
Consistency maintenance for evolving feature models

Jianmei Guo a,⇑, Yinglin Wang a, Pablo Trinidad b, David Benavides b
a Department of Computer Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Minhang, Shanghai 200240, China b Department of Languages and
Computer Systems, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
Keywords:

Software product lines

Feature models Evolution
Consistency maintenance
Ontology
Semantics

⇑ Corresponding author. Tel.: +86 21 34204415; fax
E-mail addresses: guojianmei@sjtu.edu.cn (J. Guo),

ptrinidad@us.es (P. Trinidad), benavides@us.es (D. Benav
a b s t r a c t

Software product line (SPL) techniques handle the construction of customized systems. One of the most
common representations of the decisions a customer can make in SPLs is feature models (FMs). An FM
represents the relationships among common and variable features in an SPL. Features are a representa-
tion of the characteristics in a system that are relevant to customers.

FMs are subject to change since the set of features and their relationships can change along an SPL life-
cycle. Due to this evolution, the consistency of FMs may be compromised. There exist some approaches to
detect and explain inconsistencies in FMs, however this process can take a long time for large FMs.

In this paper we present a complementary approach to dealing with inconsistencies in FM evolution
scenarios that improves the performance for existing approaches reducing the impact of change to the
smallest part of an FM that changes. To achieve our goal, we formalize FMs from an ontological perspec-
tive and define constraints that must be satisfied in FMs to be consistent. We define a set of primitive
operations that modify FMs and which are responsible for the FM evolution, analyzing their impact on
the FM consistency. We propose a set of predefined strategies to keep the consistency for error-prone
operations.

As a proof-of-concept we present the results of our experiments, where we check for the effectiveness
and efficiency of our approach in FMs with thousands of features. Although our approach is limited by the
kinds of consistency constraints and the primitive operations we define, the experiments present a sig-
nificant improvement in performance results in those cases where they are applicable.
1. Introduction

Software product line (SPL) engineering has emerged as one of
the most promising software development paradigms for reducing
development costs, enhancing quality, and shortening time to mar-
ket (Clements & Northrop, 2001; Pohl, Bockle, & van der Linden,
2005; Sugumaran, Park, & Kang, 2006). An SPL is ‘‘a set of soft-
ware-intensive systems that share a common, managed set of fea-
tures satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets
in a prescribed way’’ (Clements & Northrop, 2001). Features are
essential abstractions of product characteristics relevant to cus-
tomers and are typically increments in product functionality
(Benavides, Segura, & Cortes, 2010; Kang, Lee, & Donohoe, 2002).
Every product or system of an SPL is represented by a unique com-
bination of features. All the products in an SPL are usually captured
in feature models (FMs) which describe the commonalities and vari-
abilities of systems in terms of features (Kang, Cohen, Hess, Novak,
& Peterson, 1990; Kang et al., 2002). An FM is a tree-like structure
: +86 21 34204728.
 ylwang@sjtu.edu.cn (Y. Wang),
ides).
that contains the relationships among features in a hierarchical
manner. Relationships can be of different kinds to remark which
are the choices a customer can make to build a customized
product.

As any other software systems, SPLs are subject to changes and
evolution along their lifecycle. Those changes can affect FMs
(Sugumaran et al., 2006). Even small changes to an FM could unin-
tentionally break its consistency (Guo & Wang, 2010; Thum, Ba-
tory, & Kastner, 2009). Here, the consistency of an FM means that
it remains well-formed (syntactic consistency) and it defines at least
a valid product (semantic consistency). For example, the removal of
a single feature from an FM, although could be valid from the point
of view of FM syntax, could invalidate other related features, which
must also be removed to make the resulting FM consistent. Incon-
sistency usually comes from contradictory constraints which im-
pede producing any valid product (von der MaBen & Lichter,
2004). Consistent FMs are needed to any further steps in SPL engi-
neering such as verifying product derivation (Lutz, 2008) or check-
ing for the consistency of product requirements (Lauenroth & Pohl,
2008). Therefore, guaranteeing the FM consistency is a mandatory
task in SPL development.

Many approaches have been proposed to automate the detec-
tion of inconsistencies in FMs (Benavides et al., 2010). They mostly

http://dx.doi.org/10.1016/j.eswa.2011.10.014
mailto:guojianmei@sjtu.edu.cn
mailto:ylwang@sjtu.edu.cn
mailto:ptrinidad@us.es
mailto:benavides@us.es
http://dx.doi.org/10.1016/j.eswa.2011.10.014
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

use SAT (Batory, 2005; Thum et al., 2009), BDD (Czarnecki &
Wasowski, 2007), or CSP solvers (Benavides, Martin-Arroyo, &
Cortes, 2005; Trinidad, Benavides, Duran, Ruiz-Cortes, & Toro,
2008) to automate the checking process. However, these ap-
proaches suffer from an NP-hard problem of feature combinatorics
and take a long time to perform with large FMs (Batory, Benavides,
& Ruiz-Cortes, 2006). Reports from industry have shown that prac-
tical FMs could have hundreds or thousands of features (Loesch &
Ploedereder, 2007; Steger et al., 2004), so existing approaches can
take hours or days to detect inconsistencies.

Moreover the information obtained from these detection mech-
anisms hardly assists domain analysts to resolve inconsistencies in
FMs. Existing approaches delegate the reparation of inconsistent
FMs to domain analysts who must use their experience to find
the best way to repair those FMs. The impact of performance and
manual reparation gets worse since FMs frequently change during
their evolution processes and the consistency of the resulting FMs
has to be checked after every change.

This paper approaches the problem of consistency maintenance
in FMs focusing on the changes since last version of an FM rather
than checking the overall consistency of the resulting FM. We as-
sume that the initial FM is consistent and study if a requested
change affects the consistency or not. In case an inconsistency is de-
tected, a set of additional operations are executed to restore the
consistency of the FM. For example, the removal of a single feature
X from an FM initially only affects those features that are directly
connected to it. To restore the consistency, the surrounding rela-
tions of feature X are removed. What if the removal of a relationship
generates a new inconsistency? In the worst case, the operation
derivation could propagate to the whole FM; but in most cases it
only affects a limited range, that is where the main improvement
in performance comes.

Our approach relies on ontology, which is a formal and explicit
specification of a shared conceptualization of a domain of interest
(Gruber, 1993). In our case we formalize FMs in Section 3, defining
the primitive elements of FMs and the syntactical and semantic con-
sistency constraints as the well-formedness rules of FMs. From this
formalization, in Section 4 we obtain a set of primitive operations
(Guo & Wang, 2010) which can represent any modification of an FM.

In Section 5 we apply and extend techniques from ontology
evolution (Haase & Stojanovic, 2005; Stojanovic, 2004) to propose
a systematical approach to consistency maintenance for evolving
FMs. A dependency matrix, indicating the cause and effect relation-
ships between changes, is built for supporting the derivation of
additional operations from the requested change. Then we analyze
the possible evolution strategies for all the primitive operations on
FMs and propose a sequence of interdependent operations derived
from the requested change to produce a unique consistent FM.

To demonstrate the realization of our approach, Section 6 pre-
sents the implementation of our approach based on FeatureIDE.1

Section 7 evaluates our approach by experiments on randomly gen-
erated FMs with thousands of features. Section 9 briefly analyses the
pros and cons of our approach and presents some future extensions
of our work.

In order to introduce the readers in the context of our work, we
complement our work with a brief definition of FMs in Section 2
and a discussion about the related work in Section 8.
2. Feature models background

In 1990, Kang et al. (1990) first proposed the original FMs (a.k.a.
FODA FMs). An FM is organized hierarchically and is graphically de-
picted as an AND-OR feature diagram (Kang et al., 1990). Cross-tree
1 http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide.
constraints are used to represent non-hierarchical composition
rules comprising mutual dependency (requires) and mutual exclu-
sion (excludes) relationships (Kang et al., 1990). Czarnecki, Helsen,
and Eisenecker (2005) proposed cardinality-based FMs where
cardinalities (a.k.a. multiplicities) were introduced. Batory (2005)
and Thum et al. (2009) distinguished among terminal (or concrete)
and non-terminal (or compound or abstract) features.

By integrating former definitions of FMs (Batory, 2005; Czarnecki
et al., 2005; Kang et al., 1990; Thum et al., 2009), we adopt the
notation as shown in Fig. 1, which is a partial FM for the Home Inte-
gration Systems (HIS) SPL inspired from (Benavides et al., 2005;
Kang et al., 2002). An FM is a tree of features. Every node in the tree
has one parent except the root feature (‘r: HIS’). A terminal feature
(e.g., ‘f4’) is a leaf and a non-terminal feature (e.g., ‘f1’) is an interior
node of a feature diagram (Batory, 2005; Thum et al., 2009). Connec-
tions between a feature and its group of children are classified as
And- (e.g., ‘f1’, ‘f2’, and ‘f3’), Or- (e.g., ‘f10’ and ‘f11’), and Alterna-
tive-groups (e.g., ‘f12’, ‘f13’, and ‘f14’). The members of And-groups
can be either mandatory (e.g. ‘f1’) or optional (e.g. ‘f3’). Or-groups
and Alternative-groups have their own cardinalities (Czarnecki &
Wasowski, 2007). Cross-tree constraints comprise requires and
excludes relationships (Kang et al., 1990), e.g., ‘f4 requires f7’.

Table 1 summarizes the semantics of FMs in propositional for-
mulas. P represents a non-terminal feature and C1, . . .,Cn are its
child features. If the child features forms an And-group, then
M # {1, . . .,n} denotes the mandatory features by their index. If a
feature is selected, so too is its parent. If the parent is selected,
all of its mandatory children of an And-group are selected; in
Or-groups, at least one child must be selected, and in Alterna-
tive-groups, exactly one child is selected. Using the rules given in
Table 1, an FM can be easily translated into a propositional formula
with a variable for each feature.

3. Ontology-based formalization and consistency constraints

3.1. An ontology-based formalization of FMs

The representational primitives defined in ontology (Gruber,
2008) are typically concepts (classes) and properties. Each property
must have at least one domain concept, while its range may either
be a literal (attributes), or a set of at least one concept (relations).
The definitions of the representational primitives include informa-
tion about their meaning and constraints on their logically consis-
tent application, which makes ontology work at the semantic level.
Based on the ontology structure and the application context of
FMs, we formalize FMs as follows.

Definition 1. An FM is defined as a 5-tuple:

FM ¼ ðC;R;A;Domain;RangeÞ

where:

� C (–;) is the set of concepts in the FM. C = F [FG. F (–;) is the set
of features in the FM. FG (–;) is the set of feature groups.
FG = FGAN [FGAL [FGOR. FGAN is the set of And-groups; fgAN is an
element of FGAN, i.e., an And-group. FGAL is the set of Alterna-
tive-groups. FGOR is the set of Or-groups. (1) F = {root} [NF [TF.
root is the root feature. NF (–;) is the set of non-terminal features.
TF (–;) is the set of terminal features. (2) F = {root} [FAN [FAL [
FOR. FAN, FAL, and FOR denote the set of features in all
And-groups, in all Alternative-groups, and in all Or-groups
respectively. Take the FM shown in Fig. 1 for example, root = ‘‘r’’;
‘‘f1’’ 2 NF; ‘‘f4’’ 2 TF; fgAN1 = {‘‘f1’’, ‘‘f2’’, ‘‘f3’’}, fgAN1 2 FGAN; FGAL =
{‘‘fgAL1’’}, fgAL1 = {‘‘f12’’, ‘‘f13’’, ‘‘f14’’}. FOR = fgOR1 = {‘‘f10’’, ‘‘f11’’}.

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide

r: HIS

f1: Detection (Det) f2: Monitor (Mon) f3: Service

f4: Fire Det

f5: Intrusion Det

f6: Flood Det f7: Smoke Mon

f8: Motion Mon

f9: Moisture Mon
f11: Video

on demand
f10: Internet

connection

f13: ADSL f14: Wirelessf12: Power Line

Mandatory feature

Alternative-group

Or-group
f4 requires f7. f5 requires f8. f6 requires f9.

Constraints:

And-groupNon-terminal feature

Terminal feature

Optional feature [1..n] Cardinality

[1..1]

[1..2]

Fig. 1. A partial FM for the HIS SPL.

Table 1
FM Semantics in propositional formulas.

FM primitives Semantics

Optional child C1 ? P
Mandatory child C1 M P
And-group (P ?

V
i2M Ci) ^ (

W
16i6nCi ? P)

Or-group P M
W

16i6n Ci

Alternative-group P $
W

16i6nCi
� �

^
V

i<jð:Ci _ :CjÞ
f1 requires f2 f1 ? f2
f1 excludes f2 :ðf 1 ^ f 2Þ
� R is the set of relations in the FM. R = Parent [Req [Excl. Par-
ent # F � F returns the parent of a given feature. It also forms
an acyclic relation called feature hierarchy. If (f1, f2) 2 Parent, then
f1 is a child of f2, f2 is the parent of f1. Parent⁄ is the reflexive, anti-
symmetric, and transitive closure of Parent. Req # F � F encodes
the F–F requires constrains; Excl # F � F encodes the F–F excludes
constrains. For example, (‘‘f1’’, ‘‘root’’) 2 Parent; (‘‘f4’’, ‘‘f7’’) 2 Req.
� A is the set of attributes in the FM. A = Opt [Mincard [Maxcard.

Opt : FAN ! B denotes the optionality of a given feature in an
And-group, B ¼ ftrue; falseg. If Opt(f) returns true, f is optional,
otherwise mandatory. For example, Opt(‘‘f3’’) = ‘‘true’’. Mincard :

FGAL [FGOR ! N0 and Maxcard : FGAL [FGOR ! N0 [f1g return
the cardinality for a given Or- or Alternative-group. For example,
Mincard(‘‘fgOR1’’) = ‘‘1’’,Maxcard(‘‘fgOR1’’) = ‘‘2’’.
� Domain: R [A ? 2C and Range: R [A ? 2C [L give the set of

domain (�2C) or range (�2C [L) for some relation r(2R) or some
attribute a(2A). Here, L denotes literal values of attributes. For
example, Domain(Req(f4,f7)) = {f4}, Range(Req(f4, f7)) = {f7};
Domain(Opt(f3)) = {f3}, Range(Opt(f3)) = {true}.

3.2. Consistency constraints of FMs

We summarize 13 consistency constraints of FMs in terms of
the syntax and semantics of FMs. These consistency constraints
form a feature consistency model (FCM):

FCM ¼ fCCi;1 6 i 6 13g:

The following set of constraints is by no means an exhaustive
list of consistency constraints for FMs, but it lays a foundation
for constructing and maintaining a consistent FM. We can define
a decision function consistency(FM) to judge whether a given FM
is consistent or not.
consistencyðFMÞ ¼
true; if an FM conforms to the FCM

false; otherwise

�

3.2.1. Syntactical consistency constraints
Schobbens, Heymans, and Trigaux (2006), Schobbens, Heymans,

Trigaux, and Bontemps (2007), Metzger, Heymans, Pohl, and Saval
(2007) defined a formal semantics of FMs and several well-formed-
ness rules of FMs based on Free Feature Diagrams (FFD). We extend
their well-formedness rules and summarize 10 syntactical consis-
tency constraints (CC1–CC10) based on the ontology-based formal-
ization of FMs.

CC1 (Distinct Identity Constraint). Every concept has a distinct
identity:
ðNF \ TF \ frootg ¼ ;Þ ^ ðFGAN \ FGAL \ FGOR \ frootg
¼ ;Þ ^ ðFAN \ FAL \ FOR \ frootg ¼ ;Þ:
CC2 (Feature Hierarchy Constraint). The feature hierarchy is a
directed acyclic graph:
:9f 2 F � ðf ; f Þ 2 Parent�:
CC3 (Root Constraint). There is a unique feature root 2 F that is
the direct or indirect parent of all other feature in F.
9root 2 F � ð8f 1 2 F n frootg � ðf 1; rootÞ 2 Parent�Þ ^ ð:9f 2

2 F � ðroot; f 2Þ 2 Parent�Þ:
CC4 (Feature-Closure Constraint). Every feature except root has
one parent feature:
8f 1 2 F n frootg � 9f 2 2 F � ðf 1; f 2Þ 2 Parent:
The constraint CC4 prevents the existence of the orphaned fea-
tures. For example, the removal of the Parent relationship between
the feature ‘‘f1’’ and the feature ‘‘r’’ in Fig. 1 would cause no parent
feature to be defined for the feature ‘‘f1’’ any longer, which has to
be prevented or resolved.

CC5 (Relation-Closure Constraint). Any relation (2R) must be
built between two legal features:
8f 1 � 8f 2 � ðf 1; f 2Þ 2 R! f 1 2 F ^ f 2 2 F:

CC6 (Attribute-Closure Constraint). Any attribute (2A) must be
built between a legal features and a literal value (2L):
8f 1 � 8l � ðf 1; lÞ 2 A! f 1 2 F ^ l 2 L:
(a) (b) (c)
Fig. 2. Examples of semantic inconsistencies of FMs.
The constraints CC5 and CC6 demand that any relation (2R) or
any attribute (2A) must be established only between two right ob-
jects. For example, the addition of the Req relationship between the
features ‘‘f8: Motion Monitor’’ and ‘‘Camera Surveillance’’ would
provoke an inconsistency because the latter is not yet defined as
a legal feature (2F).

CC7 (Domain-Closure Constraint). The Domain concept can be
established between a relation and a concept or between
an attribute and a concept:
8c � 8ra � c 2 DomainðraÞ ! c 2 C ^ ðra 2 R [AÞ:
CC8 (Range-Closure Constraint). The Range concept can be
established between a relation and a concept or between
an attribute and a literal:
8cl � 8ra � cl 2 RangeðraÞ ! ðcl 2 C ^ ra 2 RÞ _ ðcl 2 L ^ ra 2 AÞ:
CC9 (Cardinality-Closure Constraint). Cardinality must be spec-
ified for Alternative- or Or-groups:
8fg �MincardðfgÞ _MaxcardðfgÞ ! fg 2 FGAL [FGOR;
CC10 (Cardinality Constraint). Cardinality must be well-formed:
8fg 2 FGAL �MincardðfgÞ ¼ 1 ^MaxcardðfgÞ ¼ 1;

8fg 2 FGOR �MincardðfgÞP 1 ^MincardðfgÞ 6 MaxcardðfgÞ
6 kfgk:
The constraints CC9 and CC10 reflect cardinality-based feature
modeling (Czarnecki et al., 2005). They formulate the Alterna-
tive-group and Or-group relationships through a set of well-
formed rules about cardinality.

3.2.2. Semantic consistency constraints
von der MaBen and Lichter (2004) presented four situations

that lead to semantic inconsistencies in FMs: (1) exclusion be-
tween full-mandatory features; (2) exclusion between relative-
full-mandatory features; (3) implication between alternative child
features; (4) exclusion and implication. We extend their work and
introduce two concepts.

Definition 2 (Mandatory path). We define a path between a
mandatory feature X and the root feature in an FM as a mandatory
path MandPath (X) where every intermediate node (feature) is
either a mandatory feature in an And-group or the sole child in an
Alternative- or an Or-group.
Definition 3 (Requires chain). Due to the transitivity of the Req
relationship, we define a chain from the start node (feature) S to
the end node T as a requires chain ReqChain(S,T) where all nodes
are connected by the Req relationship to each other.

Thus the first two inconsistent situations presented by von der
MaBen and Lichter (2004) are merged and extended to the exclu-
sion between any two features in one same or two different man-
datory paths. Their fourth inconsistent situation (von der MaBen &
Lichter, 2004) is extended to the exclusion between any two fea-
tures in a requires chain. Examples of extended inconsistencies
of FMs are shown in Fig. 2. Correspondingly, we summarize three
semantic consistency constraints (CC11–CC13) as follows.
CC11 (Excl-MandPath Constraint). Any two features in one same or
two different mandatory paths of an FM cannot have the Excl
relationship. Counter examples are shown in Fig. 2(a).
8f 1; f 2;X;Y 2 F � :9ðExclðf 1; f 2Þ ^ ðf 1 2 MandPathðXÞ ^ ðf 2 2
MandPathðXÞ _ f 2 2 MandPathðYÞÞÞÞ.

CC12 (Req-Alternative Constraint). Any two child features in an
Alternative-group cannot have the Req relationship. A coun-
ter example is shown in Fig. 2(b).
8fgAL 2 FGAL � 8f 1; f 2 2 fgAL � :9ðReqðf 1; f 2Þ _ Reqðf 2; f 1ÞÞ.

CC13 (Excl-ReqChain Constraint). Any two features in a requires
chain cannot have the Excl relationship. A counter example
is shown in Fig. 2(c).8f 1; f 2 2 F � :9ðReqChainðf 1; f 2Þ^
ðExclðf 1; f 2ÞÞÞ.

4. Changes to feature models

Based on the above formalization of FMs, we can easily obtain
the primitive elements of FMs, which include concepts (non-termi-
nal features, terminal features, feature groups), relations (parent, re-
quires, excludes) and attributes (name, group type, optionality,
cardinality) of FMs. Since each primitive element of FMs can be
changed by one of the meta-change transformations (Huersch,
1997; Rundensteiner, Leem, & Ra, 1998), we suggest a set of prim-
itive operations on FMs in Table 2 (Guo & Wang, 2010). These oper-
ations are defined by the cross product of the set of FM primitive
elements and the set of meta-changes (‘Add’, ‘Remove’, and ‘Set’).
They represent the changes to FMs at the lowest level of complex-
ity and can compose various complex change operations such as
the 16 operations for refactorings and generalizations of FMs
(Alves et al., 2006) and the 5 operations for arbitrary edits to
FMs (Thum et al., 2009).

Further, we formalize changes to FMs as follows.

Definition 4. A change to FMs Ch is a 4-tuple:

Ch ¼ ðname; args; preconditions; postconditionsÞ

where:

� name is the identifier of a change. Table 2 lists all the names of
primitive operations. In the following chapters, we simplify the
notation of changes as name (args).
� args 2 (C [R [A [L)n,1 6 n 6 3, is a list of one or more change

arguments. A change could have one, two, or three arguments.
Take the FM shown in Fig. 1 for example, to remove the non-ter-
minal feature ‘‘f1’’ from the FM, the change RevNF has only one
argument ‘‘f1’’. To modify the name of the node ‘‘r’’, the change
SetName(‘‘r’’, ‘‘Home Integration Systems’’) is applied. The change
AddRL(‘‘rl4–7’’, ‘‘f4’’, ‘‘f7’’) is applied to add a requires link ‘‘rl4–7’’
between the features ‘‘f4’’ and ‘‘f7’’.
� Preconditions of a change comprise a set of assertions that must

be true to be able to apply the change. If a precondition fails, a
change is never performed. For example, the precondition for
RevNF(‘‘nf’’) is nf 2 NF.

Table 2
Primitive operations on FMs.
� Postconditions of a change comprise a set of assertions that must
be true after applying a change. They describe the effect of a
change. For example, the postcondition for RevNF(‘‘nf’’) is nf R NF.

For example, a full definition of the change RevNF can be as
follows:
Change
F

Remove non-terminal feature
Syntax
 RevNF(‘‘nf’’)

Semantics
 Remove a non-terminal feature ‘‘nf’’ from an

FM

Preconditions
 nf 2 NF

Postconditions
 nf R NF
Similarly, the preconditions and postconditions for other
changes can also be deduced according to general logical con-
straints and the consistency constraints defined above. Two deci-
sion functions are defined as follows:

preconditionsðFM;ChÞ¼
true; if an FM satisfies the preconditions

of a Ch

false; otherwise

8><
>:

postconditionsðFM;ChÞ ¼
true; if an FM satisfies the postconditions

of a Ch

false; otherwise

8><
>:
5. Semantics of change

The evolution of FMs can be seen as a sequence of interdepen-
dent changes to FMs (Guo & Wang, 2010). Such changes are
ig. 3. Applying a change Ch to an FM.
composed of a set of primitive operations defined in Table 2. A
change to FMs can be seen as a mapping between FMs. As shown
in Fig. 3, given an FM and a requested change Ch, the application
of the change Ch to the FM results in another FM0, i.e., FM0 = Ch(FM),
under preconditions(FM,Ch) = true ^ postconditions(FM0,Ch) = true.

Since the application of a single change will not always leave an
FM in a consistent state, it often derives a series of additional
changes. Hence, the resolution of the requested change requires
obtaining and executing these derived changes to maintain the
consistency of the FM. Thus:

Definition 5. Given an FM and a requested change Ch, the
semantics of change to FM is defined as:

SemanticsOfChangeðFM;ChÞ ¼ ðCh1
; . . . ; Chi

; Chiþ1
; . . . ;Chn�1Þ

where:

� FM is a given consistent FM, i.e., consistency(FM) = true;
� Ch is a requested change that can be applied to the FM, i.e.,

preconditions(FM,Ch) = true;
� FM1 = Ch(FM) is an FM representing the result of applying the

requested change Ch to the FM, i.e., postconditions(FM1,Ch) = true;
� Chi, 1 6 i 6 n � 1, is a derived change that satisfies the following

set of conditions:

– FMi+1 = Chi(FMi), which implies that preconditions(FMi,Chi) =
true and postconditions(FMi+1, Chi) = true;
– consistency(FMi) = false, 1 6 i 6 n � 1, and consistency(FMn) =
true.

Thus, as shown in Fig. 4, the final result of applying and resolv-
ing the requested change Ch to the FM is the FM0:

FM0 ¼ FMn ¼ Chn�1ð. . . Chiþ1ðChið. . . Ch1ðChðFMÞÞÞÞÞ:

Next, how to find and organize these derived changes that re-
solve the requested change and maintain the consistency of the
FM? It is impractical to demand for domain analysts to track down
and keep in mind all the changes that are pending. Hence, we
adopt the procedural approach (Stojanovic, 2004) to realize the
task automatically. The procedural approach comprises five steps
(Stojanovic, 2004): first, a request is represented as a series of
primitive operations defined in Table 2; second, the illegal
operations are prohibited by checking the preconditions of each

Fig. 4. The semantics of change to an FM.
operation; third, additional operations are derived from the re-
quested operations for keeping consistency; fourth, the execution
order of the requested and derived operations is determined; fifth,
all the confirmed operations are applied to the FM. Among the
above steps, the third and the fourth steps are the key to consis-
tency maintenance of FMs, other steps are straightforward. Hence,
we explain how to implement the two steps as follows.
Table 3
The dependency matrix Dependency[i][j].

(a)
Fig. 5. Operation templates generated by the dependency matrix. (a) The general operatio
change RevNF(‘‘f10’’) in the FM shown in Fig. 1.
5.1. Dependency matrix

We analyze the cause and effect relationship between primitive
operations on FMs and build the dependency matrix to conduct the
derivation of additional operations from a requested operation. As
shown in Table 3, the rows and columns of the matrix list all the
primitive operations defined in Table 2. If an element of the matrix
(b)
n template for resolving the change RevNF. (b) A concrete template for resolving the

(a) (b) (c) (d)
Fig. 6. Three evolution strategies for resolving the operation ‘‘RevNF’’. (a) Applying the RevNF(‘‘f10’’) alone to the FM shown in Fig. 1. (b) All children are removed. (c) All
children are reconnected to the parent. (d) All children are reconnected to another non-terminal feature.

(a)

(b)
Fig. 7. Two evolution strategies for removing a feature in a Req link. (a) Remove the domain. (b) Remove the range.

J. Guo et al. / Expert Systems with Applications 39 (2012) 4987–4998 4993
Dependency[Chi][Chj] is blank, it means that the operation Chi that
is assigned to the row i can never induce the operation Chj denoting
the column j. Otherwise, the operation Chi could generate the oper-
ation Chj when their necessary preconditions and postconditions
are fulfilled. The symbol ‘‘X’’ is used as the replacement for all
the conditions.

Most of the cause and effect relationships between primitive
operations are deduced in terms of the consistency constraints de-
fined in the FCM. The principles for generating the dependency ma-
trix are as follows. First, an operation on a concept would affect the
related attributes and relations of the concept. For example, since
the RevNF operation causes the removal of all ‘‘edges’’ pointing to
the feature or from it, the operations ‘‘RevPL’’, ‘‘RevRL’’, and ‘‘RevEL’’
are triggered. Second, an operation on an attribute such as the
operations ‘‘SetName’’, ‘‘SetOpt’’, and ‘‘SetCard’’ do not initiate
additional operations because they do not affect other elements
but their own literal values. However, the operation ‘‘SetGT’’ is a
special case because it would affect the logical structure of some
feature group and thus could cause the operations ‘‘SetOpt’’ and
‘‘SetCard’’.

According to the dependency matrix, an operation would cause
a set of additional operations. Further, each of these derived oper-
ations would cause another set of operations. Such operation der-
ivation continues to propagate until there is no more new derived
operations. All of these derived operations can form a general oper-
ation template for resolving a certain operation. Fig. 5(a) shows a
general multilevel operation template for resolving the change
RevNF. The general template would be trimmed as a concrete tem-
plate when applying to a practical scenario and its operations
would be parameterized. Fig. 5(b) demonstrates a concrete opera-
tion template for resolving the change RevNF (‘‘f10’’) in the FM
shown in Fig. 1. The execution order indicated by the sequence
number does not matter very much, but we often handle the oper-
ations from outer level to inner and aggregate similar operations.
2 An implementation of our approach is available in http://code.google.com/p/
fmconmain/.
5.2. Evolution strategy

Most of the primitive operations on FMs can be directly re-
solved based on the operation templates generated by the depen-
dency matrix. For example, all of the ‘‘Add’’ and ‘‘Set’’ operations
defined in Table 2 can be executed straightforwardly once domain
analysts determine right parameters. The operations ‘‘RevRL’’ and
‘‘RevEL’’ can also be executed directly. However, the other four ‘‘Re-
move’’ operations cannot be resolved automatically by the depen-
dency matrix and often need extra decision making by domain
analysts. For example, after executing the operations ‘‘RevFG’’ or
‘‘RevTF’’, domain analysts must determine how to handle those
non-terminal features at leaf position. Executing the operations
‘‘RevNF’’ or ‘‘RevPL’’ is more complex because domain analysts
must determine how to handle the remaining orphaned part of
the resulting FM. For these four operations, the operation tem-
plates often provide multiple choices, e.g., the step 7 in Fig. 5(a)
and the step 5 in Fig. 5(b). Therefore, evolution strategies are intro-
duced to direct how to execute these operation and their derived
operations resulting not in an arbitrary consistent state.

An evolution strategy unambiguously defines the way in which
a change will be resolved. It generally formulates an ordered se-
quence for the requested change and its derived changes, i.e., the
sequence ‘‘Ch,Ch1, . . .,Chi�1,Chi, . . .,Chn�1’’ shown in Fig. 4. Take
the operation ‘‘RevNF’’ for example, there are three evolution strat-
egies: removing all children, reconnecting all children to its parent,
reconnecting all children to another non-terminal feature. Fig. 6
demonstrates the three evolution strategies for resolving the
change RevNF (‘‘f10’’) in the FM shown in Fig. 1. Domain analysts
can choose a particular evolution strategy in order to tailor the
evolution of FMs to suit their needs. Resolving the operation ‘‘Rev-
PL’’ can also apply these three evolution strategies. Resolving the
operations ‘‘RevFG’’ and ‘‘RevTF’’ often needs adding additional fea-
tures as terminal features.

In addition, two evolution strategies are used for resolving the
‘‘RevTF’’ or ‘‘RevNF’’ operations on the Req links. As shown in
Fig. 7, for the situation (b), i.e., ‘‘f1 requires f2’’, ‘‘f2’’ cannot be re-
moved arbitrarily. In this case, domain analysts would be warned
that the requested change could be an illegal operation. If domain
analysts confirm the requested change, then they can first remove
the link ‘‘Req(f1, f2)’’ and then remove the feature ‘‘f2’’.
6. Implementation

We implemented our approach2 based on FeatureIDE, which is
an open-source Eclipse-based IDE that supports building program

http://code.google.com/p/fmconmain/
http://code.google.com/p/fmconmain/

Fig. 8. Extended FM editor based on FeatureIDE.

Fig. 9. Evolution strategies implementation.
families following the AHEAD3 architecture model and provides tools
for the feature oriented design process and the implementation of
SPLs. An extended FM editor based on FeatureIDE is shown in
Fig. 8. It provides users with two views of FMs: tree view and hier-
archy view. Users can input the keyword of some feature and then
locate it. Attributes of features and feature groups, defined in Table 2,
can be easily edited. Constraints also have a separate view and an
edit area.
3 http://userweb.cs.utexas.edu/users/schwartz/.
Evolution strategies are implemented by an interactive man-
ner. For example, if the change RevNF (‘‘f10: InternetConnection’’)
is applied in the FM shown in Fig. 1, a dialog box (as shown in
Fig. 9(a)) is displayed for users to choose an evolution strategy.
Users can choose to remove all children of the feature ‘‘f10’’ (the
evolution strategy defined in Fig. 6(b)) or to reconnect these chil-
dren to another non-terminal feature (the evolution strategies de-
fined in Fig. 6(c) and (d)). If the latter is chosen, the dialog box is
extended to prompt users to input the target feature, as shown in
Fig. 9(b). Note that the target feature group and the children
group of the removed feature could have different group type,

http://userweb.cs.utexas.edu/users/schwartz/

so users must confirm a certain group type to merge the two fea-
ture groups.
Fig. 10. Calculation time in milliseconds for different scales of FMs using
consistency checking (Sat4j and Guidsl) and consistency maintenance (our
approach).

4 http://www.sat4j.org.
5 http://userweb.cs.utexas.edu/schwartz/ATS/fopdocs/guidsl.html.
7. Evaluation

According to Stojanovic (2004), the computation complexity
of resolving a change to FMs (e.g., RevNF) is about O(nm) where
m is the average depth of the feature hierarchy starting from the
considering feature and n the average number of child features.
Generally, m and n are not large numbers because FMs usually
contain limited layers and limited children for one feature. Thus,
we make a preliminary evaluation that our approach accom-
plishes the consistency maintenance of evolving FMs in an
acceptable time.

Further, we give more comprehensive evaluation by experi-
mental studies. Although industries reported FMs with hundreds
or thousands of features (Loesch & Ploedereder, 2007; Steger
et al., 2004), authors typically published only a small excerpt of
their FMs. Large FMs are difficult to find for a thorough evaluation.
Thus, we adopt Thum’s method (Thum et al., 2009) to perform
experiments using randomly generated FMs with different
characteristics.

7.1. Experimental setup

We first generated FMs randomly and then performed a set of
primitive operations (defined in Table 2) randomly on the gener-
ated FMs. Based on the dependency matrix, a set of additional
operations are derived automatically from the requested opera-
tions. Further, according to predefined evolution strategies, the de-
rived operations are executed automatically to maintain the
consistency of those changed FMs. During the above process, we
parametrically control the size of FMs, the number and kind of
operations, and the kind of evolution strategies for a thorough run-
time evaluation.

Independent parameters in our experiment are (a) the num-
ber of features in an FM, (b) number of operations, (c) kind of
operations, (d) kind of evolution strategies. The time needed to
perform the requested and derived operations is measured as a
dependent variable. To reduce the fluctuations in the dependent
variable caused by the random generation, we performed 200
repetitions for each configuration of independent parameters,
i.e., we generated 200 random FMs with the same parameters
and each performed the same number of random operations
of the same kind. All measurements were performed on the
same Windows 7 PC with Intel Core Duo CPU 1.5 GHz and
3 GB RAM.

7.1.1. Feature models generation
The algorithm to randomly generate FMs of size n is as follows

(Thum et al., 2009): starting with a single root node, it runs several
iterations. In each iteration, an existing node without children is
randomly selected, and one to ten (random amount) of child nodes
are added. Those child nodes are connected either by And- (50%
probability), Or- (25% probability) or Alternative-group (25% prob-
ability). Children in an And-group are optional by a 50% probabil-
ity. This iteration is continued until the FM has n features. All
features with children are considered non-terminal. Moreover,
we also generate cross-tree constraints (requires and excludes).
For every 10 features, one constraint is generated by the following
algorithm: two different features are randomly selected, and then
are connected randomly by requires (50% probability) or excludes
(50% probability) link.

The above generated FMs can be easily translated into proposi-
tional formulas according to the rules give in Table 1. We use the
SAT solver sat4J4 to validate these FMs and discard all FMs that do
not have a single valid configurations (mostly by unfortunate choice
of cross-tree constraints). We repeat the entire process until the
appropriate number of valid FMs are generated.

We fixed the following parameters: maximum number of chil-
dren = 10; type of child group = (50%,25%,25%); optional
child = 50%; number of cross-tree constraints = 0.1 ⁄ n; variables
in cross-tree constrains = 2. According to Thum’s survey (Thum
et al., 2009), these parameters are backed up by most of the sur-
veyed FMs and represent a rough average. Thus, these generated
FMs basically reflect the characteristics of realistic FMs.

7.1.2. Operation generation
We randomly generated operations on an FM as well. Our

generator takes an FM and the number of operations as input.
The 20 primitive operations defined in Table 2 are implemented.
They are classified as three main types: ‘add’, ‘remove’, and
‘set’. Our generator can limit the kind of input operations to
‘add’, ‘remove’, ‘set’, or ‘arbitrary’. For a fixed number of input
operations, ‘arbitrary’ operations are composed of ‘add’ (33%
probability), ‘remove’ (33% probability), and ‘set’ (33% probabil-
ity) operations.

7.2. Experimental results and discussion

7.2.1. Effectiveness
We first verify whether our approach can ensure the consis-

tency of the resulting FMs after the requested changes are
resolved. We varied the size of the generated FMs between 10
and 10,000 features. For each FM, we performed 10 random arbi-
trary operations. 200 repetitions are performed for each model
size. Each resulting FM is checked by Sat4j and Guidsl. Guidsl5 is
a tool developed by Batory (2005) that relies on grammars defini-
tion and propositional logic to support feature modularizations
and their compositions. Results show that all the resulting FMs gen-
erated by our approach are validated by Guidsl and Sat4j. Therefore,
our approach can effectively maintain the consistency of evolving
FMs.

7.2.2. Number of features
In the same experimental setting as the above experiment, we

also measured how calculation time scales as FMs increase in size.
We also perform 10 random arbitrary operations on each FM

http://www.sat4j.org
http://userweb.cs.utexas.edu/schwartz/ATS/fopdocs/guidsl.html

Fig. 11. Calculation time in 0.01 ms for different kinds of operations.

Fig. 12. Calculation time in 0.01 ms for different number of operations on an FM
with 1000 features.

Fig. 13. Calculation time in 0.01 ms for different evolution strategies of the ‘‘RevNF’’
operation.
whose size varies from 10 to 10,000. That is repeated 200 times
and we only take the mean value. Fig. 10 shows the results of this
measurement.

To obtain a consistent FM from the requested operations on an
original FM, previous approaches to ensuring the consistency of
FMs mostly execute the operations first and then check the consis-
tency of the resulting FM. During the process, most of the time is
spent on consistency checking using various off-the-shelf solvers.
Instead, our approach directly resolves the requested operations
on the original FM and preserves the consistency of the resulting
FM by construction. Fig. 10 compares the calculation time (the
mean value for 200 repetition) to generate a consistent FM from
10 random operations on an original FM whose size varies from
10 to 10,000 using these two approaches. Here, we use Guidsl
and Sat4j to check the consistency of the resulting FM.

For small FMs (<500 features), there is no marked difference
among the calculation time for the three cases. For large FMs
(1000 features), our approach has better efficiency than previous
approaches using Guidsl and Sat4j. Even for very large FMs with
up to 10,000 features, our approach only spends 7.2 ms.

7.2.3. Kind of operations
We performed the same measurement varying the model size

from 10 to 10,000, but distinguished different kinds of operations.
We distinguished between four kinds of operations: ‘add’, ‘remove’,
‘set’, and ‘arbitrary’. Again we applied 10 random operations of this
classification (i.e., 10 adds, 10 removes, 10 sets, or 10 arbitrary
operations) to each FM.

Fig. 11 shows the results of our measurement (mean value of
200 repetitions for each combination of FM size and kind of oper-
ations). The ‘remove’ operations spend the most time and the ‘set’
operations spend the least. There is not much difference between
‘remove’ and ‘add’ operations. The calculation time of ‘arbitrary’
operations is in the middle of that of the other three kinds of
operations.

7.2.4. Number of operations
We measured the calculation time when fixing the FM size to

1000 features and varying the number of operations from 0 to
100. Again we distinguished between the four kinds of operations:
‘add’, ‘remove’, ‘set’, and ‘arbitrary’.

Fig. 12 shows the results of our measurement (mean value of
200 repetitions for each combination of the number and kind of
operations in an FM with 1000 features). The ‘set’ operations still
spend the least time and increase slowly with rising number of
operations. The ‘add’, ‘remove’, and ‘arbitrary’ operations spend
similar time. Their calculation time increases markedly with rising
number of operations.

7.2.5. Kind of evolution strategies
We measured the calculation time varying the FM size from 10

to 10,000 for different kinds of evolution strategies. We distin-
guished between three evolution strategies for removing a non-
terminal feature (the ‘‘RevNF’’ operation): removing all children,
reconnecting the children to the parent, and reconnecting the chil-
dren to another non-terminal feature, as shown in Fig. 6(b)–(d). For
each situation, we applied 10 ‘‘RevNF’’ operations with random
operation objects to each FM.

Fig. 13 shows the results of our measurement (mean value of
200 repetitions for each combination of FM size and each kind of
evolution strategy). There is no significant difference between
the three evolution strategies in simulation environment. But in
practice, only the first evolution strategy can be implemented
automatically, as shown in Fig. 9(a). The execution of the last
two evolution strategies requires users’ interactive participation,
as shown in Fig. 9(b).

7.3. Discussion and threats to validity

Experiments show that our approach works effectively and effi-
ciently for large FMs. Mostly independent from the kind and num-
ber of operations, our approach can generate a consistent resulting
FM in less than 0.1 second even for very large FM (up to 10,000 fea-
tures). This comfortably allows an implementation in our extended
FM editor that shows how to resolve a change to an FM on the fly
and maintain the consistency of the FM at runtime.

Threats to internal validity are influences that can affect the cal-
culation time that have not been considered. We cannot guarantee
that computation time depends on certain shapes of an FM, or

certain kinds of operations. Especially, we cannot guarantee ‘‘Arbi-
trary’’ operations are composed of ‘‘Add’’, ‘‘Remove’’, and ‘‘Set’’
operations exactly in the proportion of 1:1:1. Since the calculation
time for ‘‘Add’’ and ‘‘Remove’’ operations is markedly greater than
that for ‘‘Set’’ operations, the uneven proportion of the three kinds
of operations could cause fluctuation in the calculation time for
‘‘Arbitrary’’ operations. However, to avoid effects of certain FMs,
all of input FMs are generated automatically by simulating known
FMs and each measurement is repeated 200 times with freshly
generated FMs.

Threats to external validity are conditions that limit our ability
to generalize the results of our experiment to industrial practice.
First, we generated FMs with the described algorithm and param-
eters, and confirmed that they align well with those known FMs
acquired from existing publications in SPL community. Second,
we generated a set of primitive operations on FMs by the cross
product of all of FM primitive elements and a set of meta-changes
(‘‘Add’’, ‘‘Remove’’, and ‘‘Set’’). We cannot guarantee these primi-
tive operations are complete and typical in practice, however all
reasonable operations we wanted to perform in our manual exper-
iments, including the high-level operations defined by Alves et al.
(2006), Thum et al. (2009), could be performed with one or a se-
quence of these operations.
8. Related work

Many formalizations and notations of FMs have been proposed
(Batory, 2005; Czarnecki et al., 2005; Kang et al., 1990). Schobbens
et al. formalized feature diagrams and detailed their generic
semantics through a generic construction called Free Feature Dia-
grams (Metzger et al., 2007; Schobbens et al., 2006, 2007). How-
ever, there is a lack of detailed discussions about operations on
FMs and their interrelationships. We give a new formalization of
FMs from an ontological perspective. Based on this, we can easily
obtain the primitive elements of FMs and then generate a set of
primitive operations on FMs.

Some researchers classified the modifications of FMs as special-
izations (Czarnecki et al., 2005), refactorings (Alves et al., 2006),
generalizations (Alves et al., 2006; Thum et al., 2009), or arbitrary
edits (Thum et al., 2009). Czarnecki et al. (2005) introduced spe-
cializations for deriving configurations of an FM, which result in
FMs where some products are deleted. Janota and Kiniry (2007)
formalized specifications between two FMs having the same set
of features. Alves et al. (2006) discussed refactorings and general-
izations that maintain the set of products or add new products to
an SPL. They also suggested 16 operations for refactorings and gen-
eralizations. Thum et al. (2009) complemented five additional
operations for arbitrary edits. These operations work at a high level
to explain the effects of FM evolution, but they are still not enough
to explain the details of the FM evolution process. That is, how one
changes an FM X into a target FM Y using a sequence of concrete
and sound operations is still not obvious. We suggest a set of prim-
itive operations on FMs by the cross product of all of FM primitive
elements and three meta-changes. We do not think primitive oper-
ations are better than those aggregated or high-level operations
because primitive operations could aggravate the consistency
problem (many primitive operations will necessarily leave an FM
in an inconsistent state). However, primitive operations are fit to
explain the details of resolving a requested change to an FM and
maintaining the consistency of the FM.

von der MaBen and Lichter (2004) proposed a framework for
describing deficiencies of FMs. They characterized inconsistency
as one of the most severe deficiencies of FMs. They also identified
four situations that lead to semantic inconsistencies of FMs. Based
on their work and Schobbens et al.’s (Metzger et al., 2007;
Schobbens et al., 2006, 2007), together with our ontology-based
formalization of FMs, we define a set of syntactical and semantic
consistency constraints as the well-formedness rules of FMs.

Many approaches focus on automated analysis of deficiencies of
FMs (Benavides et al., 2010). Mannion (2002) first used proposi-
tional formulas to analyze FMs. Batory (2005) proposed an ap-
proach to debugging FMs using off-the-shelf SAT solvers.
Czarnecki and Wasowski (2007) applied BDD tools to analyze
FMs. Benavides et al. (2005) first adopted constraint programming
to analyze FMs. Wang, Li, Sun, Zhang, and Pan (2005) first proposed
the automated analysis of FMs using description logic. These ap-
proaches mostly use SAT (Batory, 2005; Thum et al., 2009), BDD
(Czarnecki & Wasowski, 2007), CSP solvers (Benavides et al.,
2005), or description logic reasoning engines (Wang et al., 2005)
to automate various reasoning tasks, e.g., checking satisfiability,
detecting ‘‘dead’’ features, computing commonalities. They, how-
ever, suffer from the NP-hard problem of feature combinatorics
and thus take a long time to perform with large FMs (Batory
et al., 2006). Moreover, these approaches only focus on the check-
ing of deficiencies of FMs. Our approach resolves the possible
inconsistencies caused by the requested changes to FMs by analyz-
ing and applying the semantics of change to FMs and the interrela-
tionships among primitive operations on FMs. It limits the
consistency maintenance of evolving FMs in a local range affected
by the requested changes not in the whole FM, which guarantee
the efficiency and scalability of our approach for large FMs.

Trinidad et al. (2008) provided a framework for explaining defi-
ciencies of FMs based on constraint programming, but they do not
give a solution to the deficiencies and the scalability of their ap-
proach is also not clear. White et al. (2010) detected errors on
the configurations of an FM, and proposed changes in the configu-
rations according to features to be selected or deselected to correct
the errors. Our work purely focuses on the evolution and consis-
tency maintenance of FMs themselves, not the configurations of
FMs. Some researchers also investigated relationships to other var-
iability models or other core assets in SPLs. For example, Kastner
and Apel (2008) proposed a formal approach to type-checking SPLs
on the background of an FM. Metzger et al. (2007) proposed a for-
malization of Orthogonal Variability Models (OVMs) and also fol-
lowed the SAT approach to analyze OVMs automatically.
Lauenroth and Pohl (2008) presented a consistency checking tech-
nique for dynamic properties of the domain requirements specifi-
cation based on OVMs.

This paper greatly expands our previous work (Guo & Wang,
2010). In that paper (Guo & Wang, 2010), we only suggested a
set of primitive operations on FMs and proposed a preliminary
framework for analyzing the semantics of change to FMs. In this
paper, we systematically give an ontology-based formalization of
FMs and a set of consistency constraints, which build the theoret-
ical foundations for generating primitive operations on FMs and
analyzing their interrelationships. We detail how to obtain and ap-
ply the dependency matrix and the evolution strategies for main-
taining consistency of FMs. We also perform experiments to
verify the effectiveness and efficiency of our approach.
9. Conclusions

This paper proposes an approach to consistency maintenance
for evolving FMs. We formalize FMs from an ontological perspec-
tive and suggest a set of syntactical and semantic consistency con-
straints as the well-formedness rules of FMs. We generate a set of
primitive operations on FMs and analyze their interrelationships.
By analyzing the semantics of change to FMs, the process of resolv-
ing a requested change to an FM and maintaining the consistency
of the FM is decomposed as a sequence of interdependent

operations. The dependency matrix and evolution strategies are
introduced to obtain and organize the operations sequence. Our
approach is implemented and applied to randomly generated
FMs. By experiments, we verify that our approach can effectively
and efficiently maintain the consistency of evolving FMs with
thousands of features.

Our approach identifies a desirable property of FMs whose con-
sistency maintenance can be achieved by construction. It is partic-
ularly suitable for incremental management of FMs and their
evolution in practice.

Our approach improves significantly the complexity of the
problem since we do not study a whole FM but the only part that
changes since last consistent version. Although our approach de-
pends on the completeness of the consistency constraints and
the primitive operations we define, and if there were any situations
where they are not applicable, previous approaches can still be ap-
plied. So our approach has to be seen as an optimization for those
cases where our consistency constraints and primitive operations
can apply.

Although FMs are the most popular kind of variability models,
there are other alternatives that are still used and that we think
our approach can be adapted to support consistency maintenance.
Specifically, we plan to apply our approach to FMs with attributes
(Benavides et al., 2010), OVMs (Metzger et al., 2007), and require-
ments consistency checking (Lauenroth & Pohl, 2008).

Acknowledgments

The authors thank Prof. Robyn R. Lutz (Iowa State University) and
Wei Zhang (Peking University) for their invaluable comments on the
earlier draft of this paper. The authors also thank the anonymous
reviewers and the attendees of SPLC’10 for their greatly helpful com-
ments. Funding was provided by the National Natural Science Foun-
dation of China (NSFC No. 60773088), the National High-tech R&D
Program of China (863 Program No. 2009AA04Z106), the Key Pro-
gram of Basic Research of Shanghai Municipal S&T Commission
(No. 08JC1411700), the European Commission (FEDER) and Spanish
Government under the CICYT project SETI (TIN2009-07366), and the
Andalusian Local Government under the projects THEOS (TIC-5906)
and ISABEL (P07-TIC-2533).

References

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., & Lucena, C. (2006).
Refactoring product lines. In Proceedings of GPCE’06, Portland, Oregon, USA (pp.
201–210).

Batory, D. (2005). Feature models, grammars, and propositional formulas. In
Proceedings of SPLC’05, Rennes, France (pp. 7–20).

Batory, D., Benavides, D., & Ruiz-Cortes, A. (2006). Automated analysis of feature
models: challenges ahead. Communications of the ACM, 49, 45–47.

Benavides, D., Martin-Arroyo, P. T., & Cortes, A. R. (2005). Automated reasoning on
feature models. In Proceedings of CAiSE’05, Porto, Portugal (pp. 491–503).

Benavides, D., Segura, S., & Cortes, A. R. (2010). Automated analysis of feature
models 20 years later: A literature review. Information Systems, 35, 615–636.

Clements, P., & Northrop, L. (2001). Software product lines: Practices and patterns.
Boston, MA, USA: Addison-Wesley.
Czarnecki, K., & Wasowski, A. (2007). Feature diagrams and logics: there and back
again. In Proceedings of SPLC’07, Kyoto, Japan (pp. 23–34).

Czarnecki, K., Helsen, S., & Eisenecker, U. W. (2005). Formalizing cardinality-based
feature models and their specialization. Software Process: Improvement and
Practice, 10, 7–29.

Gruber, T. R. (1993). A translation approach to portable ontologies. Knowledge
Acquisition, 5, 199–220.

Gruber, T. (2008). Ontology. In Encyclopedia of database systems. Springer-Verlag.
Guo, J., & Wang, Y. (2010). Towards consistent evolution of feature models. In

Proceedings of SPLC’10, Jeju Island, South Korea. LNCS (Vol. 6287, pp. 451–455).
Haase, P., & Stojanovic, L. (2005). Consistent evolution of OWL ontologies. In

Proceedings of ESWC’05, Heraklion, Greece (pp. 182–197).
Huersch, W. (1997). Maintaining consistency and behaviour of object-oriented

systems during evolution. ACM SIGPLAN Notices, 32, 1–21.
Janota, M., & Kiniry, J. (2007). Reasoning about feature models in higher-order logic.

In Proceedings of SPLC’07, Kyoto, Japan (pp. 13–22).
Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990). Feature-

oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-
TR-021, Software Engineering Institute, CMU.

Kang, K. C., Lee, J., & Donohoe, P. (2002). Feature-oriented product line engineering.
IEEE Software, 19, 58–65.

Kastner, C., & Apel, S. (2008). Type-checking software product lines – A formal
approach. In Proceedings of ASE’08, L’Aquila, Italy (pp. 258–267).

Lauenroth, K., & Pohl, K. (2008). Dynamic consistency checking of domain
requirements in product line engineering. In Proceedings of RE’08, Barcelona,
Spain (pp. 193–202).

Loesch, F., & Ploedereder, E. (2007). Optimization of variability in software product
lines. In Proceedings of SPLC’07, Kyoto, Japan (pp. 151–162).

Lutz, R. R. (2008). Enabling verifiable conformance for product lines. In Proceedings
of SPLC’08, Limerick, Ireland (pp. 35–44).

Mannion, M. (2002). Using first-order logic for product line model validation. In
Proceedings of SPLC’02, San Diego, CA, USA (pp. 176–187).

Metzger, A., Heymans, P., Pohl, K., & Saval, P.-Y. S. G. (2007). Disambiguating the
documentation of variability in software product lines: A separation of
concerns, formalization and automated analysis. In Proceedings of RE’07, New
Delhi, India (pp. 243–253).

Pohl, K., Bockle, G., & van der Linden, F. (2005). Software product line engineering:
foundations, principles, and techniques. Berlin, Heidelberg: Springer-Verlag.

Rundensteiner, E., Leem, A., & Ra, Y. (1998). Capacity-augmenting schema changes
on object-oriented databases: towards increased interoperability. In Proceedings
of OOIS’98, Paris, France (pp. 349–368).

Schobbens, P.-Y., Heymans, P., & Trigaux, J.-C. (2006). Feature diagrams: A survey
and a formal semantics. In Proceedings of RE’06, Minneapolis/St.Paul, Minnesota,
USA (pp. 136–145).

Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., & Bontemps, Y. (2007). Generic
semantics of feature diagrams. Computer Networks, 51, 456–479.

Steger, M., Tischer, C., Boss, B., Muller, A., Pertler, O., Stolz, W., et al. (2004).
Introducing PLA at Bosch gasoline systems: Experiences and practices. In
Proceedings of SPLC’04, Boston, MA, USA (pp. 34–50).

Stojanovic, L. (2004). Methods and tools for ontology evolution. Ph.D. Thesis,
University of Karlsruhe.

Sugumaran, V., Park, S., & Kang, K. C. (2006). Software product line engineering:
Introduction. Communications of the ACM, 49, 28–32.

Thum, T., Batory, D. S., & Kastner, C. (2009). Reasoning about edits to feature models.
In Proceedings of ICSE’09, Vancouver, Canada (pp. 254–264).

Trinidad, P., Benavides, D., Duran, A., Ruiz-Cortes, A., & Toro, M. (2008). Automated
error analysis for the agilization of feature modeling. Journal of Systems and
Software, 81, 883–896.

von der MaBen, T., & Lichter, H. (2004). Deficiencies in feature models. In
Proceedings of workshop on software variability management for product
derivation, SPLC’04, Boston, MA, USA.

Wang, H., Li, Y., Sun, J., Zhang, H., & Pan, J. (2005). A semantic web approach to
feature modeling and verification. In Proceedings of workshop on semantic web
enabled software engineering (SWESE’05).

White, J., Benavides, D., Schmidt, D. C., Trinidad, P., Dougherty, B., & Cortes, A. R.
(2010). Automated diagnosis of feature model configurations. Journal of Systems
and Software, 83, 1094–1107.

	Consistency maintenance for evolving feature models
	1 Introduction
	2 Feature models background
	3 Ontology-based formalization and consistency constraints
	3.1 An ontology-based formalization of FMs
	3.2 Consistency constraints of FMs
	3.2.1 Syntactical consistency constraints
	3.2.2 Semantic consistency constraints

	4 Changes to feature models
	5 Semantics of change
	5.1 Dependency matrix
	5.2 Evolution strategy

	6 Implementation
	7 Evaluation
	7.1 Experimental setup
	7.1.1 Feature models generation
	7.1.2 Operation generation

	7.2 Experimental results and discussion
	7.2.1 Effectiveness
	7.2.2 Number of features
	7.2.3 Kind of operations
	7.2.4 Number of operations
	7.2.5 Kind of evolution strategies

	7.3 Discussion and threats to validity

	8 Related work
	9 Conclusions
	Acknowledgments
	References

