
COMMUNICATIONS OF THE ACM December 2006/Vol. 49, No. 12 45

By Don Batory, David Benavides, and
Antonio Ruiz-Cortés

AUTOMATED ANALYSIS
OF FEATURE MODELS:
CHALLENGES AHEAD

A feature is an increment in prod-
uct functionality. Features are
commonly used to specify and
distinguish products in product
lines [8]. They communicate
product functions in an easy-to-
understand way, capture func-
tionalities concisely, and help
delineate the commonalities and
variabilities of a domain. Features
can have attributes (much like
graphical user interface compo-
nents can be customized by prop-
erty lists), where the values of
certain attributes are computed
from the properties of other fea-
tures (for example, the cost of a
product is the sum of the costs of
its constituent features). Features
also often have constraints on
their usage: the selection of one

feature may preclude or require
the selection of others.

Current tool support for fea-
ture models is ad hoc, offering lit-
tle or no support for debugging
feature models or optimizing fea-
ture selections. Recent work
shows how feature models can be
reduced to propositional formu-
las or to constraint satisfaction
problems, for which off-the-shelf
tools can validate properties of
models (such as confirming that a
given set of features is incompati-
ble or compatible) or to optimize
the selection of features (for
example, performance) [1, 2, 4,
5, 10]. This opens up new possi-
bilities for next-generation tools
for specifying products in soft-
ware product lines.

46 December 2006/Vol. 49, No. 12 COMMUNICATIONS OF THE ACM

Of course, feature models are a
front-end to a back-end synthesis
technology that takes the output
of a feature model (that is, a pro-
gram specification) and converts
it into the program itself. There
are many technologies for doing
this, and reviewing them is
beyond the scope of this article.
Our goal here is to alert readers to
recent advances in formalizing
feature models and to the chal-
lenges ahead in automating prod-
uct specification and design.

OPEN ISSUES AND A RESEARCH
AGENDA

Model Consistency. The automo-
tive industry has feature models
with up to 10,000 features. It is
well known that these models are
riddled with inconsistencies that
are difficult to detect. As an ele-
mentary illustration, suppose a fea-
ture model requires that (1) if
feature A is used then B must also
be used (A implies B), and
(2) if feature B is used, feature
A cannot be used (B implies
not A). Clearly there is an
inconsistency: if A is true, we can
conclude A is false. Such inconsis-
tencies are rarely this simple in
practice. The way they are discov-
ered today is by accidentally stum-
bling over them: the correct set of
features must be selected to expose
the error. Unfortunately, the num-
ber of subformulas to examine is
O(2n), where n is the number of
variables in a formula. Are there
automated ways to find model
inconsistencies?

Explanations. Features can be
automatically deselected by
numerical constraints (such as
performance). It is possible for
users to specify constraints that
are unsatisfiable (for example, the
memory requirements of a pro-
gram cannot exceed x and the
program must have feature Y,
where memoryRequire-
ments(Y)>x). Explaining why
there is no product for a given set
of constraints, and perhaps more
importantly, how the situation
can be rectified is key. Finding a
minimal number of violated con-
straints, which is vital to under-
standable explanations, is a
difficult problem. Model diagno-
sis research may be relevant [12].

Model-Driven Development
(MDD). Mapping feature selec-
tions in a feature model into other
development artifacts (require-
ments, architecture, code mod-
ules, test cases, documentation) is
fundamental to MDD. As an
example of model and code inte-
gration, suppose the implementa-
tion of feature F makes a
reference to a variable or method
that is part of feature G. This
means that if F is selected, then G
must also be selected. It should
not be possible to specify a prod-
uct P where F is selected and G is
not. That a feature model satisfies
this constraint can be verified by a
SAT solver. More generally, veri-
fying that other program repre-
sentations are consistent with
their feature model is a significant
research challenge [3, 7, 11].

Artificial Intelligence (AI) Con-
figurators. Consider a product line
of aircraft carriers. Each carrier may
contain several different kinds of
aircraft (short and long-range fight-
ers), and each plane may be a
member of a product line. The
planes on a carrier impose con-
straints on the carrier’s design. A
web of customizable objects would
be needed to describe a carrier (or
other complex products) [6]. Fea-
ture models must be generalized to
describe these “mega” products, and
so too must tools that analyze and
visualize these models. AI configura-
tors, tools that configure constella-
tions of objects, may be important
for the analysis task [1, 9].

Performance Scalability. How
well do SAT solvers, BDD tools,
CSP solvers, and AI configurators
perform with large models? (We
can even imagine description
logic-based reasoners being used
to analyze feature models.) Even
though there has been an enor-
mous increase in computing
power in the last decade, the
problems of feature combina-
torics remain NP-hard. Not all
tools and approaches will perform
equally well. Which tools should
be used and when? Can the
choice of which tools to use be
made automatically to minimize
the time to analyze feature mod-
els? Will it be necessary to inte-
grate different solvers?

CONCLUSION

Validating and analyzing product
specifications will have significant

Recent work shows how feature models
can be reduced to propositional formulas or

to constraint satisfaction problems.

practical payoffs. The benefits are
tools that propagate constraints
(so that incorrect specifications
can be automatically detected),
that provide explanations when
design dead ends are reached (and
how to fix such designs), and that
automatically optimize configura-
tions for specific needs (to sim-
plify program designs). Exposing
the theory that underlines feature
models is central to this goal.
Answering these challenges will
require close cooperation between
product line engineers and
researchers.

References
1. Asikainen, T., Männistö, T., and Soininen,

T. Using a configurator for modelling and
configuring software product lines based on
feature models. In Proceedings of the Work-
shop on Software Variability Management for
Product Derivation, Software Product Line
Conference (SPLC3), 2004.

2. Batory, D. Feature models, grammars, and
propositional formulas. In Proceedings of the
Software Product Line Conference, 2005.

3. Batory, D. and Thaker, S. Towards safe

composition of product lines. Technical
Report, Dept. Computer Sciences, Univer-
sity of Texas, TR-06-33, 2006.

4. Benavides, D., Trinidad, P., and Ruiz-
Cortés, A. Automated reasoning on feature
models. In Proceedings of the Conference on
Advanced Information Systems Engineering
(CAISE). LNCS 3520, July 2005.

5. Benavides, D., Segura, S., Trinidad, P., and
Ruiz-Cortés, A. Using Java CSP solvers in the
automated analyses of feature models. In Post-
Proceedings of The Summer School on Genera-
tive and Transformational Techniques in
Software Engineering (GTTSE). LNCS 4143,
2006.

6. Czarnecki, K. and Kim, C.H.P. Cardinality-
based feature modeling and constraints: A
progress report. In Proceedings of the OOP-
SLA Workshop on Software Factories, 2005.

7. Czarnecki, K. and Pietroszek, K. Verifying
feature-based model templates against well-
formed OCL constraints. Generative Pro-
gramming and Component Engineering, 2006.

8. Kang, K., Cohen, S., Hess, J., Nowak, W.,
and Peterson, S. Feature-oriented domain
analysis (FODA) feasibility study. Technical
Report, CMU/SEI-90TR-21, Nov. 1990.

9. Mittal, S. and Frayman, F. Towards a
generic model of configuration tasks. In Pro-
ceedings of the 11th International Conference
on Artificial Intelligence, 1989, 1391–1401.

10. Neema, S., Sztipanovits, J., and Karsai, G.
Constraint-based design space exploration
and model synthesis. In Proceedings of
EMSOFT 2003, LNCS 2855, 290–305.

11. Pohl, K., Bockle, G., and Linden, F. Soft-

ware Product Line Engineering: Foundations,
Principles and Techniques. Springer, 2005.

12. Reiter, R. A theory of diagnosis from first
principles. Artificial Intelligence 32, 1 (1987),
57–96.

Don Batory (batory@cs.utexas.edu) is a
professor in the Department of Computer Sci-
ence at the University of Texas at Austin.
David Benavides
(benavides@tdg.lsi.us.es) is a Ph.D. student in
the Department of Computer Science Lan-
guages and Systems at the University of Seville
in Spain.
Antonio Ruiz-Cortés
(aruiz@tdg.lsi.us.es) is an associate professor
in the Department of Computer Science
Languages and Systems at the University of
Seville in Spain.

This work was supported in part by NSF’s Science of
Design Project #CCF-0438786 and the Spanish Min-
istry of Science and Technology under grants TIC2003-
02737-C02-01 and TIN2006-00472.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/1200 $5.00

c

COMMUNICATIONS OF THE ACM December 2006/Vol. 49, No. 12 47

