
A Technique for Distributed Systems Specification

J.A. Troyano J. Torres M. Toro

Dpto. de Lenguajes y Sistemas Informiticos
Universidad de Sevilla

Avd. Reina Mercedes s/n
e-mail: { t royano j t orres ,mt oro} @obelix.cica.es

Abstract

In this paper we show how an object-oriented speci-
fication language is usefvl for the specification of dis-
tributed systems. The main constructors in this lan-
guage are the objects. A n object consists of a state, a
behaviour and a set of transition rules between states.
The specification is composed by three sections: defi-
nition of algebraic data types t o represent the domain
of object attributes, definition of classes that group ob-
jects with common features, and definition of relation-
ships among classes. W e show two possible styles f o r
defining the behaviour of objects, in one hand we use
a transition system (state oriented) and in the other
hand we use an algebraic model of processes descrip-
tion (constraint oriented). W e illustrate the paper with
the specification of the dining philosophers problem, a
typical example in distributed programming.

1 Introduction

A distributed processing system is one in which se-
veral processing units cooperate in order to achieve
a common objective [7]. These units are coordinated
and interchange information among them.

The inherent complexity of distributed systems
makes indispensable the use of formal techniques in
the design of such systems. The formal description
techniques (FDT) surged in the environment of the
specification of protocols with the objective of design-
ing systems utilizing a systematic methodology. The
fundamental idea is to obtain clear languages, concise
and without ambiguities, that permit the specification
of distributed systems. In this sense, were developed
the formal description techniques LOTOS [3] and E5
telle [4].

We will use the word model in order to denote an

1066-6192/95 $4.00 0 1995 IEEE

abstract representation of a system. The model of a
distributed system should pick up the characteristics
of concurrence, communication and synchronization
that appears in a natural way in this type of systems.
Through the model, we will describe the individual
behaviour of the elements of the system and the form
in which these elements are related among them.

A natural way to describe the system model is pro-
vided by the object-oriented methodology. So, we will
associate an object to each one of the system’s ele-
ments and we will establish the relationships among
them. Furthermore, the object-oriented model pro-
vides other abstraction facilities like classification and
inheritance. We show with the specification of the
dining philosophers problem how an object-oriented
language is useful for the specification of distributed
systems.

The organization of this paper is as follows. This in-
troduction constitutes the first section. In second sec-
tion are presented the features of the object-oriented
model. Third section describes the general structure of
a specification in TESORO, an object-oriented speci-
fication language. In fourth section simple classes are
presented. Fifth section presents algebraic abstract
data types as a way for representing object attributes.
In sixth section we describe the relationships among
classes. Seventh section presents complex classes. In
eighth section we show two distinct specification styles
for the objects behaviour. In nineth section we extract
conclussions and expound future work.

2 The object-oriented model

When we make a system model, we can get the
benefit of the structure imposed by the system. The
components of a system are interrelated and are in-
terdependent; a set of independent components does

563

not make up a system. The main task in modeling
the system will be to identify the components and to
determine the relationships among them. Every com-
ponent can be represented by means of an object.

The object-oriented concept has its origins in the
object-oriented programming, which sees the pro-
grams as a set of interacting objects that have a state
and offer a functional interface by methods. This no-
tion is used also in the analysis and design phases of
a computer proyect.

Main features of the object-oriented model are [l]:
a) abstraction, that is a simplified description of
the system that only insists on outstanding details,
b) hiding information, that is the process to hide
the details of an object which do not contribute to
its main features, c) classification, that groups into
classes objects which share common features, d) hie-
rarchy, that is an abstraction ordering provided by
inheritance, e) concurrence, that describes the exe-
cution of cooperating processes which synchronize and
communicate among them, and f) identification,
that serves to reference an object uniquely during all
its life.

2.1 Object-oriented model construction

The object-oriented model is described through a
set of classes and a set of relationships among these
classes.

0 Simple Classes
These classes are described without making re-
ference to other classes, and they specify the
structure and the behaviour which shares a set
of objects.

An object is compounded of a state, which is cha-
racterized by a set of attributes, a behaviour and
an interaction with the environment, which are
described by means of events and processes, and
a set of transition rules that denotes the changes
of states.

Relations hips
In the model we can define relationships among
classes. These relationships are based on the syn-
chronization and communication of the objects
of several classes, which is achieved by shared
events.

Complex Classes
Complex classes are defined over other classes
with the next constructors:

1. Inheritance. One feature which is not de-
fined with simple classes and relationships
is the hierarchy of abstractions. This is
achieved with the inheritance, where a new
class is defined from one class (simple in-
heritance) or several classes (multiple inher-
itance). The new class is called son class,
the existing classes are called father classes,
then the son class inherits features from the
father classes. Furthermore, we can append
new features (called emergent features) to
the new class.

2. Aggregation. It defines a new class based
on the relationships of existing classes and
several emergent features.

2.2 The role of abstract data types

In order to describe the attributes and transitions
we need some data types and operations over them.
The classes are built on these data types, which serve
to define the object identification and state domain.

With the idea of p i n g a formal definition for data
types, we are going to use an algebraic specification
sublanguage.

In next sections, we describe TESORO, an object-
oriented language for systems specification.

3 Specification

A specification in TESORO is composed by three
sections:

0 Library
In this section are enumerated the abstract data
types that are used in the rest of specification.

0 Classes
Here we define the classes that will appear in the
specification. These classes can be classified into
simple or complex.

0 Relationships
As we have said above, the classes in a specifi-
cation are not independent among them. So, in
this section are described the relationships among
classes which compound the model.

Specification syntax is the following:

Specification <specification name>
Library <abstract data types used>
<classes specification>

564

<relationships specification>
End specification

4 Simple classes

For every class, we describe the structure and be-
haviour of the set of objects that it represents. The
class specification is composed by the attributes sec-
tion, the events section and the transitions section.

The attributes section describes the structural as-
pects of a class. Here are defined the attributes that
we use for object identification, the constant attribu-
tes, whose values do not change during all the object
life, and the variable attributes which make up the
object state. Every attribute has a type. This type
can be an abstract data type or even an object type,
making possible to refer an object with its identifica-
tion. Furthermore, we can impose a set of static con-
straints over the value attributes, so these constraints
can never be broken.

The events section describes the behavioural as-
pects of a class. The events can be internal t o the sys-
tem, or external if they denote an interaction with the
environment. We can define parameters associated to
an event. These parameters let us communicate data
among objects when an event occurs. The parameters
may be send or receive depending on communication
way. There are two special events, one which denotes
the object creation (create), this is, the way we have
to introduce a new object in the system, and other
which denotes the object destruction (destroy), this
is, the way we have to eliminate an existing object
of the system. The object behaviour is specified by
means of permissions and triggers, which are boolean
expressions. With permissions we say when an event
can ocurr, and with triggers we represent the object
responses when it is found in a certain state. The
dynamic constraints impose an event order, which is
described by means of processes specification. This
specification is made up using a subset of process alge-
bra constructs [6]. These constructs are the operator ;
(sequential composition), the operator 0 (choice com-
position), the operator 1 1 1 (interleaving composition)
and the recursive processes description.

The transitions section describes how to change the
variable attributes values of the object in a class (and
in consequence it state), by means of events occur-
rence or by means of changes of other attributes. De-
pending on the shape in which the attributes change
their values, we can classify it in derived attributes,
whic,h are variable attributes whose values depend on
others attributes, and not derived attributes, which

whether are constant or identification attributes, or
variable attributes, which value is modified when a
certain event ocurrs.

4.1 Syntax

Syntax of the simple classes specification is that
follows:

Class <class name>

identification
attributes

(attribute name>:<type>;
...

constant
<attribute name>:<type>;

...
variable

(attribute name>:<type> ((<init>));
...

static constraints
<condition>;

. . .
events

external
<event name>((<formd parameters>));

. . .
internal
<event name>C(<formdl parameters>));

. . .
permissions

[<condition>] <event>((<parameters>));
...

triggers
[<condition>] <event>;

. . .
dynamic constraints

<processes descriptions>
. . .

transitions
from events

<event>((<formal parameters>))
-> <attribute> = <expression>;

...
from attributes
<attribute> = <expression>;

...
End class <class name>

4.2 Example

The next example, which let us show the simple
c!nx .,s definition, is the dining philosophers problem

565

(which is a typical problem in concurrent program-
ming). The problem description is the following: Five
philosophers sit around a circular table. Each philosc-
pher spends his life alternately thinking and eating. In
the centre of the table is a large platter of spaghetti.
Because the spaghetti is long and tangled (and the
philosophers are not mechanically adept), a philosc-
pher must use two forks to eat a helping. Unfortu-
nately, the philosophers can only afford five forks. One
fork is placed between each pair of philosophers, and
they agree that everyone will use only the forks to the
immediate left and right.

To specify the dining philosophers problem, we are
going to define the Philosopher and Fork classes:

Class Philosopher
attributes

identification
name: Name;

events
external

birth(create) ;
death(destroy) ;
think;
eat ;

take(send f:Fork);
release(send f:Fork);

dynamic constraints
process Phil-lif e : =

think ;
(take (left (name))

take (right (name))) ;
eat ;
(release (left (name))

release(right(name)));
Phil-lif e;

internal

I l l

I l l

end process
End class Philosopher

Class Fork
attr ibut es

identification

variable
number: Position;

available: bool(true) ;
events

external
put (create) ;
remove(destroy) ;

internal

in-hand;
in-t able ;

permissions
[available] -> in-hand;
[not (available)] -> in-table;

transitions
from events

in-hand -> available = false;
in-table -> available = true;

End class Fork

5 Abstract data types

The classes (in particular the attributes) are de-
fined over domains. These domains are, in fact, abs-
tract data types (ADT), and they consists of a sets of
data values and a set of operations over these values.
We use algebraic data specification to describe these
domains.

When we write a specification, we must define the
ADT’s necessary for the definition of object attributes.
For example we can use generic types for group more
basic ADT’s with the well-known collection mecha-
nisms (stacks, sequences, queues, sets, maps, etc.).

The language used for describe ADT’s will be ACT
ONE. In this language data specifications are collected
into type constructions. A type consists of a set of sorts
which represents the possible sets of values, a set of
operations which describes the signature of the type
functions, and a set of equations written as equalities
of expressions of the type.

5.1 Syntax

Provided that we use ACT ONE for the abstract
data type specifications, we do not describe here the
syntax of this language. The interested readers are
refered to the bibliography [2].

The abstract data types used in a specification, are
included into the Library section, for example:

Library Boolean, lames, Positions

5.2 Example

In the previous example, the class Philosopher uses
the type Names, and the class Fork uses the type Po-
sition. Now we show the descriptions of both types in
ACT ONE:

type lames
sort lame

566

opns
Susana: -> Name
Jose: -> Name
Maria: -> Name
Carmen: -> Name
Andres: -> Name

endtype Names

type Positions is Names
sort Position
opns

1,2,3,4,5: -> Position
left, right: Name -> Position

right(Susana) = 1;
right(Jose) = 2;
right(Maria) = 3;
right(Carmen) = 4;
right(Andres) = 5;
left(Susana) = 5;
left(Jose) = 1;
left(Maria) = 2 ;
left(Carmen) = 3;
left(Andres) = 4;

eqns

endtype Positions

6 Relationships among classes

Relationships connect objects through the syn-
cronization of their events. These relationships allow
us to describe the bonds among the separate compe
nents of the system.

When we establish a relationship, we make possible
that objects of related classes share the events involved
in the relationship. We can designate this events with
a different name for each class, but in fact this is only
a syntactic facility, because all the events of objects
of different classes related by a relationship represent
the same event.

Figure 1: Relationship

In figure 1, we show the graphical notation chosen
for the relationships. Here we can see how define a
relationship R12 between the classes C1 and C,. The
point represents the communication and synchroniza-
tion of the objects of the participant classes in the
relationship.

6.1 Syntax

To specify the relationships among classes we are
going to use the following syntax, on one hand we
enumerate the variables and variable types used in the
expressions for events parameter or objects identifica-
tion, on the other hand we enumerate the bonds which
establish the communication channels among the ob-
jects of related classes.

Relationship <relationship name>
among <classl>, <class2> . . .

[for all

bonds
<variable name> : <type>; . . .I

<classl>.<event> = <class2>.<event> ...;
...

End relationship <relationship name>

6.2 Example

If we continue with the dining philosophers pro-
blem, we need to establish a relationship between the
classes philosopher and fork. This relationship shows
the fact that when a philosopher takes a fork it must
dissapear from the table, and when a philosopher re-
leases a fork it must be avaliable in the table again.

Relationship Philosopher-fork
among Philosopher, Fork

for all
p : Philosopher;
f : Fork;

Philosopher(p) .take(f) =

Philosopher(p).release(f) =

bonds'

Fork(f) . in-hand;

Fork(f) . in-table;
End relationship Philosopher-fork

In this relationship, we use the variable f, which has
the same type of a fork identification, to identify the
fork that is taken or released.

7 Complex classes

Till now, the only avaliable mechanims to describe
a system model are simple classes and relationships
among classes. At certain cases these mechanisms are
not enough for describing all the features of a system.
For this reason, we introduce the complex classes as a
new resource to describe a system model. The com-
plex classes, are defined over other classes with the
inheritance and aggregation constructs.

567

7.1 Inheritance

Inheritance is a powerful abstraction that allows us
to define a new class of objects as an extension of exis-
ting classes. The new class inherits the structural an
behavioural aspects of the other classes. Besides the
inherit features, we can define emergent characteristics
for the new class.

Associated to the concept of inheritance, appears
the modificability, this is, the capability that the son
class has to alter the characteristics of the father
classes. In this sense, and accepting the classifica-
tion proposed in [9] the inheritance avaliable in our
language is at the same level that behaviour compati-
bility. In this manner we only can impose stronger
constraints (through the sections static constraints,
dynamic constraints and permissions) to make the be-
haviour of the son class compatible with the behaviour
of the father class.

As we have already commented, the inheritance can
be simple or multiple. In the simple inheritance we
have a specialization of the father class. This specia-
lization can be temporary or permanent. We have a
temporary specialization if the events create and des-
troy of the son class are different of the father class
ones. In the permanent specialization the events crea-
te and destroy are the same for the son and father
classes, so the life of an object of the son class is always
bound to the corresponding object of the father class.

/
/

/

Figure 2: Simple Inheritance

In figure 2, we show the graphical notation chosen
for simple inheritance. Temporary specialization is
represented by means of a broken line and the perma-
nent specialization is represented by means of a con-
tinuous line. The arrows indicate the direction of the
features inheritance. In this way the class C,, is a tem-
porary specialization of the class C j , and the classes
Cs2 and Cs3 are permanent specializations of the class

Multiple inheritance appears when a son class has
c,.

more than one father classes. In this case, the son
class has his own events create and destroy and the
lives of his objects are not bounded to the objects of
fathers classes.

Figure 3: Multiple Inheritance

The graphical notation chosen for the multiple in-
heritance consists of a set of continuous line arrows
from the father classes to the son class. In figure 3,
we represent that the class C, inherits features from
the father classes Cj,, Cj, and Cj3.

Specification syntax of the simple inheritance is the
following :

Class <class name> inherits from
<father class> [where <condition>]

[attributes . . .I
[events . . .I
[transitions . . .]

End class <class name>

The where clause, which is a predicate over the con-
stant attributes, indicates which class belong to the
objects we create. In the attributes, events and tran-
sitions sections are described the emergent properties
of the new class.

Specification syntax of the multiple inheritance is
the following:

Class <class name> inherits from
<father c lass l> , <father class2> . . .

[attributes . . . I
[events . . . I
[transitions . . . I

End class <class name>

Like simple inheritance, in the attributes, events
and transitions sections we describe the emergent
properties of the new class.

7.2 Aggregation

Aggregation of classes is based on a similar concept
that we used in the relationships among classes, be-

568

cause establishes connections among objects by means
of its synchronization through events. However, the
aggregation gives class features to a relationship, so
we can add attributes and behaviour to the aggregate
class.

Every bond that is defined in the relationship over
which is defined the aggregate class, is matched with
an event of the new class. One of these events must
be the create event and another must be the destroy
event (if it exists) of the aggregate class.

Figure 4: Aggregation

The aggregation graphic representation show a
class description around to a relationship. In figure
4, we show how the aggregate class Clz is defined by
means of the classes Cl and C,.

Aggregation syntax is the following:

C l a s s <class name> aggregates
<classi>, <class2> ...

[attributes . . .I
[events . . .I
[transitions . . .I
relationships

[for all

bonds
<variable name>:<type>; . . . 1

<classi>.<event>=<class2>.<event> ...;
. . .

End class <class name>

The bonds among classes over which is defined the
aggregate class are specified in the relationships sec-
tion.

8 Specification styles

As we can see in the dining philosophers problem
specification, the language TESORO allows two spe-
cification styles for objects behaviour:

0 Constraint Oriented Style.
This style is characterized by the use of process al-
gebra operators to specify the object behaviour as
the set of valid events traces in the object life, by
means of dynamic constraints and without mak-
ing explicit reference to the object internal state.

0 State Oriented Style.
In this style we define a set of variables which

make explicit the object state all the time, des-
cribing the behaviour by means of a set of events
ocurrence permissions. Then from a certain state
and applying a set of transitions we can determine
the state changes after an event ocurrence.

So, in the last example, we can see both styles.
In the Philosopher class, we use the dynamic cons-
traints to describe the class behaviour as the possible
sequences of events. However, in the Fork class, we
have defined the class behaviour by means of a tran-
sition system where two states are defined for a fork,
available and not available, and the transitions from
one to another. In TESORO, it is allowed to com-
bine both specification styles, this let us extend the
expressive capacity of the language. So, the Philoso-
pher class can be described in the state oriented style
as follows:

Class Philosopher
attributes

identification
name: Bame;

variable
thinking: bool(fa1se);
eating: bool(fa1se) ;
with-left: bool(false);
with-right: bool(fa1se);

events
external
birth(create) ;
death(destroy);
think;
eat ;

internal
take(send f :Fork);
release(send f:Fork);

[not thinking and not with-left

[thinking and not with-left]

[thinking and not with-right1

[not eating and with-left

[eating and with-left]

[eating and uith-right1

permissions

and not with-right] -> think;

-> take(left(name)) ;

-> take(right(name));

and with-right1 -> eat;

-> release(left(name));

-> release(right(name));
transit ions
from events

think -> thinking = true;

569

think -> eating = fa l se ;
t d e (l e i t (name))

takekight (name))

eat -> eating = true;
eat -> thinking = fa l se ;
releaae(1eft (name))

release(right (name))

-> with-left = true;

-> with-right = true;

-> with-left = fa lse;

-> with-right = fa l se ;
End class Philosopher

In this example, we describe the behaviour of the
class Philosopher using the variable attributes think-
ing, eating, with-left and with-right which establish the
philosopher state in every single moment.

The state oriented style will serve us to describe an
operational semantic for our language. We can asse
ciate a state to each object in the system and then we
describe the behaviour through a basic transition sys-
tem similar to the proposed in [5]. In order to describe
the semantic of our language, we need to identify the
representation of each language construct in the basic
transition system that must be defined.

9 Conclusions and future work

We have shown how an object-oriented specifica-
tion language is useful for the specification of dis-
tributed systems. With TESORO we describe an
object-oriented model whose principal constructs are
the objects. We have a vision of an object that consists
of three fundamental parts, the structure imposed by
his attributes, the behaviour described by the possi-
ble sequence of events and his funcionality defined by
a set of transition rules. All the objects that share the
same characteristics are grouped into classes. We also
allow to describe relationships among objects of dis-
tinct classes. With these features, we consider the sys-
tem model as the parallel composition of objects. We
illustrate the paper with the specification of the dining
philosophers problem, a typical example in distributed
programming. We also have presented two distinct
specification styles for the objects behaviour, showing
two approachs, one in a more declarative sense and
another one in a more operational sense.

The future work is going to be organized in order
to a) specify an operational semantic for our language,
based on a basic transition system [5], b) generate a
prototype from the specification and c) verify proper-
ties of a model and choose a notation to specify these

properties. A proposal in the generation of a proto-
type is in [8] where we present a relationship between
an object-oriented language and the formal descrip-
tion technique LOTOS. Actually we also are devel-
oping graphical tools that will constitute a work envi-
ronment for the analysis and design phases in software
development.

We pretend as final objective to link the formal
techniques (specification and verification) with the
real necesities in software development (prototyping
and implementation).

References

G. Booch. Object-Oriented Design with Applica-
tions. Benjamin Cummings. 1991.

H. Ehrig and B. Mahr. Fundamentals of Algebraic
Specification, Part 1 . Springer Verlag. Berlin.
1985.

ISO-Information Processing Systems - Open Sys-
tems Interconnection. L O T O S , A Formal Des-
cription Technique based on the Temporal Order-
ing of Observational Behaviour. IS0 8807. 1988.

ISO-Information Processing Systems - Open Sys-
tems Interconnection. Estelle, A Formal Descrip-
tion Technique Based on an extended state Iran-
sition model. IS0 9074. 1989.

Z. Manna, A. Pnueli. The Temporal Logic of
Reactive and Concurrent Systems. Specification.
Springer-Verlag. 1992.

R. Milner. A Calculus of Communication Sys-
tems. LNCS, Vol. 92. Springer-Verlag. 1980.

M. Sloman and J . Kramer. Distributed Systems
and Computer Networks. Prentice-Hall Interna-
tional. 1987.

Jes6s Torres, J o d A. Troyano, Miguel Toro.
Desde el Lenguaje d e Especificacidn Orientado a
Objetos TESORO a L O T O S . Informa'tica y Au-
toma'tica journal. Vol. 27 number 2, pp. 22-31,
Junio 1994.

P. Wegner. Concept and Paradigms of Object-
Oriented Programming. OOPS Messenger, ACM
Press, Volume 1, Number 1. August 1990.

570

