
Programming and Cvmputer Software, Vol. 26, No. 4, 2000, pp. 207-215.
Original English Text Copyright �9 2000 by Torres, Martin, lroyano, Time.

Implementing Associations among Classes in an Environment
of Active Databases

J. Torres, O. Martin, J. A. Troyano, and M. Toro
Department of Languages and Computer Systems, University of Seville (Spain)

e-mail: jtorres(octavio)(troyano)(mtoro) @ lsi. us.es
Received September 23, 1999

Abstract--The association is a native concept from relational databases, one that has been adapted to object
oriented (OO) modelling. It is an interesting operator used to describe links among objects of a system, com-
monly included in the most popular diagram-based OO methodologies. However, those methodologies some-
times present a lack of formality that may undermine its use. In this paper we formalize the semantics of associa-
tions. Firstly, we will describe an OO model based on different kinds of constraints. Some of them will be espe-
cially useful for describing the semantics of associations. Finally, we will present some remarks about
implementation by means of triggers, a new feature incorporated in databases to specify an inner active behavior.

I. INTRODUCTION

The association is a native concept from relational
databases (relationships are one of the pillars of the
Entity-Relationship model). This operator has been
adapted to OO modelling from the very start, by some
very important methods [14, 15]. Association is,
together with inheritance, one of the most popular
mechanisms in OO methods based on diagrams. Asso-
ciations among classes are used to describe links
between objects of a system. Links may be created and
destroyed freely (although it is common to define sev-
eral kinds of constraints to restrict this freedom) [16].

However, the association usually has many interpre-
tations (an even more serious problem arises with the
aggregation) [2, 7, 12]. In this work, we present a for-
malization of the properties of associations by means of
a potent OO model. We do not intend here to give a new
definition of association. Neither do we intend to sub-
stitute methods based on diagrams. These are very use-
ful, because they facilitate communication with users
and the validation of models. However, we believe that
it is necessary to formalize these methods [4]. This way,
our sole objective is to formalize one of the possible
interpretations that can be given [3, 14, 15].

This paper is organized as follows. This introduc-
tion constitutes the first section. In the second section
we will describe an OO model based mainly on the def-
inition of constraints. In the third section, both the
properties and features of associations will be
described. These properties are represented in our
model according to the steps described in the fourth
section. In the fifth section, we will describe our main
ideas in order to hold the defined semantics in an envi-
ronment of active databases (like Oracle 8). Finally, in

1 This article was submitted by the authors in English.

the sixth section we will extract some conclusions of
our work.

2. AN OBJECT ORIENTED MODEL

Objects are the fundamental elements in any OO
model. In our model, an object is characterized by a
group of attributes that define its structure, a group of
events that describe its behavior and some transition
rules that denote the state changes of objects. Objects
sharing characteristics are grouped into classes.

Each attribute has a type, defined by an abstract
data type (ADT) or a class of objects. Values of the
attributes of an object give information about its state.
Attributes can be constant, variable or derived.

Each object has an identification that remains
unchanged during its life. Identification should be
unique for each object in the system. We consider that
each object has a predefined attribute, called oid (object
identifier) [I I].

Behavior aspects of a class are described by means
of events. An event describes something that happens in
a moment of time. Objects interact with their environ-
ment by means of events, which take place through
communication channels. These channels initially
coincide with the names of events. All objects of the
same class share each communication channel defined
in that class. A name and several parameters that will be
communicated through the events of this name define a
channel. Events are very important because they are
synchronization and communication elements. We
define interactions between different objects with them.

Objects can be created and destroyed dynamically.
All objects composing a system at a given instant inter-
act concurrently. However, the individual behavior of

0361-7688/00/2604-0207525.00 �9 2000 MAIK "Nauka/lnterperiodica"

208 TORRES et al.

each object is sequential. Remember that objects inter-
act synchronously by means of events.

Other important characteristics in our model are the
following:

We use an ADT library to describe the structure and
functionality of objects.

Specification is carried out with different kinds of
constraints. These constraints allow us to define three
fundamental aspects of objects: (I) what values the
attributes of objects can take, (2) how objects can
behave in function of their state and (3) how objects can
interact and with whom.

The model of interaction between objects is quite
flexible. The classes of objects that should interact are
defined statically, while objects of these classes that
really interact are chosen dynamically. All objects ful-
filling their constraints can participate.

Facilities are provided to manipulate the extension
of classes (group of objects of a class that exist at a cer-
tain instant). This allows us to impose constraints on
objects on multiple levels, as we will see in the next
section.

2. I. Kinds o f Constraints

A large diversity of constraints exists in our model
[17]. According to the scope where constraints are
defined, they can be of two kinds:

�9 lndivMual constraints. These constraints are
defined in the class template. They must be fulfilled
individually by all objects belonging to that class.

�9 Collective constraints. Objects of a class, consid-
ered as a collection, must satisfy these constraints,
rather than individual objects.

According to the way constraints affect the objects,
they can be of three kinds:

1. Constraints on states o f objects. They allow us to
define constraints on values of attributes. According to
the number of states affected, these constraints can be
of two kinds:

(a) Static constraints. They restrict the values of
attributes and they should not be violated in any state.
If they are fulfilled in the current state, they should con-
tinue being fulfilled in the next state. If an object does
not fulfill these constraints in the initial state, it will not
be created. These constraints can be defined in an indi-
vidual or collective way.

(b) Dynamic constraints. They are bonds between
two states: the current and the next. There are two kinds
of dynamic constraints: (1) state changes associated
with the occurrence of an event, which have the
restricted form of an assignment, and (2) more generic
transition constraints, which are not associated with
events and act according to defined state changes. They
can be defined either in an individual or a collective
way.

2. Participation constraints. They define when an
object is interested in participating in an event or when
it must participate. They can be specified in two ways:

(a) Participation permissions. They are predicates
established both on the state of an object and on the
parameters of an event. If they are not fulfilled, they
will prevent the object from participating in that event.
They can be defined either in an individual or collective
way.

(b) Participation obligations. Permissions uniquely
allow to objects participate in an event, without assur-
ing its participation (for example, when constraints on
states are not fulfilled). If participation obligations are
fulfilled, we are assured that objects will participate in
that event. They can only be defined in an individual
way.

3. Interaction constraints among objects. They
define how objects interact between them (through
events). Objects that should interact through an event
have to:

(a) Synchronize. Our model is totally synchronous.
It is necessary that all obliged objects participate. If
some object that is obliged to participate cannot make
it, then the event will not be able to happen.

(b) Communicate. A communication of values
might take place between interacting objects. Values
should fulfill all constraints imposed by those objects,
both locally and globally. This way, a negotiation
should be established. If more than one value is valid,
the selection of the value will be non-deterministic.

Each class will have a local view of events in which
it participates. By means of interactions, we unify in a
single global event the different local views of that
event in the participant classes.

2.2. Well-Formed Expressions

Expressions should be formed by terms that are syn-
tactically correct. This is done by any operation defined
in the library whose parameters are also syntactically
correct terms or variables of the corresponding sorts
(also defined in the library). Variables of these expres-
sions can be:

�9 Attributes evaluated in the object itself.

�9 Attributes evaluated in other objects, whose iden-
tification is known. Thus, if the class cll has the defini-
tion atj : ct2, the attribute ah is used to identify an
object of the class cl2. Then, the expression ate.at2,
being an at2 attribute of objects of the class cl2, is well
formed. The type of this expression is the same as the
type of the attribute at2, and it denotes the value of this
attribute evaluated in the object at I.

�9 Parameters of events. These can only be used in
specifying permissions, obligations and state changes.

Expressions for the extension can be formed in a
similar way. We will consider that:

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

IMPLEMENTING ASSOCIATIONS AMONG CLASSES 209

1. There exists an implicitly defined attribute that
holds the set of identifications of all objects of each

class. We will denote by c~ the set of class c l .

2. The following collection constructors can be used:
(a) {xi : cl x, : c, I pred(xl x,) �9 exp(xl

x,,) }. For each combination x I x,, of elements, it
builds a set with values returning the expression exp if
the predicate pred is true. This notation is only used if
the sets c, c, are finite.

(b) [xi : bl b,, :l pred(xl x,) �9 exp(x I x,)].
For each combination xj x, of elements, it builds a
bag with values returning the expression exp, when the
predicate pred is true. This notation is only used if bags
bj b,, are finite.

3. Since sets and bags are manipulated in the exten-
sion, we can also have operations like add, product,
max, min, and, or, and so on. These operations are con-
sidered as generalizations of the corresponding binary
operations.

~ Objects.willing ~ - - - - ' ~
t~ parttclpate " ~ L I

Objects.obliged ~ ~]
to participate - ~,,.._

Fig. 1. When can happen an event?

An event will be able to happen if (~r ~ ~c,(v)

(Fig. 1) and ~,.,,(v,) ~: O, 'Vi �9 {l..n}. Finally, if the

event cn(v) happens, all objects o �9 ~c,,,,~ will carry
out the state changes associated to this event.

In short, in our model, several classes can partici-
pate in an event and for each class all those objects ful-
filling their constraints. So, we have a more flexible
communication model than the traditional client-server
approach.

2.3. Dynamics o f the System

An event will be able to happen if, for each class
synchronizing through this event, there is at least one
interested object. If some class does not have any
objects interested in participating, then that event will
not be able to happen.

Constraints on states are conditions that must be ful-
filled during the lifetime of objects. Since the occur-
rence of an event can change the value of some
attributes, other established constraints should not be
violated.

In order to express these ideas formally, we will
define two sets. Let o , (v) be an event of the system,
with the channel cn and parameters v, in which the
classes cl i participate through their local views cni(vi) ,
'v'i e { I ..n }. We define:

�9 ~c,,(,,,) to denote the set of objects of the class cli
that can participate through the local view cni(v i) of the
event. This set is composed of those objects of cl i that
fulfill their permissions on the local view cni(vi) and its
constraints on states are not violated (at any level).
Then, the set of objects that can participate through all
local views of cn(v) will be

~c,,(v) = k..) ~c,,(vi)"
ie {I. . .n}

�9 ~,.,,(v,) to denote the set of objects of cli that must

participate through the local view cni(v 3 of the event.
This set is composed of those objects of cli that fulfill
its obligations of participating in cni(vi). The set of
objects that must participate through all local views of
cn(v) will be:

ie { I...n}

3. ASSOCIATIONS AMONG CLASSES

In OO systems, the state is structured on different
levels. This way, the state of an object is defined by the
values of its attributes at a given moment. The state of
the system, in principle, is defined by the state of all
object states composing it at a given moment.

However, the state of a system cannot always be
described in this way. Such a state should also contain
links between objects. These links are specified by
means of associations; i.e., links are instances of asso-
ciations.

3.1. Characteristics o f Associations

According to the number of classes involved, asso-
ciations can be of three types: binary, if they are defined
between objects of two different classes, unary, if they
are defined between objects of the same class and com-
plex, if they are defined between objects of three or
more classes. Henceforth, we will not consider the last
one because it can become a set of binary associations.

An association is defined by (1) a name (2) the role
played by objects of a class with regard to the other
class, and (3) the multiplicity of each role. The multi-
plicity indicates how many objects of a class can be
related with an object of the other class of the associa-
tion.

Associations are commonly represented as continu-
ous lines between the participant classes in the relation-
ship, as shown in Fig. 2 (in UML notation [3]), where
the name of the association is omitted for reasons of
clarity. At each endpoint of the line the role and the
multiplicity of the nearest class is indicated. This
denotes that each object of Classt can be related with
multiplicity2 objects of Class2. On the other hand, each

PROGRAMMING AND COMPUTER SOFTWARE Wol. 26 No. 4 2000

210 TORRES et al.

Classl
I role I
multiplicityl

role 2
multiplicity2

Class2

Fig. 2. UML representation of a binary association.

Person

Teaches in I
I cat: Category I

t

professor . i
1..*(set)

center
O..l(set)

University

Fig. 3. Association with attributes.

object of Class 2 can be related with the multiplicity 1
objects of Classl.

Multiplicity is defined by means of a range notation
(inf..sup). The lower limit specifies the minimum num-
ber of objects linked with the given one. According to
this number, an association can be mandatory (positive
number) or optional (0). The upper limit specifies the
maximum number of objects linked with the given one.
If the lower and upper limits coincide, a unique number
will be indicated. An asterisk (*) denotes a non-existing
upper limit [2, 3, 7].

In Fig. 2, role I denotes the role that objects of Classt
play with regard to the Class2, It is like a function that,
given an object of Classy, returns the associated object
or collection of objects of Classl. On the other hand,
role2 has a similar meaning. Roles can be organized in
a set (unordered collection of objects of the same class,
without duplicates) or bag (unordered collection of the
same class of objects, with duplicates).

We can also define attributes for associations. These
attributes will take value when objects are associated,
but they do not belong to those objects. Similarly,
events and transitions can be added like in classes.
Therefore, we have a homogeneous treatment for
classes and associations. Figure 3 shows the association
between a university and people that are professors of
this university. Each professor belongs to a category
and has a salary. These attributes are not common to the
rest of the people. This way, in the association teaches
in there will be a link with these attributes for each pro-
fessor working at the university.

Another interesting property that can be considered
in associations is the exclusivity. By default, we con-
sider that participation of a class in an association is not
exclusive. If a class has more than one association, and
in some of them its participation is exclusive, objects
with links in the exclusive association cannot have links
in others. This way, in the previous example we can
also define the association studies in between Univer-

sity and Person. Now, for instance, we can define a con-
straint indicating that a professor cannot be a student,
or that a person cannot be in both associations.

3.2. Dynamics of Associations

In the previous section we have defined static
aspects of associations. In this section we will express
dynamic aspects of associations; i.e., how links
between two objects are established and eliminated. We
have to remember that objects of associated classes are
obliged to certain things. They are not able to work
independently.

As we have said, links can be created and destroyed.
Thus, in association shown in Fig. 3a person can leave
his job as professor in a university (whether he finishes
his contract or for another reason). So it is necessary to
remove the corresponding link. However, we will not be
able to destroy a link if it implies violating some of the
defined constraints (for example, about the multiplicity).

When an associated object disappears, its links
should also be deleted. A link will not be able to exist if
the object it connects does not exist. So, in the example
in Fig. 3, if a university is eliminated, all links to profes-
sors that teach in that university will also be eliminated.

4. FORMALIZING ASSOCIATIONS
AMONG CLASSES

There are two common approaches that are adopted
when associations are represented in languages that
do not have a corresponding high-level mechanism [7-
9, 12]:

1st approach. Representing associations by means
of attributes in associated classes. It is the most basic
form. The main problem is that attributed associations
cannot be represented, but can only represent roles.

2rid approach. Representing associations by means
of classes and a set of constraints to hold their proper-
ties.

We will follow the second, more general approach.
We will mainly make use of simple classes, collective
constraints and interaction constraints of our model.

Let as be an association between the classes cl~ and
cl 2 taking the roles role I and role 2, respectively. Things
to do to hold constraints imposed by that association
are the following:

1. The association will be represented by a class that
will initially have all its characteristics. Each object of
this class will represent a link between two objects of
associated classes.

2. It is necessary to add to this class the following
concepts:

(a) Two constant attributes of the associated class
types to represent the identifications of linked objects.
We will denote these attributes by the name of the cor-
responding roles of the associated classes.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

IMPLEMENTING ASSOCIATIONS AMONG CLASSES 211

(b) Two channels for the collective destruction of
links, so that when we destroy an object of an associated
class, its links also be destroyed. It is also necessary to
add both permissions and obligations so that all implied
links participate (and only those links)�9 We denoted by
cnds ' the channel of collective destruction of the class

cli, Vi ~ { 1..2}; its permissions and obligations will be
the following:

Cnds,(sid, idi)

p e r m i s s i o n s o id ~ s id

o b l i g a t i o n s o id ~ s id

The channel Cnd,~, will have two parameters sid and

id~ where sid is the set of links of that object of c l i whose
identification is ida.

(c) It is also necessary to add permissions to this event
in the extension in order to calculate which are the
implied links. The set sid that idi has with objects of the
other class of the association, is calculated as follows:

cnds,(sid, idi)

p e r m i s s i o n s s id = {y : 631y.rolei = id i � 9 y}

(d) State changes for events of the collective
destruction of links, in order to eliminate these links
from the extension:

cnds,(sid, idi)

s ta te c h a n g e s 63' = 6 3 - s id

where 63' denotes the value of the attribute 63' in the
state following the occurrence of an event�9

(e) Constraints on the extension to hold constraints
imposed by roles defined in the association. Firstly, it is
calculated what objects of a class are linked with a
given object of the other class. For example, for the
class cl I we have:

l ink1(63, id i) = [y : 631y.rolel = id I * y .role2] ,

where id I is the identification of an object of Cll.
Afterwards it is necessary to verify that constraints

on the corresponding roles are fulfilled, i.e., constraints
on both the number of objects and the kind of organiza-
tion. Therefore, for the class cl~, the following predi-
cates must be calculated:

pred l (63 , idt) = let m = l ink j (63 , idl) in

i n _ r a n g e 2 (# m) a n d pr2(m)

end let

in_range2(n) = (n >= in f2) and (n <= sip2)

f i s_ se t (m) i f org2 is se t

prE(m) = ~ [t r u e i f org 2 is no t set ,

where the predicate in_range controls that the number
of objects linked with the given one is in the correct
range. If the upper limit is an *, it is not necessary to
specify the condition and (#m <= sup2). On the other
hand, the predicate pr verifies that the organization is
the correct one. The necessary predicates for cl2 are
obtained in a symmetrical way.

Finally, it is necessary to verify that all objects of the
associated classes fulfill the previous predicates. So we
will define the following static constraint on the exten-
sion:

and([id i : cl i �9 predi(63, idi)]); 'v'i ~ { 1..2}.

Such and operation is the and operation on Booleans
extended to operate with a Boolean bag.

3. We should extend the interaction constraints so
that whenever an object is destroyed, its links are also
destroyed. So, for each interaction where the channel of
destruction of cl~ appears, it will be necessary to include
the channel cnd.,.

4. All links are among existing objects. Therefore, it
is necessary to add collective static constraints�9 We
should:

(a) Define, in the extension of the class as, a derived
attribute for each class in the association. This attribute
will be a bag referring to those objects that have a link
with an object of the other class:

ate~t, = l id " 63 �9 id .rolei]; Vi ~ { 1..2}.

(b) In order to verify that those objects really belong
to the extension of cli, we will add the following global
constraint:

b tos (63 .a ted ,) inc cli; 'v'i e { 1..2 },

where the btos operation, given a bag of elements,
returns a set without duplicates.

(c) If the participation of a class in an association is
defined as exclusive, then objects in that association
cannot have links in other associations. We will have to
add more collective constraints�9 This way, if the class cl
has defined the associations as, with the classes clj,

�9 , . J . . .

Vj ~ { 1 ..m }, and excluswe pamclpatlon m asi, then we
will have:

(ffTi.atect n 63-j.ated) = empty; Vj ~ { i..m }, j ~ i,

where atecl is the derived attribute defined in the asso-
ciation a s , Vj e { l..m}, in order to hold identifications

�9 J

of objects of the class cl with some link in the associa-
tion.

5. IMPLEMENTATION WITH ACTIVE
DATABASES

Traditionally, binary associations have been main-
tained in relational databases by means of referential
integrity. However, when associations are a bit more

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

212 TORRES et al.

complex, we will need to make use of another method
to maintain them. The design of active rules allows us
to define procedural actions to be carded out for repair-
ing an integrity violation, although it loses the declara-
tive advantage of being able to specify the constraints.

In the following sections, we will describe the main
points of interest necessary to implement previously
defined semantics by means of active databases [6], a
new research area that increases the functionality of tra-
ditional databases with active rules, providing an effi-
cient and uniform mechanism for developing some
tasks within the kernel of a database.

5. I. An Overview o f Active Databases

Most of database systems are passive; i.e., data can
be inserted, modified or deleted as a result of requests
from either users or applications. A recent research area
aims to extend the functionality of database systems by
including certain type of active behavior in the data-
base. In this way, database systems can execute some
processes automatically in response to the occurrence
or satisfaction of events or conditions [5, 18].

Other terms, synonyms for active rules, are produc-
tion rule-s, event-condition-action or ECA rules, trig-
gers, monitors, and so on. Although several implemen-
tations of active rules exist in database systems, there
are three main components:

Event is the direct cause of the active rule to be trig-
gered.

Condition must be satisfied so that the active rule
can be triggered.

Action is the procedure to be executed when the
corresponding event occurs and the condition is satis-
fied.

Several areas exist where active rule sets can be used
with the purpose of improving the efficiency of the sys-
tem. The most important activities are:

�9 Internal tasks, such as maintaining all kinds of
constraints and derived data. One of them is the main-
tenance related to associations, which is the objective
of our work.

�9 Extended tasks, such as replication, versioning and
workflow management.

�9 External tasks, such as the business rules of any
application.

These rules can be shared by all applications access-
ing the database, guaranteeing knowledge indepen-
dence because the part of behavior that is traditionally
accomplished by applications is moved into database
systems.

Unfortunately, if the design of active rules was not
appropriate, we could be in trouble because of their col-
lective behavior, interactions and mutual influences,
mainly due to the ability of rules to trigger each other.
To ensure the global correctness of active rules at large,
we should design an active rule set that accomplishes

the termination property. Sometimes, other properties
also must be taken into account, such as confluence and
observable determinism [1]. Following, we define these
terms:

�9 Termination. A set of active rules is said to possess
the termination property when the rule processing trig-
gered by every user-defined transaction is eventually
terminated, producing a final state.

�9 Confluence. A set of active rules is said to guaran-
tee the confluence property when such processing
eventually terminates, and always produces an unique
final state that is independent of the execution order of
the rules.

�9 Observable determinism. A set of active rules is
said to guarantee an observable determinism when, in
addition to confluence, for each user-defined transac-
tion, all visible actions performed by the rules are the
same.

Another important characteristic of an active rule is
the time when its action will be executed with respect
to the event time and in relation to the current transac-
tion. An active rule is said to be immediate if the action
is executed immediately after the event occurs (if con-
dition were satisfied), and it is said to be deferred if the
action is executed at the end of current transaction.

The latest versions of DBMSs, both relational and
object-relational, include triggers (which is the term
normally used in practice). Unfortunately, a problem
related to their implementation is the fact that triggers
implemented in commercial database systems (such as
Oracle, DB2, Sybase, Interbase, among others) are not
powerful enough. This is the case because no complete
standartization about triggers in SQL exists, and none
of them offers deferred triggers at all. The current
SQL3 specification of triggers is rather long and diffi-
cult to understand, and differences between proposals
considered by standardization committees (both ANSI
and ISO) [10] are an additional source of confusion.

There are other problems associated with rules. One
of them is known as mutating tables, and it is related to
problems that may arise because of transaction man-
agement: we can neither modify nor read rows of tables
already updated during the transaction. Another point
of interest is the incompatibility between declarative
referential integrity and triggers. Although most data-
base systems offer facilities, when we have to imple-
ment more complex relationships, we need to use trig-
gers and such facilities should not be used.

[5] offers a partial solution to those problems. Meta-
triggering consists in a mapping from every active rule
to a concrete stored procedure that codes both its con-
dition and its action. When an event is triggered, a flag
is updated in a temporal table for each active rule that
is triggered by that event, and immediate rules are pro-
cessed afterwards. At the end of the transaction, all
deferred rules will be processed. When implementing
it, we have realized some extensions to the method, so
that any number of the same trigger instances could be

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

IMPLEMENTING ASSOCIATIONS AMONG CLASSES 213

processed, and also allowing pass of object identifiers
being affected by operations from triggers to stored
procedures (all by means of time stamps).

5.2. Active Rules for Associations

As mentioned above, every class can be imple-
mented by means of a table in a relational database,
where each object will be stored in a row. Associations,
like any class, can also be implemented by means of a
table, where links are stored in such a table by means of
references to each participant object.

Channels of events can be implemented by means of
triggers reacting to the creation and deletion of objects.
So, efficiency is improved because the explicit treat-
ment of channels of events, otherwise very expensive,
is avoided.

Although creation is implicitly formalized in
semantics, the execution of a trigger after the creation
of every object is necessary to test the constraints, such
as referential integrity, multiplicity and exclusivity.

After an object is deleted, a trigger will be executed,
and all links where that object participates should be

deleted. Like every rule, the deletion rule has three
components: event, condition and action. The former is
easy and has a direct script. The condition of the rule is
more complex: it is necessary to verify that, for each
link where an object participates, constraints of corre-
sponding roles are fulfilled after that object has been
deleted. The action will be to propagate deletion to all
links for every link where the object participates.

Creation and deletion of a link are similar. After a
new link is created, participant objects must exist, and
multiplicity and exclusivity must be satisfied immedi-
ately afterwards. After an existing link is deleted, the
unique constraint that should be satisfied is the multi-
plicity.

5.3. An Example of a Trigger Set

In this section we show, using Oracle syntax [13],
definition of the example in Fig. 3. Now, Person, Uni-
versi~., and Teachesln classes will be tables storing
objects and links of the respective classes. No addi-
tional properties are visible. Definitions of tables are as
follows:

CREATE TABLE Person

(Oid INTEGER PRIMARY KEY);

CREATE TABLE University

(Oid INTEGER PRIMARY KEY);

CREATE TABLE TeachesIn

(Professor INTEGER, Center INTEGER, PRIMARY KEY(Professor, Center)) ;

Triggers defined for the creation and deletion of Person objects are as follows:

CREATE TRIGGER CreatePerson

AFTER INSERT ON Person

FOR EACH ROW

-- WITH DEFERRED EXECUTION

BEGIN

IF NOT (RefIntegrityACP(New. Oid)

AND MultiplicityACP(New. Oid)

AND ExclusivityACP(New. Oid)) THEN

RAISE_APPLICATION_ERROR(-20000, "Constraints are not fulfilled');

END IF;

END;

CREATE TRIGGER DeletePerson

AFTER DELETE ON Person

FOR EACH ROW

-- WITH DEFERRED EXECUTION

BEGIN

IF NOT MultiplicityADP(Old. Oid) THEN

RAISE_APPLICATION_ERROR(-20000, "Constraints are not

END IF;

DELETE FROM TeachesIn WHERE Professor =Old. Oid;

END;

fulfilled') ;

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

214 TORRES et al.

Triggers for the University class are similar. Trig-
gers CreatePerson and DeletePerson will raise an
exception when any of the predicates returns FALSE.
For brevity, stored procedures implementing the predi-
cates are not shown. Following is a short description:

ReflntegrityACP receives the identifier of a new
object and returns TRUE if the referential integrity is
satisfied for this object, or FALSE otherwise.

MultiplicityACP receives the identifier of a new
object and returns TRUE if the multiplicity constraints
are satisfied for the associations in which this object
participates, or FALSE otherwise.

ExclusivityACP receives the identifier of a new
object and returns TRUE if the exclusivity constraints
are satisfied for the aggregations in which an object
participates, or FALSE otherwise.

MultiplicityADP receives the identifier of an old
object and returns TRUE if the multiplicity constraints
are satisfied for the associations in which this object
participates after this object has been deleted, or FALSE
otherwise.

Finally, triggers for the creation and deletion of
Teachesln links are similar. A link can be created if the
referential integrity, multiplicity and exclusivity con-
straints are satisfied by the participant objects. Other-
wise, an exception will be raised and no link will be
created. On the other hand, a link can be deleted if the
multiplicity constraints are satisfied after such an event
Occurs.

5.4. Final Remarks on the Implementation

Each of these rules should be deferred execution,
allowing intermediate states that could temporally vio-
late the constraints, but that are necessary when a rela-
tionship is created or deleted. As an example, we could
create an object and all links where such object partic-
ipates afterwards. If the rules are not deferred when the
object is created, an exception could be raised because
some of the constraints were not satisfied, despite links
created following the creation of such object.

Many other combinations can be found, meaning
that all related operations should be grouped into trans-
actions. On commit, when these rules are processed, if
any predicate is not true, then the operation must be
canceled. This is implemented by raising a user-excep-
tion that rollbacks the current transaction, and there-
fore, undoing all those changes that were pending of
being committed. As mentioned above, some additional
techniques, such as meta-triggering, will be necessary
to implement them because of the faults drawbacks
inherent in current active databases.

Generally, the use of active rules has a better perfor-
mance, because many activities, otherwise executed by
an application, are running within a database, and so
communications between applications and databases
have a major efficiency.

Unfortunately, this set of rules guarantees termina-
tion, but not confluence nor observable determinism.
So, non-determinism could arise and these situations
are not recommended in many systems. Solutions
could lie in applying several techniques to avoid it, such
as assigning priorities and redesigning rule sets, among
others.

6. CONCLUSIONS

We have presented in this paper a formalization of
semantics for one of the more common operators in the
OO conceptual modelling, associations among classes
of objects.

First, we have presented the most important charac-
teristics in our OO model. A specification is carried out
by means of constraints of different kinds that can be
imposed at three different levels: object, class and glo-
bal.

Afterwards we have defined some properties of
associations of classes, inspired fundamentally in the
more popular OO methodologies. Next, we have
defined the semantics of associations by means of
classes and constraints allowed in our model. This way,
to change properties of any association, it will simply
be necessary to add new constraints or to eliminate
some of them.

Finally, we have shown some remarks on our imple-
mentation by means of active databases. We are actu-
ally working hard to automatically generate a set of
active rules from the formalized definitions of a system.
Furthermore, we have planned to study other defined
relationships among objects, together with their imple-
mentation, such as aggregations or inheritance.

ACKNOWLEDGMENTS

This work was supported by the Inter-ministerial
Commission of Science and Technology (CICYT) of
Spain, project no. TIC97-0593-C05-03.

REFERENCES

1. Aiken, A., Widom, J., and Hellerstein, J.M., Behaviour
of Database Production Rules: Termination, Confluence,
and Observable Determinism, Proc. ACM SIGMOD Int.
Conf. on Management of Data, 1992, pp. 59-68.

2. Bock, C. and Odell, J.,A more Complete Model of Rela-
tions and Their Implementation., J. Object-Oriented
Programming, 1997, June, pp. 38---47.

3. Booch, G., Jacobson, I., and Rumbaugh, J., The Unified
Modeling Language User Guide, Addison-Wesley,
1999.

4. Bourdeau, R.H. and Cheng, B.H.C., A Formal Semantic
for Object Model Diagrams, IEEE Trans. Software Eng.,
1995, October.

5. Ceri, S. and Fraternali, P., Designing Database Applica-
tions with Object Rules, Addison-Wesley, 1997.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

IMPLEMENTING ASSOCIATIONS AMONG CLASSES 215

6. Dittrich, K., Gatziu, S., and Geppert, A., The Active
Database Management System Manifesto: A Rulebase
of a ADBMS Features, J. SIGMOD Record, 1996,
vol. 25, no. 3, pp. 40-49.

7. Ehlmann, B.K. and Riccardi, G.A., An Integrated and
Enhanced Methodology for Modeling and Implementing
Object Relationships, J. Object-Oriented Programming,
1997, May, pp. 47-55.

8. Graham, I., Bischof, J., and Henderson-Sellers, B.,
Associations Considered a Bad Thing, J. Object-Ori-
ented Programming, 1997, February, pp. 41--48.

9. Hammond, J., Producing Z Specifications from Object-
Oriented Analysis, in Z User Workshop 1994. Workshops
in Computing, Nicholls, J.E., Ed., Springer, 1995,
pp. 316-336.

10. ISO-ANSI. Database Language SQL3, working draft,
1994.

II. Khoshafian, S.N. and Copeland, C.P., Object Identity,
Object-Oriented Programming Systems, Languages and
Applications, SIGPLAN Notices, 1986, vol. 22, no. 12,
pp. 406--416.

12. Lano, K., Formal Object-Oriented Development,
Springer, 1995.

13. PL/SQL User's Guide and Reference, Release 8.0, Ora-
cle Corporation, 1997.

14. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorcnsen, W., Object-Oriented Modelling and Design,
Prentice Hall, 199 !.

15. Shlaer, S. and Mellor, S., Object Lifecycles: Modelling
the World in States, Yourdon Press Computing Series,
1992.

16. Torres, J., Troyano, J.A., and Toro, M., Operators of
Association and Aggregation in an Object Oriented
Specification Language, H Workshop on Computer Sci-
ence, Granada (Spain), 1996, pp. 11-21.

i 7. Torres, J., Object Oriented Specifications Based on Con-
straints, PhD Thesis, Department of Languages and
Computer Systems, University of Seville, i 997.

18. Widom, J. and Ceri, S., Active Database Systems: Trig-
gers and Rules for Advanced Dababase Processing, San
Francisco: Kaufmann, 1996.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 4 2000

