
A Technique for Distributed Systems Specification 

J.A. Troyano J. Torres M. Toro 

Dpto. de Lenguajes y Sistemas Informiticos 
Universidad de Sevilla 

Avd. Reina Mercedes s/n 
e-mail: { t royano j t orres ,mt oro} @obelix.cica.es 

Abstract 

In this paper we show how an object-oriented speci- 
fication language is usefvl for  the specification of dis- 
tributed systems. The main constructors in this lan- 
guage are the objects. A n  object consists of a state, a 
behaviour and a set of transition rules between states. 
The specification is composed by three sections: defi- 
nition of algebraic data types t o  represent the domain 
of object attributes, definition of classes that group ob- 
jects with common features, and definition of relation- 
ships among classes. W e  show two possible styles f o r  
defining the behaviour of objects, in one hand we use 
a transition system (state oriented) and in the other 
hand we use an algebraic model of processes descrip- 
tion (constraint oriented). W e  illustrate the paper with 
the specification of the dining philosophers problem, a 
typical example in distributed programming. 

1 Introduction 

A distributed processing system is one in which se- 
veral processing units cooperate in order to achieve 
a common objective [7]. These units are coordinated 
and interchange information among them. 

The inherent complexity of distributed systems 
makes indispensable the use of formal techniques in 
the design of such systems. The formal description 
techniques (FDT) surged in the environment of the 
specification of protocols with the objective of design- 
ing systems utilizing a systematic methodology. The 
fundamental idea is to obtain clear languages, concise 
and without ambiguities, that permit the specification 
of distributed systems. In this sense, were developed 
the formal description techniques LOTOS [3] and E5 
telle [4]. 

We will use the word model in order to denote an 
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abstract representation of a system. The model of a 
distributed system should pick up the characteristics 
of concurrence, communication and synchronization 
that appears in a natural way in this type of systems. 
Through the model, we will describe the individual 
behaviour of the elements of the system and the form 
in which these elements are related among them. 

A natural way to describe the system model is pro- 
vided by the object-oriented methodology. So, we will 
associate an object to each one of the system’s ele- 
ments and we will establish the relationships among 
them. Furthermore, the object-oriented model pro- 
vides other abstraction facilities like classification and 
inheritance. We show with the specification of the 
dining philosophers problem how an object-oriented 
language is useful for the specification of distributed 
systems. 

The organization of this paper is as follows. This in- 
troduction constitutes the first section. In second sec- 
tion are presented the features of the object-oriented 
model. Third section describes the general structure of 
a specification in TESORO, an object-oriented speci- 
fication language. In fourth section simple classes are 
presented. Fifth section presents algebraic abstract 
data types as a way for representing object attributes. 
In sixth section we describe the relationships among 
classes. Seventh section presents complex classes. In 
eighth section we show two distinct specification styles 
for the objects behaviour. In nineth section we extract 
conclussions and expound future work. 

2 The object-oriented model 

When we make a system model, we can get the 
benefit of the structure imposed by the system. The 
components of a system are interrelated and are in- 
terdependent; a set of independent components does 
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not make up a system. The main task in modeling 
the system will be to identify the components and to 
determine the relationships among them. Every com- 
ponent can be represented by means of an object. 

The object-oriented concept has its origins in the 
object-oriented programming, which sees the pro- 
grams as a set of interacting objects that have a state 
and offer a functional interface by methods. This no- 
tion is used also in the analysis and design phases of 
a computer proyect. 

Main features of the object-oriented model are [l]: 
a) abstraction, that is a simplified description of 
the system that only insists on outstanding details, 
b) hiding information, that is the process to hide 
the details of an object which do not contribute to 
its main features, c) classification, that groups into 
classes objects which share common features, d) hie- 
rarchy, that is an abstraction ordering provided by 
inheritance, e) concurrence, that describes the exe- 
cution of cooperating processes which synchronize and 
communicate among them, and f )  identification, 
that serves to reference an object uniquely during all 
its life. 

2.1 Object-oriented model construction 

The object-oriented model is described through a 
set of classes and a set of relationships among these 
classes. 

0 Simple Classes 
These classes are described without making re- 
ference to other classes, and they specify the 
structure and the behaviour which shares a set 
of objects. 

An object is compounded of a state, which is cha- 
racterized by a set of attributes, a behaviour and 
an interaction with the environment, which are 
described by means of events and processes, and 
a set of transition rules that denotes the changes 
of states. 

Relations hips 
In the model we can define relationships among 
classes. These relationships are based on the syn- 
chronization and communication of the objects 
of several classes, which is achieved by shared 
events. 

Complex Classes 
Complex classes are defined over other classes 
with the next constructors: 

1. Inheritance. One feature which is not de- 
fined with simple classes and relationships 
is the hierarchy of abstractions. This is 
achieved with the inheritance, where a new 
class is defined from one class (simple in- 
heritance) or several classes (multiple inher- 
itance). The new class is called son class, 
the existing classes are called father classes, 
then the son class inherits features from the 
father classes. Furthermore, we can append 
new features (called emergent features) to 
the new class. 

2. Aggregation. It defines a new class based 
on the relationships of existing classes and 
several emergent features. 

2.2 The role of abstract data types 

In order to describe the attributes and transitions 
we need some data types and operations over them. 
The classes are built on these data types, which serve 
to define the object identification and state domain. 

With the idea of p i n g  a formal definition for data 
types, we are going to use an algebraic specification 
sublanguage. 

In next sections, we describe TESORO, an object- 
oriented language for systems specification. 

3 Specification 

A specification in TESORO is composed by three 
sections: 

0 Library 
In this section are enumerated the abstract data 
types that are used in the rest of specification. 

0 Classes 
Here we define the classes that will appear in the 
specification. These classes can be classified into 
simple or complex. 

0 Relationships 
As we have said above, the classes in a specifi- 
cation are not independent among them. So, in 
this section are described the relationships among 
classes which compound the model. 

Specification syntax is the following: 

Specification <specification name> 
Library <abstract data types used> 
<classes specification> 
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<relationships specification> 
End specification 

4 Simple classes 

For every class, we describe the structure and be- 
haviour of the set of objects that it represents. The 
class specification is composed by the attributes sec- 
tion, the events section and the transitions section. 

The attributes section describes the structural as- 
pects of a class. Here are defined the attributes that 
we use for object identification, the constant attribu- 
tes, whose values do not change during all the object 
life, and the variable attributes which make up the 
object state. Every attribute has a type. This type 
can be an abstract data type or even an object type, 
making possible to refer an object with its identifica- 
tion. Furthermore, we can impose a set of static con- 
straints over the value attributes, so these constraints 
can never be broken. 

The events section describes the behavioural as- 
pects of a class. The events can be internal t o  the sys- 
tem, or external if they denote an interaction with the 
environment. We can define parameters associated to 
an event. These parameters let us communicate data 
among objects when an event occurs. The parameters 
may be send or receive depending on communication 
way. There are two special events, one which denotes 
the object creation (create),  this is, the way we have 
to introduce a new object in the system, and other 
which denotes the object destruction (destroy),  this 
is, the way we have to eliminate an existing object 
of the system. The object behaviour is specified by 
means of permissions and triggers, which are boolean 
expressions. With permissions we say when an event 
can ocurr, and with triggers we represent the object 
responses when it is found in a certain state. The 
dynamic constraints impose an event order, which is 
described by means of processes specification. This 
specification is made up using a subset of process alge- 
bra constructs [6]. These constructs are the operator ; 
(sequential composition), the operator 0 (choice com- 
position), the operator 1 1 1  (interleaving composition) 
and the recursive processes description. 

The transitions section describes how to change the 
variable attributes values of the object in a class (and 
in consequence it state), by means of events occur- 
rence or by means of changes of other attributes. De- 
pending on the shape in which the attributes change 
their values, we can classify it in derived attributes, 
whic,h are variable attributes whose values depend on 
others attributes, and not derived attributes, which 

whether are constant or identification attributes, or 
variable attributes, which value is modified when a 
certain event ocurrs. 

4.1 Syntax 

Syntax of the simple classes specification is that 
follows: 

Class <class name> 

identification 
attributes 

(attribute name>:<type>; 
... 

constant 
<attribute name>:<type>; 

... 
variable 

(attribute name>:<type> ((<init>)); 
... 

static constraints 
<condition>; 

. . .  
events 

external 
<event name>((<formd parameters>)); 

. . .  
internal 
<event name>C(<formdl parameters>)); 

. . .  
permissions 

[<condition>] <event>((<parameters>)); 
... 

triggers 
[<condition>] <event>; 

. . .  
dynamic constraints 

<processes descriptions> 
. . .  

transitions 
from events 

<event>((<formal parameters>)) 
-> <attribute> = <expression>; 

... 
from attributes 
<attribute> = <expression>; 

... 
End class <class name> 

4.2 Example 

The next example, which let us show the simple 
c!nx .,s definition, is the dining philosophers problem 
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(which is a typical problem in concurrent program- 
ming). The problem description is the following: Five 
philosophers sit around a circular table. Each philosc- 
pher spends his life alternately thinking and eating. In 
the centre of the table is a large platter of spaghetti. 
Because the spaghetti is long and tangled (and the 
philosophers are not mechanically adept), a philosc- 
pher must use two forks to eat a helping. Unfortu- 
nately, the philosophers can only afford five forks. One 
fork is placed between each pair of philosophers, and 
they agree that everyone will use only the forks to the 
immediate left and right. 

To specify the dining philosophers problem, we are 
going to define the Philosopher and Fork classes: 

Class Philosopher 
attributes 

identification 
name: Name; 

events 
external 

birth(create) ; 
death(destroy) ; 
think; 
eat ; 

take(send f:Fork); 
release(send f:Fork); 

dynamic constraints 
process Phil-lif e : = 

think ; 
(take (left (name) ) 

take (right (name) ) ) ; 
eat ; 
(release (left (name) ) 

release(right(name))); 
Phil-lif e; 

internal 

I l l  

I l l  

end process 
End class Philosopher 

Class Fork 
attr ibut es 

identification 

variable 
number: Position; 

available: bool(true) ; 
events 

external 
put (create) ; 
remove(destroy) ; 

internal 

in-hand; 
in-t able ; 

permissions 
[available] -> in-hand; 
[not (available)] -> in-table; 

transitions 
from events 

in-hand -> available = false; 
in-table -> available = true; 

End class Fork 

5 Abstract data types 

The classes (in particular the attributes) are de- 
fined over domains. These domains are, in fact, abs- 
tract data types (ADT), and they consists of a sets of 
data values and a set of operations over these values. 
We use algebraic data specification to describe these 
domains. 

When we write a specification, we must define the 
ADT’s necessary for the definition of object attributes. 
For example we can use generic types for group more 
basic ADT’s with the well-known collection mecha- 
nisms (stacks, sequences, queues, sets, maps, etc. ). 

The language used for describe ADT’s will be ACT 
ONE. In this language data specifications are collected 
into type constructions. A type consists of a set of sorts 
which represents the possible sets of values, a set of 
operations which describes the signature of the type 
functions, and a set of equations written as equalities 
of expressions of the type. 

5.1 Syntax 

Provided that we use ACT ONE for the abstract 
data type specifications, we do not describe here the 
syntax of this language. The interested readers are 
refered to the bibliography [2]. 

The abstract data types used in a specification, are 
included into the Library section, for example: 

Library Boolean, lames, Positions 

5.2 Example 

In the previous example, the class Philosopher uses 
the type Names, and the class Fork uses the type Po- 
sition. Now we show the descriptions of both types in 
ACT ONE: 

type lames 
sort lame 
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opns 
Susana: -> Name 
Jose: -> Name 
Maria: -> Name 
Carmen: -> Name 
Andres: -> Name 

endtype Names 

type Positions is Names 
sort Position 
opns 

1,2,3,4,5: -> Position 
left, right: Name -> Position 

right(Susana) = 1; 
right(Jose) = 2; 
right(Maria) = 3; 
right(Carmen) = 4; 
right(Andres) = 5; 
left(Susana) = 5; 
left(Jose) = 1; 
left(Maria) = 2 ;  
left(Carmen) = 3; 
left(Andres) = 4; 

eqns 

endtype Positions 

6 Relationships among classes 

Relationships connect objects through the syn- 
cronization of their events. These relationships allow 
us to describe the bonds among the separate compe 
nents of the system. 

When we establish a relationship, we make possible 
that objects of related classes share the events involved 
in the relationship. We can designate this events with 
a different name for each class, but in fact this is only 
a syntactic facility, because all the events of objects 
of different classes related by a relationship represent 
the same event. 

Figure 1: Relationship 

In figure 1, we show the graphical notation chosen 
for the relationships. Here we can see how define a 
relationship R12 between the classes C1 and C,. The 
point represents the communication and synchroniza- 
tion of the objects of the participant classes in the 
relationship. 

6.1 Syntax 

To specify the relationships among classes we are 
going to use the following syntax, on one hand we 
enumerate the variables and variable types used in the 
expressions for events parameter or objects identifica- 
tion, on the other hand we enumerate the bonds which 
establish the communication channels among the ob- 
jects of related classes. 

Relationship <relationship name> 
among <classl>, <class2> . . .  

[for all 

bonds 
<variable name> : <type>; . . .I 

<classl>.<event> = <class2>.<event> ...; 
... 

End relationship <relationship name> 

6.2 Example 

If we continue with the dining philosophers pro- 
blem, we need to establish a relationship between the 
classes philosopher and fork. This relationship shows 
the fact that when a philosopher takes a fork it must 
dissapear from the table, and when a philosopher re- 
leases a fork it must be avaliable in the table again. 

Relationship Philosopher-fork 
among Philosopher, Fork 

for all 
p : Philosopher; 
f : Fork; 

Philosopher(p) .take(f) = 

Philosopher(p).release(f) = 

bonds' 

Fork(f) . in-hand; 

Fork(f) . in-table; 
End relationship Philosopher-fork 

In this relationship, we use the variable f, which has 
the same type of a fork identification, to identify the 
fork that is taken or released. 

7 Complex classes 

Till now, the only avaliable mechanims to describe 
a system model are simple classes and relationships 
among classes. At certain cases these mechanisms are 
not enough for describing all the features of a system. 
For this reason, we introduce the complex classes as a 
new resource to describe a system model. The com- 
plex classes, are defined over other classes with the 
inheritance and aggregation constructs. 
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7.1 Inheritance 

Inheritance is a powerful abstraction that allows us 
to define a new class of objects as an extension of exis- 
ting classes. The new class inherits the structural an 
behavioural aspects of the other classes. Besides the 
inherit features, we can define emergent characteristics 
for the new class. 

Associated to the concept of inheritance, appears 
the modificability, this is, the capability that the son 
class has to alter the characteristics of the father 
classes. In this sense, and accepting the classifica- 
tion proposed in [9] the inheritance avaliable in our 
language is at the same level that behaviour compati- 
bility. In this manner we only can impose stronger 
constraints (through the sections static constraints, 
dynamic constraints and permissions) to make the be- 
haviour of the son class compatible with the behaviour 
of the father class. 

As we have already commented, the inheritance can 
be simple or multiple. In the simple inheritance we 
have a specialization of the father class. This specia- 
lization can be temporary or permanent. We have a 
temporary specialization if the events create and des- 
troy of the son class are different of the father class 
ones. In the permanent specialization the events crea- 
te and destroy are the same for the son and father 
classes, so the life of an object of the son class is always 
bound to the corresponding object of the father class. 

/ 
/ 

/ 

Figure 2: Simple Inheritance 

In figure 2, we show the graphical notation chosen 
for simple inheritance. Temporary specialization is 
represented by means of a broken line and the perma- 
nent specialization is represented by means of a con- 
tinuous line. The arrows indicate the direction of the 
features inheritance. In this way the class C,, is a tem- 
porary specialization of the class C j ,  and the classes 
Cs2 and Cs3 are permanent specializations of the class 

Multiple inheritance appears when a son class has 
c,. 

more than one father classes. In this case, the son 
class has his own events create and destroy and the 
lives of his objects are not bounded to the objects of 
fathers classes. 

Figure 3: Multiple Inheritance 

The graphical notation chosen for the multiple in- 
heritance consists of a set of continuous line arrows 
from the father classes to  the son class. In figure 3, 
we represent that the class C, inherits features from 
the father classes Cj,, Cj, and Cj3. 

Specification syntax of the simple inheritance is the 
following : 

Class <class name> inherits from 
<father class> [where <condition>] 

[attributes . . .I 
[events . . .I 
[transitions . . .] 

End class <class name> 

The where clause, which is a predicate over the con- 
stant attributes, indicates which class belong to the 
objects we create. In the attributes, events and tran- 
sitions sections are described the emergent properties 
of the new class. 

Specification syntax of the multiple inheritance is 
the following: 

Class <class name> inherits from 
<father c lass l> ,  <father class2> . . .  

[attributes . . . I  
[events . . . I  
[transitions . . . I  

End class <class name> 

Like simple inheritance, in the attributes, events 
and transitions sections we describe the emergent 
properties of the new class. 

7.2 Aggregation 

Aggregation of classes is based on a similar concept 
that we used in the relationships among classes, be- 
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cause establishes connections among objects by means 
of its synchronization through events. However, the 
aggregation gives class features to a relationship, so 
we can add attributes and behaviour to the aggregate 
class. 

Every bond that is defined in the relationship over 
which is defined the aggregate class, is matched with 
an event of the new class. One of these events must 
be the create event and another must be the destroy 
event (if it exists) of the aggregate class. 

Figure 4: Aggregation 

The aggregation graphic representation show a 
class description around to  a relationship. In figure 
4, we show how the aggregate class Clz is defined by 
means of the classes Cl and C,. 

Aggregation syntax is the following: 

C l a s s  <class name> aggregates 
<classi>, <class2> ... 

[attributes . . .I 
[events . . .I 
[transitions . . .I 
relationships 

[for all 

bonds 
<variable name>:<type>; . . .  1 

<classi>.<event>=<class2>.<event> ...; 
. . .  

End class <class name> 

The bonds among classes over which is defined the 
aggregate class are specified in the relationships sec- 
tion. 

8 Specification styles 

As we can see in the dining philosophers problem 
specification, the language TESORO allows two spe- 
cification styles for objects behaviour: 

0 Constraint Oriented Style. 
This style is characterized by the use of process al- 
gebra operators to specify the object behaviour as 
the set of valid events traces in the object life, by 
means of dynamic constraints and without mak- 
ing explicit reference to the object internal state. 

0 State Oriented Style. 
In this style we define a set of variables which 

make explicit the object state all the time, des- 
cribing the behaviour by means of a set of events 
ocurrence permissions. Then from a certain state 
and applying a set of transitions we can determine 
the state changes after an event ocurrence. 

So, in the last example, we can see both styles. 
In the Philosopher class, we use the dynamic cons- 
traints to describe the class behaviour as the possible 
sequences of events. However, in the Fork class, we 
have defined the class behaviour by means of a tran- 
sition system where two states are defined for a fork, 
available and not available, and the transitions from 
one to another. In TESORO, it is allowed to com- 
bine both specification styles, this let us extend the 
expressive capacity of the language. So, the Philoso- 
pher class can be described in the state oriented style 
as follows: 

Class Philosopher 
attributes 

identification 
name: Bame; 

variable 
thinking: bool(fa1se); 
eating: bool(fa1se) ; 
with-left: bool(false); 
with-right: bool(fa1se); 

events 
external 
birth(create) ; 
death(destroy); 
think; 
eat ; 

internal 
take(send f :Fork); 
release(send f:Fork); 

[not thinking and not with-left 

[thinking and not with-left] 

[thinking and not with-right1 

[not eating and with-left 

[eating and with-left] 

[eating and uith-right1 

permissions 

and not with-right] -> think; 

-> take(left(name)) ; 

-> take(right(name)); 

and with-right1 -> eat; 

-> release(left(name)); 

-> release(right(name)); 
transit ions 
from events 

think -> thinking = true; 
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think -> eating = fa l se ;  
t d e (  l e i  t (name) ) 

takekight (name)) 

eat -> eating = true; 
eat -> thinking = fa l se ;  
releaae(1eft (name)) 

release(right (name)) 

-> with-left = true; 

-> with-right = true; 

-> with-left = fa lse;  

-> with-right = fa l se ;  
End class Philosopher 

In this example, we describe the behaviour of the 
class Philosopher using the variable attributes think- 
ing, eating, with-left and with-right which establish the 
philosopher state in every single moment. 

The state oriented style will serve us to describe an 
operational semantic for our language. We can asse 
ciate a state to each object in the system and then we 
describe the behaviour through a basic transition sys- 
tem similar to the proposed in [5]. In order to describe 
the semantic of our language, we need to identify the 
representation of each language construct in the basic 
transition system that must be defined. 

9 Conclusions and future work 

We have shown how an object-oriented specifica- 
tion language is useful for the specification of dis- 
tributed systems. With TESORO we describe an 
object-oriented model whose principal constructs are 
the objects. We have a vision of an object that consists 
of three fundamental parts, the structure imposed by 
his attributes, the behaviour described by the possi- 
ble sequence of events and his funcionality defined by 
a set of transition rules. All the objects that share the 
same characteristics are grouped into classes. We also 
allow to describe relationships among objects of dis- 
tinct classes. With these features, we consider the sys- 
tem model as the parallel composition of objects. We 
illustrate the paper with the specification of the dining 
philosophers problem, a typical example in distributed 
programming. We also have presented two distinct 
specification styles for the objects behaviour, showing 
two approachs, one in a more declarative sense and 
another one in a more operational sense. 

The future work is going to be organized in order 
to a) specify an operational semantic for our language, 
based on a basic transition system [5], b) generate a 
prototype from the specification and c) verify proper- 
ties of a model and choose a notation to specify these 

properties. A proposal in the generation of a proto- 
type is in [8] where we present a relationship between 
an object-oriented language and the formal descrip- 
tion technique LOTOS. Actually we also are devel- 
oping graphical tools that will constitute a work envi- 
ronment for the analysis and design phases in software 
development. 

We pretend as final objective to link the formal 
techniques (specification and verification) with the 
real necesities in software development (prototyping 
and implementation). 
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