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Abstract Separation of concerns has been presented as a promising tool to tackle the
design of complex systems in which cross–cutting properties that do no fit into
the scope of a class must be satisfied. In this paper, we show that interaction
amongst a number of objects can also be described separately from functionality
by means of the CAL language, and present a framework that provides the needed
infrastructure. It is innovative because it supports open multiparty interactions.
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1. INTRODUCTION
Isolating coordination from computation has been paid much attention be-

cause it benefits from enhancing modularity, understandability or reusability,
but also from being the best way to solve difficult problems such as the well-
known inheritance anomaly. Unfortunately, aspect–oriented languages such as
COOL, RIDL [Lopes, 1998], ASPECTJ [Lopes and Kiczales, 1998] or AML
[Irwin et al., 1997] do not succeed in isolating computation from interaction
with other objects in a system. COOL, for instance, allows us to define syn-
chronisation policies, but interactions with other objects are embedded into the
functional code. Therefore, objects are dependent on the interaction model
used to coordinate them. This model relies on classical point–to–point com-
munication primitives and, thus, emphasises a number of objects exchanging
binary messages and requires a specific protocol for coordinating them that is
usually scattered amongst functionality.

Besides point–to–point communication, many other interaction models have
been proposed in the literature [Papadopoulos and Arbab, 1998], and many
researchers have centred their effort on the novel multiparty interaction model,
which has been introduced in many languages [Joung and Smolka, 1996]. It has
also attracted the attention of the designers of the well–known Catalysis method
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[D’Souza and Wills, 1999]. Catalysis has been used by Fortune 500 companies
in fields including finance, telecommunication, insurance, manufacturing, em-
bedded systems, process control, flight simulation, travel and transportation,
or systems management, thus proving the adequacy of this novel interaction
model in so different application domains.

Unfortunately, the languages that incorporate this powerful construct are
usually intended to describe both functionality and coordination, thus producing
components that are highly dependent on the environment in which they are
intended to be integrated. We think that aspect–orientation is the key to describe
coordinated behaviour separately from computation so that functional code can
be kept clean.

In this paper, we present a framework for implementing multiparty coordina-
tion as an aspect. It has been used to implement the CAL language [Corchuelo
et al., 2000], which is, to the best of our knowledge, the first multiparty
coordination–aspect language to appear in the literature. The rest is organ-
ised as follows: section 2 sketches the interaction model on which CAL relies;
section 3 presents the framework that provides the needed run–time infrastruc-
ture to implement it, and section 4 shows a brief description of the underlying
algorithms; section 5 glances at other authors' work, and section 6 shows our
conclusions and future work.

2. CAL  INTERACTION MODEL
CAL [Corchuelo et al., 2000] is a language aimed at describing coordination

patterns amongst a number of objects in a way that is independent from compu-
tation or other aspects. Coordination patterns are not dependent on the objects
they coordinate, so that they can be easily reused.

To achieve this, CAL uses multiparty interactions as the sole mean to express
coordination. In CAL, each interaction has a name, a number of roles and a
number of slots associated to it.

The name of the interaction is a string which unambiguously identifies an
interaction in the system. When an object is ready to coordinate with other
objects, it offers to participate in one or more interactions by mean of their
interaction names.

So, every object can offer participation in one or more interactions simulta-
neously. In every offer, a participant states which role it plays in the interaction,
and may establish constraints on what objects should play the other roles. An
interaction may be executed as long as a set of objects satisfying the following
constraints is found: (i) there is an object per role willing to participate in that
interaction and play that role; (ii) those objects agree in interacting with each
other, i.e., the constraints they stablish are satisfied. A set of objects which can
execute an interaction is what we call a enablement.



Figure 1. Offers made to the coordinator of an interaction I .

Figure 1 shows an example system with an interaction called I amongst three
objects that must play roles P, Q and R. Objects and make offers to play
role P, objects and make offers to play role Q, and object makes an
offer to play role R. The objects and require that role Q must be played
by and respectively, and vice versa. Neither nor establish
constraints about what object should play role R.  In the other hand, the object

accepts that roles P and Q could be played by any object.
Since exclusion must be guaranteed, an object cannot commit to more than

one interaction at a time. But, since an object can offer participation simulta-
neously in more than one interaction, it can be in more than one enablement.
So, when two or more enablements share objects, they cannot be executed si-
multaneously. The set of enablements that cannot be executed are said to be
refused.

When an enablement of an interaction is executed, the objects in it can
communicate by means of the interaction slots. A slot is a shared variable
among the objects in the enablement which is created when the enablement is
executed. These slots make up a local state that simulates the temporary global
combined state in IP [Francez and Forman, 1996], being the most important
difference that an object does not need to have access to the local state of
other objects in order to get the information it needs. Obviously, a multiparty
interaction delays an object that tries to read a slot that has not been initialized
yet by another object.

3. A FRAMEWORK FOR ASPECT–ORIENTED
MULTIPARTY COORDINATION

We have carefully designed a framework that offers a number of high-level
services for providing CAL run–time support. This framework is extensible so
that new middlewares or coordination algorithms may be easily incorporated.



Figure 2. The architecture of our solution.

Figure 2 shows a snapshot of a running system that sketches the architecture of
our implementation, which is composed of the following elements:

The gatekeeper: It is one of the most important components of our architec-
ture because it is responsible for tasks such as security policies, billing,
generating and managing UUIDs, locating interaction coordinators or
interacting with the system administrator.

Interaction coordinators: They are responsible for detecting enabled interac-
tions and umpiring amongst conflicting ones, i.e., interactions that cannot
be executed simultaneously because they involve a common object. The
algorithms we use are presented in section 4.

Proxies: In our framework, objects are considered to be external entities that
use proxies to interact. This makes a clean separation between func-
tionality and coordination details and simplifies the framework because
it does only need to care about proxies, independently from the objects
they represent.

Communication managers: They are responsible for managing communica-
tion amongst a number of objects that have committed to an interaction.
They are also responsible for coping with faults during multiparty com-
munication [Zorzo and Stroud, 1999].

At a first glance, it might seem that the gatekeeper is a bottleneck component
of our framework, but it is not. The reason is that the functionality it offers
is used only when new objects or interactions are added to the system, or
when an object needs to fetch references to the coordinators responsible for the
interactions in which it may be interested. It is also worth noting that nothing
prevents us from creating several instances of the gatekeeper, thus reducing



the impact of a crash. However we usually refer to this component as “the
gatekeeper” because all of its instances are functionally equivalent.

It is also worth mentioning that having proxies does not amount to inef-
ficiency because they reside in the same memory space as the objects they
represent. Furthermore, separating coordination concerns from objects at run–
time is worthwhile because this draws a clear line between the functionality
they encapsulate and the way they interact with others.

4. IMPLEMENTING MULTIPARTY COORDINATION
In this section, we describe the algorithm we have devised to implement

multiparty coordination. It is called and it is scattered amongst coordinators
and proxies. It is responsible for the following tasks:

Enablement detection: The offers received from proxies are analysed sequen-
tially to find sets of objects that agree in participating in an interaction,
i.e, enablements.

Enablement selection: When one or more enablements have been detected, as
many as possible should be executed simultaneously. Thus, an election
under conflicting enablements needs to be held.

That is the reason why we have split into two parts called –solver and
–core that are further explained in the following subsections.

4.1. The –solver Algorithm
–solver is responsible for enablement detection, and the ideas behind it can

be presented by means of the example in figure 1 at page 163.
–solver processes offers as they arrive and form a consolidation graph that

consists of tuples such as This tuple represents the offer made by
and it means that it wants to play role P in interaction I, requires to play

role Q, and does not care about which object should play role R.  We say that
role P is consolidated in this tuple, whereas role Q requires object and role
R  accepts any object.

Figure 3 shows the consolidation graph built by our algorithm as the offers
made by the objects in our example arrive at the coordinator responsible for
interaction I. Assume that the offer made by p1 arrives first so that α–solver
constructs a consolidation graph with only one node If the second
offer is made by object a new node of the form is added to the
graph, but no connecting node is constructed because the tuples so far processed
cannot be consolidated, i.e., objects and cannot interact together. If the
offer made by is then received, a node of the form is added. Since
it consolidates with a connecting node of the form is



Figure 3. Consolidation graph for the system in figure 1.

added. It indicates that both and want to participate in interaction I and
agree in committing to it together with any object playing role R. Notice that
no enablement is found until object makes its offer. When this happens, two
enablements are found simultaneously, but, unfortunately, they are conflicting
because they share

In order to present α–solver code, we first need to define a consolidation
operator that is defined on both the tuples of the consolidation graph and
its elements. We refer to this operator as and it is defined on tuples as

It is de-
fined on the elements of a tuple by means of the following axioms:

1 as long as

2 as long as

3

4

5

The entry–point to –solver is the routine called ProcessO f f er(T , G)
presented in figure 4. (T is the offer being processed, and G is the current
consolidation graph, which is built incrementally as new offers are received.) It
simply iterates over the set of roots of graph G and calls routine Search(T , R )
presented in figure 5 on each one. (T represents the current offer, and R a root
of graph G.) This routine first tries to consolidate tuples T and R, and if it is
possible, the consolidated tuple is returned and inserted in the graph as a parent
of both T and R. Otherwise, a recursive search is performed in the subgraph
whose root is the left child of R. If a consolidation l e f t is found there, it then
recursively tries to find a new consolidation of l e f t with a tuple in the subgraph



ProcessOffer (T: Tuple; G: Graph): Set of Tuple
enablements: Set of Tuple
roots: Set of Tuple
C: Tuple
enablements
roots the roots of G
add T to G as an unconnected leaf
for every root R in graph G do
C Search (T, R)
if C is not null and every role in C is consolidated then
enablements enablements

end if
end for
return enablements

end ProcessOffer

Figure 4. –solver entry–point.

Search (T: Tuple; R: Tuple): Tuple
result: Tuple;
left, right: Tuple;
if T and R can consolidate then

result
let result be the parent tuple of T and R

else
if T is not a leaf then

left Search (T, left child of R)
if left is not null then
right Search (left, right child of R)
result (right is not null ? right: left)

else
right Search (T, right child of R)
result (right is not null ? right: null)

end if
else

result null
end if

end if
return result

end Search

Figure 5. –solver recursive consolidation function.

whose root is the right child of R. If such a consolidation if found, then it is
returned because it is the most consolidated tuple that has been found; else, left
is returned. If no consolidation is found while examining the left subgraph of
R,  then the right subgraph is also explored. If no consolidation is found, then
null is returned.



4.2.

 The α– core Algorithm

The –core algorithm takes the enablements detected by –solver and selects
for execution as many as possible. If a enablement is rejected, that is because
it conflicts with another that has already been selected. An enablement can be
conflicting in two different ways:

It may be locally conflicting with another enablement of the same in-
teraction. This is the case of enablements c and d in the example in
figure 3.

It may be remotely conflicting with another enablement of another inter-
action.

For the sake of simplicity, in this section, we assume that each coordinator
is responsible for only one enablement. We drop this restriction in the next
section.

The idea behind  –core is quite simple. Shared objects are considered to
be shared resources amongst the coordinators which coordinate the enablement
where they appear. In order for an enablement to be selected, its coordinator
must ensure exclusive access to every shared object participating in it. So, a
coordinator must lock every shared object in its enablement before it can be
selected for execution. For instance, consider the example in figure 6: there are
two coordinators for two interactions and that are conflicting because
is offering participation in both. Figure 7 shows a scenario for this system, and
table 1 describes the messages –core uses.

Figure 6. Two conflicting coordinators with one enablement each one.

In this scenario, is the first object ready to participate in Since it
is only interested in this interaction, it notifies its offer to coordinator by
means of a PARTICIPATE message, and then waits for a START message
before beginning the execution of this interaction. Assume that gets then
ready to participate in either or Since it offers participation to more
than one coordinator, it sends two OFFER messages by means of which the



Figure 7. A possible scenario for the system in figure 6.

coordinators that receive them can infer that this object is shared with others,
although they need not know each other directly.

When coordinator processes this offer, it detects enablement
Since is a shared object it tries to lock by sending it a LOCK mes-
sage. There is no need to lock because this object is interested in only one
interaction; thus it is not a shared object. Assume that and decide then to
participate in and send a PARTICIPATE message to its coordinator. It
then detects enablement and tries to lock too. Unfortunately, the
LOCK message sent to by is received before the LOCK from arrives.
Thus, notifies that it accepts to be locked by means of an OK message,



but it shall not acknowledge the lock message received later from coordinator
but shall record it, just in case cannot be executed. Coordinator waits

until it gets an answer from before going on, thus it cannot lock an object if
another lock is still pending. When receives the OK message, it knows that
it has exclusive access to its shared object, and thus sends a START message
to and When the shared object receives the START message from

it knows that it can execute that interaction and cancels the offer made to
by sending it a REFUSE message that is acknowledged by means of an

ACKREF message.
Therefore, the idea behind –core consists of making the coordinators com-

pete to lock their shared objects, allowing an enablement to be executed as
long as its corresponding coordinator has acquired exclusive access to all of its
shared objects. The problem is that locks need to be carried out carefully in
order to avoid deadlocks. We use an idea proposed in [Coffman et al., 1971]:

–core assumes that coordinators may sort their objects according to a given
immutable property, e.g., their net address or UUID, so that lock attempts are
made in increasing order. This idea was proven not to produce deadlocks and
it is quite effective.

4.3. Putting   –solver and –core Together in an Efficient
Way

In the previous section, we sketched the way –core resolves conflicts
amongst conflicting enablements, but we assumed an important restriction:
every coordinator coordinated just one enablement. This is not realistic be-
cause, as we showed in the example in section 4.1, an offer may lead to several
enablements.

The solution to this problem is straightforward because –core can easily be
generalised to coordinate an arbitrary number of enablements: if a coordinator
finds more than one enablement, it just executes –core for every enablement.
For example, the coordinator of interaction I in figure 1 would execute –core
for the enablement and for the enablement

Notice that the coordinator of I should send two LOCK messages to object
one for the enablement and another one for the enablement

Obviously, it does not make sense that a coordinator needs to send
more than one LOCK message to the same object because it compromises
efficiency. The solution to this problem is that every coordinator associates a
lock count to every shared object that is initialised to zero. When it needs to lock
an object for the first time, it sends it a LOCK message and set its lock count
to one. When the coordinator needs to lock again an object with a lock count
greater than zero, it just increases by one its counter, and no LOCK message
is sent again to it. Symmetrically, when an object needs to be unlocked, its



lock count is decreased by one. If the resulting counter is greater than zero,
no UNLOCK message should be sent since the object is already locked. If
the lock count reaches zero, then no enablement is locking the object, so an
UNLOCK message must be sent then.

5. RELATED WORK
Several solutions to implement multiparty interactions have been proposed

in the literature. We have found a variety of centralised and distributed tech-
niques for dealing with multiparty synchronisation and exclusion. For instance,
synchronisation may be solved by means of polling, message–counts [Bagro-
dia, 1989], or auxiliary resources such as tokens [Chandy and Misra, 1988];
the exclusion problem may be solved by using time stamps, auxiliary resources
[Bagrodia, 1989], probabilistic techniques [Joung, 2000], and so on. Our al-
gorithm solves synchronisation by means of its enablement detection algorithm
( –solver), and the exclusion problem by the selection algorithm (α–core),
which locks objects in a given order. This idea was presented in [Coffman
et al., 1971] in the context of operating systems. Although it did not work well
in this field, because resources of an operating system are difficult to sort and
usually cannot be requested in increasing order, it has been successfully applied
in –core.

The simplest algorithm can be found in [Francez and Forman, 1996], for
instance, and it consists of using a central scheduler responsible for every in-
teraction. In [Corchuelo et al., 1999], a slightly modified version of the basic
algorithm was presented. In this solution, there is a manager per interaction
responsible for detecting enablement, but also a central scheduler responsible
for umpiring amongst conflicting managers. Although this solution is suitable
for some problems in the traffic control arena, the central conflict resolutor is
not adequate in the general case.

The first distributed algorithms for coordination were produced in the context
of CSP, but they were restricted to two–party interactions. Later, the problem
became of great interest, and Bagrodia devised the EM and MEM algorithms
[Bagrodia, 1989], which are the most cited in this field. EM uses a number of
interaction managers, each one responsible for managing a subset of interac-
tions. When an object wants to participate in a number of interactions, it sends
READY messages to the corresponding managers, which use a message-
count technique for detecting enablement; mutual exclusion is achieved by
means of a circulating token that allows the manager having it to execute as
many non–conflicting interactions as possible. Having a circulating token has
several drawbacks because it amounts to additional network load, even if no
interaction is enabled, which may be quite problematical in bus networks. The
token also needs to circulate amongst managers in a given order, thus organising



them in a unidirectional ring, which may lead to a situation in which a manager
can never execute one of the interactions for which it is responsible, because it
never gets to have the token at the right time.

For these problems, Bagrodia devised a modified version of EM that was
called MEM. It combines the synchronisation technique used in EM with the
idea of using auxiliary resources to arbitrate between conflicting interactions.
The exclusion problem is solved by mapping the multiparty exclusion problem
onto the well–known dining philosophers problem. Thus, conflicting managers
are considered to be philosophers that need to acquire shared forks placed
between them in mutual exclusion. MEM has an important drawback because
the number of forks a manager has to acquire to guarantee mutual exclusion
increases steadily as the number of potentially conflicting interactions increases.
This implies that the probability of acquiring all the forks decreases accordingly,
even if the managers are not conflicting at run–time.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have explored the aspect–oriented paradigm, the multiparty

interaction model, and how programming distributed systems may benefit from
both. The multiparty interaction model captures three main issues in the design
of distributed systems: synchronisation, communication and exclusion, and we
have presented a framework to implement it as an aspect.

A variety of solutions exist in the literature, and ours is innovative in the
sense that we do not require the set of active objects in a system to be fixed and
known in advance. In addition, coordinators need not know all of the processes
in a system, and objects are not directly dependent on each other, which is an
important drawback in other proposals. This way, our solution can be easily
applied in open contexts such as the Internet where multiparty interactions can
be used to coordinate an arbitrary number of objects.
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