I
has sent a LOCK message to participant P , but has not yet received a reply. Note that waits(I, P) holds
if P has replied, but its answer has not yet been received by I .

As a referee pointed out, it is important to realize that locks(I, P) implies ¬wait(I, P), and
waits(I, P) implies ¬locks(I, P).

Definition 4. We denote the number of LOCK messages sent out by a given coordinator since it left
state ACCEPTING for the last time as ηLOCK , i.e. ηLOCK is reset to zero every time a coordinator leaves
state ACCEPTING and reaches the state LOCKING.

Definition 5. We denote the number of OK messages received by a given coordinator since it left the
ACCEPTING state for the last time as ηOK , i.e. ηOK is reset to zero every time a coordinator leaves
state ACCEPTING and reaches state LOCKING.

Lemma 1. ηLOCK = ηOK + 1 is an invariant when coordinator I is in state LOCKING.

Proof. Proving it when I enters state LOCKING after leaving state ACCEPTING is straightforward if
we analyse transition 5. I sends out its first LOCK message during this state transition, thus ηLOCK = 1
and ηOK = 0 by definition, because when I enters state LOCKING for the first time after leaving state
ACCEPTING it has not yet received an OK message.

From now on, transition 6 is the only transition that keeps coordinator I in state LOCKING.
This transition is executed on receipt of an OK message, but coordinator I sends out a LOCK
message during it. Therefore, each time ηOK increases, so does ηLOCK , thus keeping the property
ηLOCK = ηOK + 1 invariant. �

Lemma 2. ηLOCK + |waiting| = |shared| is an invariant when coordinator I is in state LOCKING.

Proof. According to transition 5, it is clear that ηLOCK = 1 and waiting = shared \ {current} when I
enters state LOCKING after leaving state ACCEPTING (being current its smallest shared participant).
Consequently, |waiting| = |shared| − 1 in this situation, so |waiting| = |shared| − ηLOCK and
ηLOCK + |waiting| = |shared|.

From now on, transition 6 is the only transition that keeps coordinator I in state LOCKING.
This transition sends out a LOCK message and also removes a participant from set waiting. Therefore,
|waiting| decreases by one and ηLOCK increases by one, thus keeping ηLOCK + |waiting| = |shared|
invariant. �

Lemma 3. The maximum number of OK messages received by coordinator I before leaving state
LOCKING is ηmax

OK = |shared| − 1.

Proof. According to Lemmas 1 and 2, we can infer that ηOK + 1 + |waiting| = |shared|, so
ηOK = |shared| − |waiting| − 1. Given that shared does not change in state LOCKING, ηOK reaches
its maximum value when waiting = ∅ and I leaves state LOCKING. Therefore, ηOK = |shared| − 1 in
this situation. �

Lemma 4. Let ≺ be an order over the participants of our system, and let I be a coordinator whose
set of shared participants is {P1, P2, . . . , Pk} (k ≥ 1). Without loss of generality, we can assume that
P1 ≺ P2 ≺ . . . ≺ Pk . In this context, if waits(I, Pi), then ∀1 ≤ j < i · locks(I, Pj).

Proof. LOCK messages are sent out during transitions 5 and 6. In transition 5, the recipient is the
smallest participant in set waiting. Note that each time an OFFER message is received in state
ACCEPTING, its sender is added to set shared. Thus, when coordinator I leaves state ACCEPTING
during transition 5, the smallest participant in set shared, i.e. P1, is set as the current participant and a
LOCK message is sent to it. The rest of participants in set shared are stored in set waiting. Therefore,
when coordinator I enters state LOCKING after leaving state ACCEPTING, this lemma holds because
before receiving an answer from P1, predicate waits(I, P1) holds and there is no participant P0 such
that P0 ≺ P1, i.e. ∀1 ≤ j < 1 · lock(I, Pj) holds trivially.

In transition 6, the recipient is also the smallest participant in set waiting, but note that each time
transition 5 or transition 6 is executed, the smallest participant in set waiting is removed from it.
Also note that a new LOCK message is not sent unless an OK message has been received from the
participant that was sent the previous LOCK message. Let Pi be the smallest participant in set waiting
before transition 6 is executed. Consequently, on receipt of an OK message, if there is at least one
participant in set waiting, coordinator I sends a new LOCK message and waits(I, Pi) holds until it
receives an answer from Pi , as well as locks(I, P1), locks(I, P2), . . . , locks(I, Pi−1). �

Lemma 5. Let P be a participant that has offered participation to a number of coordinators
{I1, I2, . . . , In} (n ≥ 1) and receives its first LOCK message since it left state ACTIVE from
coordinator Ii (1 ≤ i ≤ n). In this context, P will eventually send an OK message to Ii .

Proof. This lemma follows directly from transition 3. If participant P is willing to participate in
several interactions, it has then reached state WAITING by means of transition 1, and it remains
in that state until it receives a LOCK message from a coordinator. Let this coordinator be Ii
(1 ≤ i ≤ n). On receipt of this message, P leaves state WAITING immediately and sends an OK
message to Ii during transition 3. Consequently, P eventually replies, and Ii will eventually get an OK
message. �

Lemma 6. Let I be a coordinator that sends a LOCK message to participant P , and let ≺ be an order
over the set of participants of our system. In this context, coordinator I will receive a REFUSE or an
OK message from P within a finite period of time.

Proof. Given that we are assuming that the underlying network is reliable and every message reaches its
recipient within a finite period of time, if coordinator I does not receive an answer fromP after sending
it a LOCK message, it implies that P has received this message whilst it was in state LOCKED and
remains in that state eternally, i.e. it does not receive any UNLOCK messages. (Otherwise, Lemma 5
guarantees that a participant in state WAITING replies in finite time.) We prove that this is impossible
by reductio ad absurdum.

If P does not answer in a finite time, then there must be a coordinator I1 such that locks(I1, P).
If I1 does not release its lock in a finite time, then there exists a participant P1 such that waits(I1, P1),
and P1 does not send an answer to I1 in a finite time. Consequently, we can infer that there exists a
coordinator I2 and a participant P2 such that locks(I2, P1) and waits(I2, P2). In other words, there is

an infinite wait chain of the following form:

waits(I, P) ∧ locks(I1, P)∧
∧ waits(I1, P1) ∧ locks(I2, P1)∧
∧ waits(I2, P2) ∧ locks(I3, P2)∧
∧ . . .

∧ waits(Ii, Pi) ∧ locks(Ii+1, Pi)∧
∧ . . .

Given that the number of coordinators and participants in a system is finite, although it may be
arbitrarily large, this sequence must be circular, i.e. there must exist a k ≥ i such that waits(Ik, P) ∧
locks(Ik, Pk−1). According to Lemma 4, we can infer the following properties:

waits(I1, P1) ∧ locks(I1, P), then P ≺ P1

waits(I2, P2) ∧ locks(I2, P1), then P1 ≺ P2

. . .

waits(Ik, P) ∧ locks(Ik, Pk−1), then Pk−1 ≺ P

This is a contradiction because we assume that ≺ is an order amongst the participants of our system.
Thus, there cannot exist a P such that P ≺ P . In other words, the contradiction stems from the fact
that using the transitivity of ≺, we conclude that it is reflexive, which contradicts Definition 1. �

4.2. Exclusion property

Theorem 1. Let {I1, I2, . . . , In} be a set of conflicting enabled coordinators. (Hereafter, we say that a
coordinator is enabled/disabled if the interaction it manages is found to be enabled/disabled.) α-core
guarantees that only one of the interactions is executed and the rest become disabled.

Proof. In short, what we have to prove is that if coordinator Ii finds itself enabled, succeeds in locking
its shared participants and executes transition 7, then any other enabled, conflicting coordinator Ij must
become disabled and execute transition 8. We prove this by reductio ad absurdum.

Let S be the set of participants shared between coordinators Ii and Ij (i �= j, 1 ≤ i, j ≤ n). If both
coordinators execute transition 7, then every shared participant in S must have sent an OK message
to both Ii and Ij . This is not possible because a participant cannot dispatch two messages at a time.
Furthermore, we can assume that the LOCK message from Ii is dispatched before the LOCK message
from Ij without loss of generality. Now, we can sort out two cases.

• On the one hand, if P had been in state WAITING when it received this message, it would have
left this state, it would have sent an OK message to Ii , and it would have dispatched the LOCK
message from Ij in state LOCKED. In this state, this LOCK would not have been answered with
an OK message unless Ii had unlocked P , but, in this case, Ii would have not executed, which
contradicts our hypothesis.

• On the other hand, if P had been in state LOCKED when it received the LOCK message from Ii ,
the answer would have been delayed until the current locker would have released its lock because

of a START message or an UNLOCK message. In the former case, participant P would have
sent Ii and Ij a REFUSE message, which contradicts the hypothesis because Ii and Ij would
not have been able to execute in this case. In the latter case, P would have selected another
prospective winner coordinator. If neither Ii nor Ij had been selected, the situation would have
been the same as that described in the previous scenario. If Ii had been selected, it would have
been sent an OK message, but, in that case, when Ii had sent a START message (recall that
we are assuming that both Ii and Ij execute transition 7), P would have executed transition 7
(do not confuse transition 7 in participants with transition 7 in coordinators) and would have sent
a REFUSE message to Ij , which contradicts our hypothesis because, in that case, Ij would not
have executed. �

4.3. Progress property

Theorem 2. Let I be a coordinator that finds itself enabled. α-core guarantees that it will eventually
become disabled.

Proof. An enabled coordinator may become disabled because it executes in mutual exclusion or
because one of its participants commits to another interaction. When a coordinator finds itself enabled
and has no shared participants (shared = ∅) it immediately sends START messages to its participants
and then becomes disabled (transition 4). Otherwise, if the enabled coordinator has shared participants,
it enters state LOCKING (transition 5), and it remains enabled until it leaves this state, because it
receives an OK message from each of its shared participants or a REFUSE message. Roughly speaking,
we need to prove that α-core does not deadlock.

The proof follows directly from Lemmas 3 and 6. Each time coordinator I enters state LOCKING,
being it because it executes transition 5 or 6, it sends a LOCK message to a shared participant. Lemma 6
guarantees that coordinator I will receive an answer in a finite time. Thus, if it receives a REFUSE
message, it executes transition 8 and returns to state ACCEPTING immediately; if it receives an OK
message, it remains in state LOCKING, but this cannot happen more than ηmax

OK = |shared| − 1 times
according to Lemma 3.

Therefore, once coordinator I finds itself enabled and enters the LOCKING state, it will eventually
abandon this state and will thus become disabled in finite time. �

4.4. Synchronization property

Theorem 3. α-core guarantees that if participant P executes interaction I , then all of the entities
participating in this interaction will execute it.

Proof. In short, what we have to prove is that if participant Pi of interaction I executes it, then the rest
of participants of this interaction will also execute it. If Pi executes interaction I , then it must have
received a START message from the coordinator that manages I . If this happens, then the coordinator
has executed either transition 4 or transition 7, because they are the only transitions in which this
message may be sent out. Note that a START message is sent to each participant in set locked in both
transitions.

• If we assume that transition 4 was executed, then the cardinality of the interaction has been
reached (n = Cardinality), and the interaction has no shared participants (shared = ∅). In other
words, this means that transition 2 has executed Cardinality times, and transition 1 has not
executed. If transition 2 has executed Cardinality times, this means that set locked includes every
participant of the interaction. Let Pj be another participant of this interaction. Then, Pj must be
in set locked and, therefore, Pj is also sent a START message.

• If we assume that transition 7 was executed, note that another participant Pj may be: (i) the
shared participant that sent the current OK message (denoted by Sender); (ii) another shared
participant; or (iii) a non-shared participant.

– If Pj is Sender, then Pj is included in set locked just before sending a START message to
each participant in the set, so a START message is also sent to it.

– If Pj is a shared participant other than Sender, then it was added to set shared in
transition 1 when it sent the OFFER message to the coordinator. Since the interaction had
at least one shared participant, transition 5 was executed and, after a number of transitions
over state LOCKING (possibly none), transition 7 was finally executed. Note that each
time transition 6 is executed, the participant that has just been locked is added to set
locked, and a new participant is removed from set waiting and assigned to current.
Thus, when transition 7 is executed, waiting = ∅ and locked contains the whole set of
shared participants except for current, which is added immediately before the START
messages are sent out. So, Pj is also sent a START message.

– If Pj is a non-shared participant, then it was added to set locked in transition 2; therefore,
it is also sent a START message. �

4.5. Idleness property

Theorem 4. α-core guarantees that a participant can execute an interaction as long as it is not
executing local computation.

Proof. Although proving this property may be quite subtle in other algorithms, it is straightforward
in our case. A participant can do its local computation whilst it is in state ACTIVE. On completing
its local activities, it assigns the set of interactions in which it is interested to set IS and transits to
state WAITING or LOCKED. A START message can only be received from a coordinator in which this
participant was interested and this message must be received in state LOCKED. The theorem follows
from the fact that a participant cannot simultaneously be executing local computations in state ACTIVE
and interacting during transition 7, since we assume that entities are single threaded. �

5. COMPARISON

In this section we compare our solution with other authors’ work. Some of the arguments we
present during this discussion are corroborated with the results of the experimental study shown in
Section 6.

The simplest algorithm to implement multiparty interactions can be found in [12], for instance, and
it consists of using a central scheduler responsible for every interaction. Each participant sends it a

READY message when it arrives at a point where it needs to coordinate its activities with others, and
the manager uses a counter per interaction to determine if they become enabled on receipt of a READY
message. If more than one becomes enabled by the same READY message and they are conflicting, a
random variable may be used to select one of them. Although this algorithm may be suitable for certain
systems, the concerns of performance and reliability argue for a distributed solution.

In [57], a slightly modified version of the basic algorithm was presented. In this solution, there is one
manager per interaction responsible for detecting enablement, but also a central scheduler responsible
for umpiring amongst conflicting managers. Although this solution is suitable for some problems in
the traffic control arena, and also in the context of multiparty cryptography [58], the central conflict
resolutor is problematical in the general case.

The first distributed algorithms for coordination were produced in the context of CSP [1], but they
were restricted to two-party interactions. Later, the problem gained great interest, and Chandy and
Misra [21] developed two algorithms that are the basis of Bagrodia’s MEM algorithm [20], which is
currently one of the most cited in this field because it can be configured to achieve optimal performance
in a particular system.

Bagrodia first devised a distributed version of the basic centralized algorithm called EM. It uses a
number of interaction managers, each responsible for managing a subset of interactions. (Note that
these subsets need not be disjoint.) When a participant wants to participate in a number of interactions,
it sends READY messages to the corresponding managers, which use a message-count technique for
detecting enablement; mutual exclusion is achieved by means of a circulating token that allows the
manager having it to execute as many non-conflicting interactions as possible.

Having a circulating token has several drawbacks because it amounts to additional network load,
even if no interaction is enabled, which may be quite problematical in bus networks. The token also
needs to circulate amongst managers in a given order, thus organizing them in a unidirectional ring,
which may lead to a situation in which a manager can never execute one of the interactions for which
it is responsible, because it never gets to have the token at the right moment.

In α-core, there is one coordinator, i.e. one manager, per interaction and exclusion is achieved
by locking participants in a given order. α-core reduces the possibility of an interaction never being
executed because when a participant is in state LOCKED and it is unlocked by a coordinator, it selects
the next prospective winner coordinator randomly, thus introducing some additional variability in the
exclusion problem. In the experimental analysis, we show that EM produces the highest execution
deviation and that α-core reduces it.

For these problems, Bagrodia devised a modified version of EM that was called MEM. It combines
the synchronization technique used in EM with the idea of using auxiliary resources to arbitrate
between conflicting interactions. The exclusion problem is solved by mapping the multiparty exclusion
problem onto the well-known Dining Philosophers problem or onto the Drinking Philosophers problem
[59]. Thus, conflicting managers are considered as philosophers that need to acquire shared forks
placed between them in mutual exclusion.

MEM has an important drawback because the number of forks that a manager has to acquire to
guarantee mutual exclusion increases steadily as the number of potentially conflicting interactions
increases. This implies that the probability of acquiring all the forks decreases accordingly, even
if the managers are not conflicting at run-time. In α-core, there is no need for virtual resources.
Instead, shared entities are considered to be resources that coordinators need to acquire. Thus, the
probability of gaining mutual exclusion decreases as the number of shared participants increases, but,

in general, this is less problematical because most practical multiparty interactions are three-, four-
or five-party§, whereas the number of potentially conflicting interactions may be greater in typical
scenarios.

A technique known as synchrony loosening was proposed in [12] to reduce the cardinality of
an interaction at compile-time. In general, the speed at which a system may run should increase
as the cardinality of its interactions decreases, but, unfortunately, this is not the case if we use
MEM to implement multiparty interactions. The reason is that when synchrony loosening is applied,
some interactions are split into a number of interactions with smaller cardinality that share many
common participants. Thus, this technique increases the degree of potential conflict. As shown in our
comparative study in Section 6.1, both EM and MEM are quite sensitive to increases in the degree
of potential conflict, which may sharply affect the performance of a system. In contrast, α-core is
completely insensitive to this parameter, which makes synchrony loosening the best choice to optimize
a system.

A difficulty also arises in both EM and MEM because between enablement detection and acquisition
of the token or the forks, a conflicting interaction may have started executing. The complex part of both
algorithms is the way they use the information communicated during mutual exclusion to detect that
an enablement is no longer current. This implies that each token or fork needs to carry an array with
information about the entities, which makes messages larger as the number of entities increases and
impossible to re-adapt at run-time if a new interaction or participant sprouts.

An additional problem with EM and MEM is that the technique they use for detecting enablement
uses message-counters that need to be reset periodically so that they do not overflow. In EM, when a
manager detects that the message counters are about to overflow, it becomes an initiator that sends extra
messages to all of the entities in the system so that they reset their counters and inform the managers
that coordinate the interactions in which they participate about this fact. The initiator cannot forward
the token until every entity and manager has reset its counters. As for MEM, the procedure is similar
but an additional interaction IR needs to be added to the system to stop it and reset counters when they
are about to overflow. IR is conflicting with every other interaction so that when it executes, no other
interaction may be executing at the same time. It remains to ensure that IR will be executed within finite
time from the instant a counter is about to overflow. For this purpose, MEM introduces a special entity
for each interaction I , so that it participates in both I and IR. (Only special entities can participate in
IR.) In general, a special entity is willing to participate in its two interactions; however, if the counter
reset procedure needs to be executed, the special entities wait to execute only IR so that it becomes
the only enabled interaction in the system. Given that the set of interactions for which managers are
responsible need not be disjoint, additional care must be taken so as to prevent different managers that
coordinate IR from starting the counter reset procedure simultaneously.

Clearly, both EM and MEM require the initiator manager to know every entity in the system, which
is an important drawback. α-core does not require the set of participants to be known in advance nor
does it require the set of coordinators to know each other or the whole set of entities, which is an
important advantage.

§See [12], for instance. There it is shown that more than fifty applications of multiparty interactions, but none of them has a
greater cardinality, except for the case of the leader election problem in which an interaction may coordinate an arbitrarily large
number of participants that need to elect a leader.

The three algorithms examined so far can guarantee that an interaction cannot be enabled forever
(cf. Theorem 2), i.e. they guarantee weak interaction fairness [12]. Unfortunately, they cannot guarantee
that an interaction that is infinitely often enabled will be executed, i.e. they cannot guarantee strong
interaction fairness. Given that an entity may autonomously decide when it is ready for interaction
with others, and an entity ready for interaction cannot instantaneously be known by a manager,
strong interaction fairness cannot be implemented by a deterministic algorithm unless arbitrarily large
delays are introduced before deciding which interaction should be executed out of a set of conflicting
interactions [60,61].

Recently, two new algorithms called TB and SM have been presented in [25]. They both are
equivalent, the difference being that TB uses message-passing primitives, whereas SM uses shared-
memory primitives. Furthermore, they have both been proven to schedule multiparty interactions in a
strongly fair manner [62] with probability one, i.e. they are probabilistic algorithms. They improve on
a previous result [24] in that the time an entity spends on local computation or the transmission delays
need not be bounded by any predetermined constant, although they cannot deal with systems in which
an entity monotonically increases the time it spends on local computation. Both algorithms are based
on the idea of ‘attempt, wait, and check’ to establish an interaction. For instance, if participant P is
interested in I1, I2, . . . , In, it selects one of them randomly, and waits for some time. If after that P
has detected that the other participants are also ready for that interaction, it may start immediately;
otherwise, a new random attempt is made.

Although TB and SM can schedule interactions in a strongly fair manner, the cost of a random
attempt–wait–check cycle may be considerably high. The expected time it takes for a participant in an
enabled interaction I to start it is no greater than mη/

∏
pi∈P(I) ψpi,I + (m− 1)η + ε, where m is its

cardinality, ψpi,I is the probability that participant pi chooses I in its random draw, P(I) is the set of
participants interested in that interaction, and η − ε, η > ε > 0 is the length of a monitoring window.
The time complexity increases sharply as m increases and makes it impractical for applications with
four- or five-party interactions or applications in which participants offer more than three interactions
at a time.

Finally, EM, MEM, TB or SM are not ready to deal with systems in which an entity may loop forever
whilst executing local computation or finish. Since α-core requires coordinators to communicate with
only the entities that are interested in them, it can deal with both terminating and non-terminating
systems.

6. EXPERIMENTAL RESULTS

In this section, we report on the results of a simulation analysis that was undertaken using the Casale I
simulation language [63] in order to compare EM, MEM and α-core. The experiments measured a
number of metrics as a result of variations in the level of potential or run-time conflict and show that
it performs comparably to other algorithms, but outperforms them in some situations that are clearly
identified. We also present the results of an experimental study that was carried out using our CORBA-
based implementation [64].

The results show that α-core is quite effective when compared with EM and MEM, and our
implementation also achieves a good performance.

P C-1 P C

IDID-1

P 1
P 2

I1 I2

Potential
Offer

Figure 8. Synchronization pattern for simulations.

6.1. Comparative analysis

Figure 8 depicts the structure of the systems that we used in our experiments. Each was composed
of C participants and D interactions. Note that they are all potentially conflicting because they are
C-party and they share every participant in the system. When one or more interactions are potentially
conflicting, we say that there is a static conflict. However, the existence of a static conflict amongst a
set of interactions does not imply that they must be necessarily conflicting at run-time. They will not
be conflicting at run-time unless their shared participants offer to participate in them. Once a shared
participant offers to participate in more than one interaction, those interactions become conflicting at
run-time. In Figure 8, each dotted arrow is a potential offer, and the level of actual participation is
controlled by means of parameter P (1 ≤ P ≤ D). For instance, if D = 10 and P = 2, then only two
interactions will be conflicting at a time, although they are all potentially conflicting with each other.

This pattern is quite flexible and it allows us to observe how the algorithms under consideration
perform in different situations: in order to study how they are affected by the level of static conflict
amongst interactions, we only need to vary D; in order to study how they are affected by the level
of conflict at run-time, we only need to vary P ; finally, in order to study how the cardinality of the
interactions affect the algorithms, we only need to vary C.

We considered the system run on a point-to-point network with links connecting all coordinators
with their participants and vice versa, which is adequate for modelling networks such as the Internet
where several messages may be in transit simultaneously.

Several metrics were used in order to compare EM, MEM and α-core, as follows.

• Elapsed time, which is the total time taken to complete an experiment.
• Selection time, which is the time taken by an algorithm to select an interaction for execution,

possibly out of many conflicting interactions. It is measured from the instant that an interaction
becomes enabled (as viewed by its corresponding coordinator) to the time that it is selected for
execution by a specific algorithm.

• Interaction time, which is the time elapsed from the instant a participant finishes local
computation to the instant it executes one of the interactions it offers.

• Message count, which is the average number of messages needed to schedule one interaction for
execution.

• Execution deviation, which is the mean deviation from the expected number of times each
interaction should have been executed in an environment in which every interaction would have
had the same probability of being selected to be executed.

These metrics were studied as a function of a number of parameters, including the level of
participation, the cardinality of each interaction, the degree of potential conflict, and the average time
taken to transmit a message between processes.

We variedC andD in the range [2 . . .10],P in the range [1 . . .10], and each experiment was run 100
times for a duration required to schedule 10 interactions using different random seeds. Each communi-
cation link was modelled as a first-come first served (FCFS) server with service time (i.e. transmission
time) sampled from an exponential distribution exp(µ) with µ = 2 ms. We considered that the time
participants are performing local computation or interacting is not negligible, and we sampled them
from two exponential distributions with mean 20 ms and 2 ms, respectively.

We found out that other things being equal, the metrics vary almost linearly with µ, except for the
message count, which is obviously independent from this parameter. This behaviour was expected
because the communication medium was modelled by a FCFS server with mean service sampled from
an exponential distribution with small scale. It is also worth mentioning that modelling communication
links as FCFS servers with service time sampled from another distribution varied the timings of each
algorithm, although the relative ranking remained essentially unchanged.

Furthermore, for the purpose of comparison, each manager in the EM and MEM algorithms managed
only one interaction. Anyhow, none of these assumptions are an inherent feature of the simulation, and
alternative hypothesis may easily be simulated.

6.2. The results of the simulation

Figures 9–12 summarize the average percentage increase or decrease of each metric when each
parameter was increased by one unit. For instance, in Figure 9, if we increase D from 7 to 8, the
elapsed time needed to complete the simulation is expected to increase 0.00% in the case of α-core,
1.19% in the case of EM and 1.42% in the case of MEM.

In Figure 9, we can see that both EM and MEM are quite sensitive to the degree of potential conflict
D, with MEM having a larger increase. The reason for this is that an increase in D increases the
number of managers that have a shared fork. Thus, an increase in D increases the probability that a
hungry manager will have to request forks from its neighbours, i.e. the managers that are potentially
conflicting with it. If a given manager hasD − 1 neighbours, we can assume that the probability that a
manager owns k forks is uniform for all 0 ≤ k ≤ D−1; thus, the probability of the manager owning all
D−1 forks will be 1/D, which decreases asD increases. It follows that a manager has to request forks
more often as D increases, thus increasing the selection time and the number of messages exchanged
to achieve mutual exclusion. For the EM algorithm, increasing D amounts to increasing the distance
the token needs to travel before finding an enabled manager, thus increasing both the selection time
and the number of messages needed to pass the token until it arrives at an enabled manager. α-core is
completely insensitive to D because coordinators are not directly dependent on each other to achieve
mutual exclusion.

Note that the impact on the elapsed time is not as large as might be expected. The reason is that
this metric is hundreds of times greater than the selection time, thus reducing the impact on the

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Alpha Core 0.00% 0.00% 0.00% 0.00%

EM 1.19% 19.92% 1.85% 9.87%

MEM 1.42% 49.80% 2.24% 16.93%

Elapsed Time Selection Time Interaction Time Message Count

Figure 9. Results of the simulation analysis: sensitivity to D.

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

Alpha Core 2.87% 0.00% 3.66% 3.83%

EM -1.48% -18.67% -2.36% -0.54%

MEM -0.61% -15.94% -0.98% 1.15%

Elapsed Time Selection Time Interaction Time Message Count

Figure 10. Results of the simulation analysis: sensitivity to P .

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

Alpha Core 3.77% 4.38% 3.37% 4.20%

EM 6.02% -0.40% 5.02% 0.56%

MEM 5.92% -4.18% 6.10% 0.25%

Elapsed Time Selection Time Interaction Time Message Count

Figure 11. Results of the simulation analysis: sensitivity to C.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Alpha Core 17.38%

EM 25.53%

MEM 4.93%

Execution Deviation (P=D)

Figure 12. Results of the simulation analysis: execution deviation.

average percentage. For instance, if C = 6 and P = 5, the selection time for MEM increased
4.40 ms when we increased D from 9 to 10, i.e. it increased by 31.18%. However, the total elapsed
time increased from 5277 to 5470 ms, which amounts to only 2.65%.

As for parameter P , it is interesting to observe in Figure 10 that the selection time of α-core is
also insensitive to it, but EM improves its selection time as the degree of run-time conflict increases.
The reason is that the selection time for EM is quite sensitive to the average distance between enabled
managers. If this distance decreases, the selection time improves. Given that the number of managers is
fixed, this distance decreases as P increases because the number of enabled managers increases as the
degree of run-time conflict increases. The selection time of MEM also decreases with P because the
more managers are enabled, the greater the probability of a manager having all its shared forks being
enabled. In fact, the selection time for both EM and MEM is at a minimum when the degree of run-time
conflict is maximum. The time α-core takes to select an enabled interaction is completely insensitive
to P , which is clearly desirable, although the number of messages needed to achieve mutual exclusion
increases due to the extra messages needed to refuse coordinators that have not succeeded in achieving
mutual exclusion.

As for parameter C, we can see in Figure 11 that α-core is sensitive to it because it achieves mutual
exclusion by locking shared participants. Thus, the selection time increases steadily as C increases.
In contrast, both EM and MEM are almost insensitive to C. With respect to the number of messages
needed to schedule an interaction, α-core needs more messages to achieve mutual exclusion when C
increases, which justifies the rise shown in the plot.

Finally, we examine the execution deviation for each algorithm in Figure 12. This metric can
easily be measured when D = P because all interactions are conflicting permanently in these cases.
Thus, during a run long enough to scheduleN interactions, each one should be executed approximately
N/D times. It is interesting to observe that α-core ranks between EM and MEM. This was predictable
because, in the case of EM, the chances of an interaction being executed depend solely on its chance
of receiving the token at the right time. As for α-core, it depends on the chances of a coordinator
being able to lock all of its participants in order. In contrast, the algorithm for implementing the Diner
Philosophers problem on which MEM relies guarantees that every philosopher that becomes hungry
will eventually have a chance to eat, thus producing a better distribution of executed interactions in this
set of experiments.

6.3. The performance of our prototype

We have implemented α-core in the laboratory using Java 1.2 and the CORBA implementation Orbacus
3.3.2. In this section, we present a performance analysis carried out using this prototype. The tests were
run on an isolated network composed of 200 MHz Pentium computers with 64 MB RAM. Participants
and coordinators were distributed on the available machines so that each one hosted the same number
of processes.

We used multiparty implementations of several well-known coordination problems as benchmarks,
and we measured the average number of interactions per second of every experiment. The results we
obtained ranged from 100 to 180 interactions per second, which we think shows that our prototype
performs quite well, and that α-core is suitable for use in practical applications. Table IV summarizes
the benchmarks we used and Figure 13 shows the results.

Table IV. Description of our benchmarks.

Name Description

The Dining Philosophers problem This is the paradigm of those situations in which an entity needs to get
exclusive access to several entities simultaneously. The version that we
have run was presented in Section 2.3.

The Leader Election problem This is another well-known problem in the field of distributed systems.
In the field of e-commerce, it may be viewed as a basic synchronization
pattern in round-based auctions on the Internet. The number of
participants (auctioneers) is given in parenthesis.

The Bank Transfer problem This is a typical problem in an e-commerce setting, since the goal is to
coordinate a point-of-sales terminal and two banks to transfer money
from one of them to the other. The problem we implemented was
described in detail in [34], and is very similar to that described in [11].

The Matrix Multiplication problem This is a typical example of a task that needs to be divided into several
subtasks on which several workers work loosely coupled until the results
need to be aggregated. This is a typical pattern in systems that need to
search for goods or services using several providers [35].

The Traveling Salesman problem This is a classical optimization problem in which the goal is to find
the cheapest way of visiting a set cities and returning to the starting
point [65]. This problem is of utmost importance when planning the
distribution of goods in e-commerce problems.

The Towers of Hannoi problem Although this pattern is not likely to arise in practice, it is a good
example of a problem in which a relatively small number of entities
need to interact very frequently using complex coordination patterns.
We used the implementation presented in [12] to test our prototype in
an extreme situation.

0

20

40

60

80

100

120

140

160

180

200

Dining
Philosophers

Leader
Election (5)

Leader
Election (10)

Leader
Election (20)

Bank Transfer Matrix
Multiplication

Traveling
Salesman

Hannoi
Towers

Figure 13. Experimental results using the benchmarks described in Table I.

P k+1

P k-1 P kP 1 P 2

IkIk-1I2I1

Figure 14. Synchronization pattern for experiments.

Java is a portable, flexible language, and this is the reason why we have selected it to implement
our prototype. Nonetheless, its performance is a clear drawback, chiefly if we take into account that
communication delays are comparable to the time the Java Virtual Machine takes to execute most
instructions.

In order to study how the implementation language affects the experimental results, we carried
out a series of tests using the synchronization pattern sketched in Figure 14. We prepared a set of
programmes T1, T2, . . . , Tn, and each Tk consisted of k biparty interactions, referred to as Ii (i =
1, 2, . . . , k), and k + 1 participants, referred to as Pi (i = 1, 2, . . . , k + 1). P1, P2, . . . , Pk offer
participation in interactions I1, I2, . . . , Ik , respectively, andPk+1 offers participation in any interaction,
thus making them conflicting. Experiment T1 is trivial because it consists of two entities and a biparty
interaction, but it shows how our algorithm performs in the absence of conflicts.

Each test was run until each interaction was executed 100 times, and we measured the average
selection time, the number of messages exchanged during the experiments, and the elapsed running
time.

Figure 15 shows the results of our tests. Theoretically, the average selection time is independent from
the number of conflicting interactions in our scenario, because when coordinator Ii becomes enabled
in test Tk (participants Pi and Pk+1 have offered to participate in Ii), it sends a LOCK message to its
shared participant Pk+1. The first LOCK message received by Pk+1 is replied with an OK message,
so the period of time from when Ii detects that it is enabled until the instant it knows it is the winner
should be about 2µ, µ being the average time taken to transmit a message. In our system, µ � 2 ms.
If the LOCK message sent by coordinator Ii is not the first message Pk+1 receives, this coordinator
will eventually get a REFUSE message from Pk+1 as a reply. Since every time Pk+1 participates in
one interaction it must refuse k − 1 coordinators, the average refuse time is more variant, because
the first coordinator that is refused has to wait less time than the coordinators that are refused after it.
The reason for this is that our implementation was written in Java, and the loop we used to send k − 1
REFUSE messages takes a time that is comparable to the time a message takes to get to its destination.

When k coordinators are competing to lock the shared participant Pk+1, each has a success ratio of
1/k. In other words, the bottleneck of our system is participant Pk+1. Since the number of interactions

0

2

4

6

8

10

12

Avr. selection time (ms) 0 7.9 8.1 8.2 8.4 8.6 8.9 9.2 9.4 9.6

Nr. of messages (x1000) 0.4 0.92 1.44 1.76 2.25 2.68 2.92 3.46 3.92 4.22

Elapsed time (s) 1.05 2.2 3.2 4.3 5.3 6.5 7.5 8.6 9.8 10.9

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Figure 15. Experimental results using the synchronization pattern sketched in Figure 14.

it can run per unit of time depends on the underlying computer and is constant, it will participate
less times per unit time in each one as the number of offered interactions increases. Theoretically, the
average number of times it executes an interaction per unit of time should be 1/k times as often as it
would execute it in the absence of conflicts. This means that the time taken by a coordinator to execute
a number of interactions sharing a participant with k−1 coordinators should be nearly k times the time
taken to execute the same number of interactions without conflicts.

From Figure 15, we can appreciate an important difference between the first column and the other
columns. Test T1 is a particular case, since coordinator I1 does not have to lock any participants, so
its selection time is zero. To execute an interaction, four messages need to be sent (two PARTICIPATE
and two START), so 400 messages are transmitted. Although this should only require about 800 ms,
the coordinator elapses 1.05 s due to computational overhead.

Test T1 is the best case. When there are conflicts, coordinators must lock their shared participant
Pk+1. Then, six messages are needed to execute an interaction (one PARTICIPATE, one OFFER, one
LOCK, one OK and two START); but every time a coordinator is refused, a penalty of four messages is
added (one REFUSE, one UNLOCK, another OFFER and another LOCK). Since the selection time is
measured from the time that an interaction becomes enabled (after the last offer) until the time the OK
message is received, the selection time should be 2µ � 4 ms (the transmission time of one LOCK and
one OK). Furthermore, the time each coordinator takes to execute 100 interactions should be the time
needed to transmit 600 messages plus a penalty every time that it is refused. The number of times that
a coordinator is refused should be proportional to the number of coordinators.

The measures we obtained are slightly greater than theoretically expected, due to computation
overhead. With two coordinators, the selection time is about 8 ms (four more than expected) and
the time taken to run 100 interactions is also a bit larger than expected (double the time elapsed by

only one coordinator). This difference can be justified if we take the number of messages transmitted
into account. Recall that 600 messages are needed to execute 100 interactions, so 320 extra messages
have been added when a coordinator has been refused. Furthermore, the time needed to transmit 920
messages is 1.840 ms, so a penalty of 360 ms appears due to computational overhead.

As the number of conflicting coordinators increases, the selection time increases slightly due to
computational overhead. The time taken to execute 100 interactions increases almost proportionally to
the number of coordinators. We think that these results are satisfactory because the system behaves as
we expected it, and the selection time increases at a ratio that is about 2.47%. Those results are very
good if we take into account the limitations on execution speed of our prototype, where computation
times are relevant with respect to transmission times.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an algorithm for implementing multiparty synchronization. A variety
of solutions exist in the literature, and our approach is innovative because we do not require the set
of entities in a system to be known beforehand. Furthermore, coordinators do not need to know all of
the entities in a system, and entities are not directly dependent on each other, which is an important
drawback in other proposals. In addition, our algorithm is not sensitive to the degree of potential or
actual conflict, but to the cardinality of the interactions under consideration, which seems desirable,
and allows us to apply synchrony loosening [12]. To the best of our knowledge, our approach is the
first algorithm to which this technique can be applied without a negative impact on its efficiency.

We have also presented the results of an experimental study that shows that our solution achieves a
good performance. From these results, we can conclude that α-core performs well enough to be used
in applications in which the multiparty interaction model helps the programmer to design an adequate
solution to their problem [19]. In fact, we are using our implementation of α-core as the basis of the run-
time support needed to animate the aspect-oriented language CAL [7,29,66], which aims at increasing
the level of abstraction of a programme by considering the concurrent behaviour of components as an
aspect where multiparty interactions are the sole means for synchronization and communication.

Currently, we are working to improve our algorithm so that participants do not need to re-send their
offers when they are rejected by a coordinator and no other coordinator has tried to lock them. We are
also working on reducing the execution deviation of our algorithm [67,68].

REFERENCES

1. Hoare CAR. Communicating Sequential Processes. Prentice-Hall: Englewood Cliffs, NJ, 1985.
2. Barnes J. Programming in Ada’95. Addison-Wesley: Reading, MA, 1995.
3. Andrews GE, Olsson RA. The SR Programming Language. Benjamin-Cummings: Redwood City, CA, 1993.
4. Hartley SJ. Operating Systems Programming: The SR Programming Language. Oxford University Press: Oxford, 1997.
5. Hilderink GH. Communicating Java threads reference manual. Proceedings of the 20th World Occam and Transputer User

Group Technical Meeting, WoTUG’20 (Concurrent Systems Engineering, vol. 50), Bakkers A (ed.). World Occam and
Transputer User Group (WoTUG), IOS Press: Amsterdam, 1997; 283–325.

6. Keen A, Ge T, Maris J, Olsson R. JR: Flexible distributed programming in an extended Java. Proceedings 21st International
Conference on Distributed Computing Systems, ICDCS’01. IEEE Computer Society Press: Los Alamitos, CA, 2001;
575–584.

7. Corchuelo R, Pérez JA, Ruiz-Cortés A. Aspect-oriented interaction in multi-organizational Web-based systems. Computer
Networks 2003; 41(4):385–406.

8. D’Souza DF, Wills AC. Objects, Components, and Frameworks with UML: The Catalysis Approach. Addison-Wesley:
Reading, MA, 1999.

9. Ehrich H-D, Caleiro C. Specifying communication in distributed information systems. Acta Informatica 2000; 36:591–616.
10. Evangelist M, Francez N, Katz S. Multiparty interactions for interprocess communication and synchronization. IEEE

Transactions on Software Engineering 1989; 15(11):1417–1426.
11. Felber P, Reiter MK. Advanced concurrency control in Java. Concurrency and Computation: Practice and Experience

2002; 14(4):261–285.
12. Francez N, Forman I. Interacting Processes: A Multiparty Approach to Coordinated Distributed Programming. Addison-

Wesley: Reading, MA, 1996.
13. Joung Y-J, Smolka SA. A comprehensive study of the complexity of multiparty interaction. Journal of the ACM 1996;

43(1):75–115.
14. Katz S, Forman IR, Evangelist WM. Language constructs for distributed systems. IFIP TC2 Working Conference on

Programming Concepts and Methods, Galilea, Israel, April 1990.
15. Lea D. Concurrent Programming Using Java: Design Principles and Pattern (2nd edn). Addison-Wesley: Reading, MA,

1999.
16. Odell J, Van Dyke H, Bauer B. Extending UML for agents. Proceedings of the Agent-Oriented Information Systems

Workshop at the 17th National Conference on Artificial Intelligence, Wagner G, Lesperance Y, Yu E (eds.). 2000; 3–17.
17. Pérez JA, Corchuelo R, Ruiz D, Toro M. An enablement detection algorithm for open multiparty interactions. Proceedings

of the 2002 ACM Symposium on Applied Computing SAC’02, Madrid, Spain, March 2002. ACM Press: New York, 2002;
378–384.

18. Rumbaugh J, Jacobson I, Booch G. The Unified Modeling Language Reference Manual (Object Technology Series, vol. 1).
Addison-Wesley/Longman: Reading, MA, 1999.

19. Tang P, Muraoka Y. Parallel programming with interacting processes. Proceedings of the 12th International Workshop on
Languages and Compilers for Parallel Computing, LCPC’99 (Lecture Notes in Computer Science, vol. 1863), Carter L,
Ferrante J (eds.). Springer: Berlin, 2000; 201–218.

20. Bagrodia RL. Process synchronization: Design and performance evaluation of distributed algorithms. IEEE Transactions
on Software Engineering 1989; 15(9):1053–1065.

21. Chandy KM, Misra J. Parallel Program Design: A Foundation. Addison-Wesley: Reading, MA, 1988.
22. Corchuelo R. Prototyping constraint-based specifications of distributed systems. PhD Thesis, Facultad de Informática y

Estadı́stica, Dpto. de Lenguajes y Sistemas Informáticos, University of Sevilla, 1999.
23. Joung Y-J, Smolka SA. Coordinating first-order multiparty interactions. ACM Transactions on Programming Languages

and Systems 1994; 16(3):954–985.
24. Joung Y-J, Smolka SA. Strong interaction fairness via randomization. IEEE Transactions on Parallel and Distributed

Systems 1998; 9(2):137–149.
25. Joung Y-J. Two decentralized algorithms for strong interaction fairness for systems with unbounded speed variability.

Theoretical Computer Science 2000; 243(1–2):307–338.
26. Kumar D. An implementation of N-party synchronization using tokens. Proceedings 10th International Conference on

Distributed Computing Systems. IEEE Computer Society Press: Los Alamitos, CA, 1990; 320–327.
27. Lynch NA. Fast allocation of nearby resources in a distributed system. Proceedings of the 12th ACM Symposium on Theory

of Computing. ACM Press: New York, 1980; 70–81.
28. Zorzo AF, Stroud RJ. A distributed object-oriented framework for dependable multiparty interactions. ACM SIGPLAN

Notices 1999; 34(10):435–446.
29. Corchuelo R, Pérez JA, Toro M. A multiparty coordination aspect language. ACM SIGPLAN Notices 2000; 35(12):24–32.
30. Francez N, Hailpern BT, Taubenfeld G. Script: A communication abstraction mechanism and its verification. Science of

Computer Programming 1986; 6(1):35–88.
31. Joung Y-J. On the design and implementation of multiparty interactions. PhD Thesis, State University of New York at

Stony Brook, New York, 1992.
32. Box D, Ehnebuske D, Kakivaya G, Layman A, Mendelsohn N, Nielsen HF, Thatte S, Winer D. Simple object access

protocol (SOAP 1.1). Technical Report, W3C Consortium. http://www.w3.org/TR/SOAP [7 June 2004].
33. Englander R. Java and SOAP. O’Reilly & Associates: London, 2002.
34. Ruiz-Cortés A, Corchuelo R, Pérez JA, Durán A, Toro M. An aspect-oriented approach based on multiparty interactions to

specifying the behaviour of a system. Principles, Logics, and Implementations of High-Level Programming Languages
PLI’99. Workshop on Object-Oriented Specification Techniques for Distributed Systems and Behaviours, Paris, 1999;
56–65.

35. Fayad M. E–Frame: A process-based, object-oriented framework for e-commerce. Proceedings of the International
Conference on Internet Computing, IC’2001, vol. 1. CSREA Press: Las Vegas, NV, 2001; 124–128.

36. Booch G. Object-Oriented Design with Applications. Benjamin-Cummings: Redwood City, CA, 1990.
37. de Champeaux D. Object-oriented analysis and top-down software development. Proceedings of the European Conference

on Object-Oriented Programming, ECOOP’91 (Lecture Notes in Computer Science, vol. 512). Springer: Berlin, 1991;
360–375.

38. Coad P, Yourdon E. Object-Oriented Analysis (Computing Series). Yourdon Press: Englewood Cliffs, NJ, 1990.
39. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W. Object-Oriented Modeling and Design. Prentice-Hall:

Schenectady, NY, 1991.
40. Wirfs-Brock R, Wilkerson B. Designing Object-Oriented Software. Prentice-Hall: Englewood Cliffs, NJ, 1990.
41. Reenskaug T, Wold P, Lehne OA. Working With Objects. The OOram Software Engineering Method. Manning: Greenwich,

CT, 1995.
42. Andersen E. Conceptual modeling of objects: A role modeling approach. PhD Thesis, University of Oslo, 1997.
43. Bauer B, Müller J, Odell J. Agent UML: A formalism for specifying multiagent interaction. Proceedings of the 22nd

International Conference on Software Engineering ICSE’01 (Lecture Notes in Computer Science, vol. 1957), Ciancarini P,
Wooldridge M (eds.). Springer: Berlin, 2001; 91–103.

44. Bauer B, Müller J, Odell J. Agent UML: A formalism for specifying multiagent software systems. International Journal
of Software Engineering and Knowledge Engineering 2001; 11(3):207–230.

45. Caire G, Leal F, Chainho P, Evans R, Garijo F, Gómez J, Pavón J, Kearney P, Stark J, Massonet P. Agent oriented analysis
using MESSAGE/UML. Proceedings of Agent-Oriented Software Engineering, AOSE’01, Montréal, 2001; 101–108.

46. Odell J, Parunak HVD, Bauer B. Representing agent interaction protocols in UML. Proceedings of the 22nd International
Conference on Software Engineering ISCE’01 (Lecture Notes in Computer Science, vol. 1957), Ciancarini P, Wooldridge M
(eds.). Springer: Berlin, 2001; 121–140.

47. Lea D, Bowbeer J, Goetz B, Holmes D, McCorvey C, Peierls T. JSR 166: Concurrency Utilities.
http://www.jcp.org/en/jsr/detail?id=166 [7 June 2004].

48. Charlesworth A. The multiway rendezvous. ACM Transactions on Programming Languages and Systems 1987; 9(2):
350–366.

49. Joung Y-J, Smolka SA. A comprehensive study of the complexity of multiparty interaction. Proceedings of the 19th Annual
ACM Symposium on Principles of Programming Languages POPL’92. ACM Press: New York, 1992; 142–153.

50. Dijkstra EW. Hierarchical ordering of sequential processes. Operating Systems Techniques, Hoare CAR, Perrot RH (eds.).
Academic Press: New York, 1972; 72–93.

51. Lynch NA, Merritt M, Weihl WE, Fekete A. Atomic Transactions. Morgan Kaufmann: San Mateo, CA, 1994.
52. Pérez JA, Corchuelo R, Ruiz D, Toro M. An order-based, distributed algorithm for implementing multiparty interactions.

Proceedings of the 5th International Conference on Coordination Models and Languages, COORDINATION’02 (Lecture
Notes in Computer Science, vol. 2315), Arbab F, Talcott CL (eds.). Springer: Berlin, 2002; 250–257.

53. Coffman EG, Elphick MJ, Shoshani A. System deadlocks. Computing Surveys 1971; 3(2):67–78.
54. Rogerson D. Inside COM. Microsoft Press: New York, 1997.
55. Berners-Lee T, Fielding R, Masinter L. RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax, August 1998.
56. Gray J, Reuter A. Transaction Processing. Morgan Kaufmann: San Mateo, CA, 1993.
57. Corchuelo R, Ruiz D, Toro M, Prieto JM, Arjona JL. A distributed solution to multiparty interaction. Recent Advances in

Signal Processing and Communications. World Scientific: Singapore, 1999; 318–323.
58. Canetti R. Security and composition of multiparty cryptographic protocols. Journal of Cryptology 2000; 13(1):143–202.
59. Chandy KM, Misra J. The drinking philosophers problem. ACM Transactions on Programming Languages and Systems

1984; 6(4):632–646.
60. Joung Y-J. Characterizing fairness implementability for multiparty interaction. Proceedings of the 23rd International

Colloquium on Automata, Languages and Programming, Paderborn, Germany, 1996 (Lecture Notes in Computer Science,
vol. 1099), Meyer F, Monien B (eds.). Springer: Berlin, 1996; 110–121.

61. Tsay YK, Bagrodia RL. Some impossibility results in interprocess synchronization. Distributed Computing 1993;
6(4):221–231.

62. Ruiz D, Corchuelo R, Toro M. Fairness in systems based on multiparty interactions. Concurrency and Computation:
Practice and Experience 2003; 15(11–12):1093–1116.

63. Corchuelo R, Pérez JA. Casale I: A new object–based language for discrete simulation. Proceedings of the 5th
European Concurrent Engineering Conference ECEC’98, Erlagen–Nuremberg, Germany, 1998. The Society for Computer
Simulation: San Diego, CA, 1998; 310–312.

64. Pérez JA, Corchuelo R, Ruiz D, Toro M. A framework for aspect-oriented multiparty coordination. New Developments in
Distributed Applications and Interoperable Systems. Kluwer: Dordrecht, 2001; 161–174.

65. Lawler EL, Lenstra JK, Rinooy Kan AHG, Shmoys DB. The Traveling Salesman Problem. Wiley: New York, 1985.
66. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier J, Irwin J. Aspect-oriented programming. Proceedings

of the European Conference on Object-Oriented Programming ECOOP’97 (Lecture Notes in Computer Science). Springer:
Berlin, 1997; 220–242.

67. Ruiz D, Corchuelo R., Pérez JA, Toro M. An algorithm for ensuring fairness and liveness in non-deterministic systems
based on multiparty interactions. Proceedings of the 8th International Euro-Par Conference, EUROPAR’02, Paderborn,
Germany, August 2002 (Lecture Notes in Computer Science, vol. 1845). 2002; 563–572.

68. Ruiz D, Corchuelo R, Toro M. Fairness in systems based on multiparty interactions. Concurrency and Computation:
Practice and Experience 2003; 15(9):1093–1116.

	1 INTRODUCTION
	2 MULTIPARTY INTERACTIONS IN A NUTSHELL
	2.1 Motivation
	2.2 Semantics
	2.3 A classical example

	3 OUR PROPOSAL: alpha-CORE
	3.1 The overall picture
	3.2 Notation and assumptions
	3.3 alpha-core in a participant
	3.4 alpha-core in a coordinator
	3.5 Remarks

	4 CORRECTNESS
	4.1 Preliminaries
	4.2 Exclusion property
	4.3 Progress property
	4.4 Synchronization property
	4.5 Idleness property

	5 COMPARISON
	6 EXPERIMENTAL RESULTS
	6.1 Comparative analysis
	6.2 The results of the simulation
	6.3 The performance of our prototype

	7 CONCLUSIONS AND FUTURE WORK

