
Detecting the adherence of driving rules in an energy-efficient, safe

and adaptive driving system

Emre Yay a,∗, Natividad Martínez Madrid a, Juan Antonio Ortega Ramírez b

a School of Informatics, Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
b Computer Languages and Systems Dept., University of Seville, 41012 Seville, Spain

Keywords:

Rule matching algorithm 
Driving system

Energy-efficiency Safety

a b s t r a c t

An adaptive and rule-based driving system is being developed that tries to improve the driving behavior

in terms of the energy-efficiency and safety by giving recommendations. Therefore, the driving system has

to monitor the adherence of driving rules by matching the rules to the driving behavior. However, existing

rule matching algorithms are not sufficient, as the data within a driving system is changing frequently. In

this paper a rule matching algorithm is introduced that is able to handle frequently changing data within

the context of the driving system. 15 journeys were used to evaluate the performance of the rule matching

algorithms. The results showed that the introduced algorithm outperforms existing algorithms in the context

of the driving system. Thus, the introduced algorithm is suited for matching frequently changing data against

rules with a higher performance, why it will be used in the driving system for the detection of broken energy-

efficiency or safety-relevant driving rules.

(

o

t

s

m

s

t

H

B

3

s

d

e

b

(

a

f

s

t

i

r

1. Introduction

When saving energy and protecting the environment became

fundamental for politics and society, several laws were enacted to

reduce the greenhouse gas emissions, like the CO2 limitations, for

passenger cars in the European Union. Another factor that became

important during the past few decades is road safety, as the increas-

ing number of cars led to more accidents and fatalities on the road. On

the basis of the enacted laws with the goal to save the environment

(Wessellink, Harmsen, & Eichhammer, 2010) and the increasing im-

portance of road safety, car manufacturers are trying to optimize the

car and its individual parts like the car body, the engine, or the power

train. Furthermore, new methods are being invented to increase the

energy-efficiency and safety of cars, like the regenerative brake (Patil,

2012), which converts the kinetic energy during a brake application to

electric energy or the anti-lock brake system (Burton, Delaney, New-

stead, Logan, & Fildes, 2004), which improves safety by preventing

the wheels from locking up.

Besides the optimization of the car itself, there is also the po-

tential to increase the energy-efficiency and improve road safety

by adapting the individual driving behavior to the given driving

situation. The studies (Xiaoqiu, Jinzhang, & Guoqiang, 2011) and
∗ Corresponding author. Tel.: +49 71212714063.

E-mail addresses: emre.yay@reutlingen-university.de, yayemre@aol.com (E. Yay),

l

(

o

natividad.martinez@reutlingen-university.de (N. Martínez Madrid), jortega@us.es (J.A. 
Ortega Ramírez).
Chin & Quek, 1997) revealed that the driving behavior has an effect

n road safety. This has also been verified in the accidents report of

he German Statistical Office (German Statistical Office, 2014), which

howed that 86% of the accidents with damage to persons in Ger-

any in 2013 happened because of driver mistakes, see Fig. 1. Several

tudies have shown that energy savings up to 30% are possible with

he adaptation of the driving behavior (Haworth & Symmons, 2001;

elms, Lambrecht, & Hanusch, 2010; van Mierlo, Maggetto, van de

urgwal, & Gense, 2004). However, according to Bongard (2007) this

0% savings is only possible with experienced drivers. The energy

avings vary depending on the given driving practices. In short-term

riving practices, like energy-efficiency training or contests, an en-

rgy saving of about 24% is possible as shown in the tests conducted

y the car manufacturer Ford (Spencer, 2008). In contrast, Barkenbus

2009) calculates the energy savings in sustained driving practices

t 5% when the drivers have no continuous energy-efficiency related

eedback after the initial training. Continuous feedback is defined by

howing the driver energy-efficient relevant driving recommenda-

ions every day. However, with continuous feedback, the energy sav-

ngs is 10%.

There are already driving systems and methods which try to

educe energy consumption or to improve road safety at the vehicle

evel, such as the driving systems of Khayyam, Nahavandi, and Davis

2012) and Milanes, Perez, Godoy, and Onieva (2012) and the method

f Jo, Lee, Park, Kim, and Kim (2014). Furthermore, there are also

driving systems, such as those of Fiat (2010), Cho (2008) or Lotan

and Toledo (2006), which focus on improving the driving behavior

http://dx.doi.org/10.1016/j.eswa.2015.10.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.10.044&domain=pdf
mailto:emre.yay@reutlingen-university.de
mailto:yayemre@aol.com
mailto:natividad.martinez@reutlingen-university.de
mailto:jortega@us.es
http://dx.doi.org/10.1016/j.eswa.2015.10.044


Fig. 1. Causes of accidents involving personal injury 2013 in road traffic, in German Statistical Office (2014).

i

s

p

a

m

c

I

d

e

t

t

d

d

r

s

F

d

T

s

e

e

d

(

r

i

b

T

d

i

p

C

t

e

t

t

g

L

r

H

R

h

t

c

s

R

b

c

t

v

d

p

n

b

w

i

a

R

f

o

i

e

d

m

F

d

r

w

t

t

t

M

e

m

h

t

a

r

i

m

n terms of energy-efficiency or safety. However, these driving

ystems only cover either the area of energy-efficiency or safety and

rovide insufficient feedback to the driver, for example by showing

green lamp when the driver is driving in an energy-efficient

anner. Furthermore, they do not adapt to the individual driver, by

onsidering the driver condition or the individual driving behavior.

n contrast, the adaptive and rule-based driving system that is in

evelopment has the goal to improve the driving behavior in terms of

nergy-efficiency and safety by giving customized recommendations

o the driver during a journey. Thus, according to Barkenbus (2009),

his can lead to an increase in the energy-efficiency of up to 10%. The

riving system adapts to the driver by customizing the recommen-

ations on the basis of his or her reaction to the previously given

ecommendations and the driver condition. For example, the driving

ystem creates no recommendation when the driver is under stress.

urthermore, it decreases the generation frequency of a recommen-

ation when the driver has ignored a recommendation several times.

he energy-efficiency and safe driving behavior is described by a

et of rules. These rules are used to check if the driver is driving

fficiently and safely. If the breaking of a driving rule is detected, an

nergy-efficient or safety-relevant recommendation is shown to the

river.

Rule matching algorithms, such as Rete (Forgy, 1982) or Treat

Miranker, 1987), are designed to check a certain data set against

ules, making them suitable for checking driving rules against driv-

ng behavior in order to find an energy-inefficient or unsafe driving

ehavior. However, existing rule matching algorithms, like Rete or

reat, are not designed to handle frequently changing data like in a

riving system, which is why the performance of these algorithms

s not ideal for their use in driving systems. There are already im-

roved versions of the Rete algorithm, like the algorithm of Li, Liu,

ao, Yin, and Yao (2016). They created an algorithm based on Rete

hat allows to subtask the task of rule matching to different comput-

rs in a distributed or parallel computing environment. Therefore,

he algorithm decomposes rules to sub rules and distributes them

o a distributed environment for parallel match, after which the al-

orithm merges the results through a reduce function. According to

i et al., this approach improves the match efficiency for massive

ules matching. Another modified Rete algorithm is introduced in Liu,

uang, Zhang, and Du (2014), who try to improve the efficiency of the

ete algorithm for the area of social insurance audit using the active
ash method. The active hash method allows to improve the search

ime for a node within the network by managing the nodes and the

orresponding facts within a hash table. The experimental results

howed that the active hash method improves the efficiency of the

ete algorithm. Rete+ is another improved Rete algorithm introduced

y Gao, Qiu, and He (2013) that has the focus on matching rules in the

ontext of Web of Things environments, like smart homes. According

o Gao et al. the Rete algorithm executes the same rules in the en-

ironment of Web of Things, why the Rete+ algorithm stores the in-

ex of the alpha nodes for the last executed rules. Each fact that is

ut into the working memory, it will be matched first with the alpha

odes whose index were stored. In case of an successful match, the

eta nodes of the corresponding alpha nodes are updated. However,

hen the matching fails, the algorithm goes on to match the facts like

n the original Rete algorithm. The experimental evaluation showed

n higher performance of the Rete+ algorithm in comparison to the

ete algorithm in the context of smart home environment.

However, the presented improved Rete algorithms are designed

or specific environments, like Web of Things, social insurance and so

n. They are using parallel computing, active hash methods or stor-

ng the last used alpha nodes to optimize the Rete algorithm. How-

ver, these optimizations are not sufficient for the environment of the

riving system, as the optimizations are fitted for a specific environ-

ent that is different from the environment of the driving system.

urthermore, the driving system has to match driving rules against

ata that is updated in near time. The goal of the rule matching algo-

ithm introduced in this paper is to match driving rules to a data set

ith a higher performance than existing rule matching algorithm in

he context of the driving system, in order to allow the driving sys-

em to show recommendations to the driver in time. An early stage of

he introduced rule matching algorithm is explained in Yay, Martńez

adrid, and Ortega Ramírez (2014).

This article presents an adaptive driving system for energy-

fficient and safe driving and focuses on the development of a rule

atching algorithm that checks driving rules against the driving be-

avior to find an energy-inefficient or unsafe driving behavior. As

he rule matching algorithm is in the context of a driving system, its

rchitecture is explained in Section 2. Available rule matching algo-

ithms, like Rete, Treat or Leaps, are described in Section 3. Section 4

ntroduces the concepts and the algorithm of the developed rule

atching algorithm. The evaluation of the developed rule matching



Fig. 2. Cycle of the driving system.

Table 1

An excerpt of the derived driving rules.

Relevance Driving rule

Safety relevant Keep enough distance to the preceding car

(minimum distance is equivalent to distance

traveled by a vehicle in two seconds or the half

of the speed in meters)

Safety relevant Adapt your speed to the given situation and do

not exceed the speed limit

Safety relevant Avoid any distractions (i.e. do not use the mobile

phone during the journey)

Energy-efficiency relevant Shift as soon as possible at a maximum of

2500 r/min (2000 r/min for a diesel)

Energy-efficiency relevant Drive at a steady speed using the highest possible

gear to keep the engine speed down

Energy-efficiency relevant Turn off the engine when the engine idles longer

than one minute

l

e

t

c

2

(

t

V

t

r

r

d

m

t

d

u

i

m

m

i

d

k

e

f

c

a

w

i

algorithm, on the basis of 15 journeys, is described in Section 5. The

corresponding results of the evaluation are presented in Section 6. Fi-

nally, the conclusion and further work based on this proposal will be

discussed in Section 7.

2. Adaptive and rule-based driving system

This section starts with an explanation of the driving system cycle,

which shows the steps for creating a recommendation. The driving

rules are explained in Section 2.2. Finally, an overview of the driving

system architecture is given, including the explanation of the layers

and module that are relevant for the matching of the driving rules to

the driving behavior.

2.1. Adaptive and rule-based driving system cycle

The adaptive and rule-based driving system has four main tasks

(Fig. 2). The driving system first monitors the driver, the car, and

the environment (1) using vital sensors, in-vehicle sensors, and other

additionally attached sensors, for example to get information about

the weather. Furthermore, it can be extended, for example to receive

location-based information using the internet or GPS. On the basis of

the collected information, a driving profile is generated or updated,

describing the typical driving behavior of the driver (2). After up-

dating the driving profile, the collected information is used to check

whether an energy-efficient and safety relevant driving rule is broken

(3). Furthermore, the driving profile is compared to the current driv-

ing behavior as well, to indicate if the current driving behavior devi-

ates significantly from the typical driving behavior. Upon recognition

of any breaking of the driving rules or deviations from the typical

driving behavior, the driving system decides whether or not to show

a recommendation on the in-vehicle display unit (4). This decision

is dependent on the individual driving behavior and the condition of

the driver. For example, if the driver is under stress or ignores a rec-

ommendation repeatedly, the driving system will not show the corre-

sponding recommendation to the driver. Thus, it prevents the driver

from becoming mentally overstimulated, as this can cause distraction

and lead to accidents (Brookhuis & de Waard, 2010). Furthermore, by

suppressing repeatedly ignored recommendations, the driving sys-

tem is more likely to be accepted by the driver.

2.2. Driving rules

The energy-efficient and safe driving behavior is described by a set

of driving rules that are the basis of the adaptive and rule-based driv-

ing system. According to Barkenbus (2009), energy-efficient driving

behavior involves such things as smooth acceleration between 2000

and 2500 revolutions, anticipating the traffic flow and signals, avoid-

ing sudden starts and stops, driving below the speed limit, main-

taining an even driving pace and eliminating excessive idling. van

Mierlo et al. (2004) evaluated three energy-efficient relevant driving

rules using 24 drivers who had to practice the energy-efficient driv-

ing rules. The driving rules used in the evaluation were to (1) shift

as soon as possible at a maximum of 2500 revolutions, to (2) press

the throttle quickly to keep up with traffic and to (3) shift down as
ate as possible to a lower gear to keep the car rolling in the high-

st gear without disengaging the clutch. The result of the evalua-

ion showed that the correct interpretation of the driving rules de-

reased the energy-consumption of the vehicles by between 5% and

5%. However, most drivers had problems applying the driving rules

1) and (2), as these driving rules were contradictory to them. Thus,

he drivers ignored the driving rule (2). According to the findings of

an Mierlo, the optimum in energy-efficiency can be achieved using

he driving rules (1) and (3). Furthermore, adherence to the driving

ules leads to a reduced driving speed and thus to an improvement in

oad safety (Haworth & Symmons, 2001).

Besides the energy-efficient driving rules, there are also safety

relevant driving rules that prevent aggressive driving behavior and

therefore improve road safety. According to UNECE – United Nations

Economic Commission for Europe (2004), aggressive driving behav-

ior includes amongst others speeding or driving too close to the car

in front. Furthermore, the German Statistical Office (2014) showed

that about 12% of the accidents happened because of speeding or in-

adequate speed in different driving situations, and about 11% of the

accidents were caused by insufficient distance from the car in front.

Additionally, the New Zealand Transport Agency (2007) defined driv-

ing rules to prevent aggressive driving behavior and to improve road

safety by avoiding speeding, distraction, and fatigue. On the basis

of these facts, the above driving rules were derived and used in the

adaptive and rule-based driving system to analyze the driving behav-

ior and to generate recommendations in terms of energy-efficiency

and safety. Table 1 shows an excerpt of the driving rules.

2.3. Architecture

The adaptive and rule-based driving system is separated into three

layers (Fig. 3): the data layer, processing layer, and graphical layer. The

ata layer gathers the data from the car, the driver, and the environ-

ent using the interface module, which passes the collected data to

he data aggregation and the profile update module. The aggregated

ata is then passed from the data aggregation module to the profile

pdate module, as well. The profile update module updates the driv-

ng profile of the driver using the collected data from the interface

odule and the aggregated data. The driving profile is stored in the

id-term knowledge base and represents the driver’s typical driv-

ng behavior. It stores, for example, information about the average

riving speed or the average stress level of the driver. The long-term

nowledge base, which is also placed in the data layer, consists of

nergy-efficient driving rules and information about the car. The in-

ormation about the car is used, for example, to show the driver the

urrent energy consumption and the consumption when the driver

dheres the recommendations. Finally, when the data is processed

ithin the modules data aggregation and profile update, it is stored

n the working data of the short-term knowledge base.



Fig. 3. The architecture of the driving system including the modules of the data and processing layer. The rule selector module (marked red) is responsible for detecting broken

driving rules. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

d

m

a

i

2

r

g

a

c

d

k

t

u

M

t

p

m

u

k

b

t

h

t

p

d

t

u

b

o

a

p

a

m

t

p

3

b

i

p

o

t

w

r

m

h

t

b

o

o

s

w

fi

p

d

f

b

a

s

c

i

i

a

i

t

F

c

o

t

f

t

o

t

n

n

a

s

b

c

s

b

w

w

w

t

t

n

h

c

As the main focus of this paper is on the detection of the broken

riving rules using a rule matching algorithm within the rule selector

odule (marked red in Fig. 3), the processing layer of the adaptive

nd rule-based driving system will be briefly described in the follow-

ng sections.

.3.1. Processing layer

The processing layer (Fig. 4) is responsible for analyzing the cur-

ent driving behavior in terms of energy-efficiency and safety and

iving customized recommendations on the basis of the driving rules

nd the typical driving behavior of the driver. The first step of the pro-

essing layer is done in the prediction engine module that gets the

ata from the working memory, which is placed in the short-term

nowledge base of the data layer. On the basis of the gathered data,

he prediction engine module starts to predict the state of the car

sing the autoregressive moving average algorithm (Yay & Martńez

adrid, 2013). The prediction of the car’s state allows the driving sys-

em to generate recommendations before a driving rule is broken. The

redicted information is passed along with the data from the working

emory to the rule selector module.

On the basis of the data passed from the prediction engine mod-

le, the rule selector module (Fig. 3) detects if a driving rule is bro-

en or if the current driving behavior differs from the typical driving

ehavior. The developed algorithm is described in Section 4. The de-

ected broken driving rule or deviation from the typical driving be-

avior is pushed into the broken rules queue, which is processed by

he inference engine module according to the first in, first out princi-

le. However, if no broken driving rule or deviation from the typical

riving behavior is found, the processing layer gets new data from

he working memory. The recommendations inference engine mod-

le decides whether to show a recommendation to the driver, on the

asis of the drivers condition and reaction to previously given rec-

mmendations. The recommendations inference engine module will

lso reduce the frequency of a recommendation, when the driver re-

eatedly ignores a driving rule. This makes the driver more likely to

ccept the driving system, he or she will not be bothered by recom-

endations that her or she does not find relevant. Recommendations

hat are not suppressed are passed to the Graphical Layer, which dis-

lays them, for example, on the in-vehicle display unit.

. Rule matching algorithms

The rule selector module of the processing layer (Fig. 3) detects

roken driving rules and deviations from the typical driving behav-

or using a rule matching algorithm. Rule matching algorithms are

attern matching algorithms that match rules to a data set. They are

ften used in production systems to determine which of the produc-

ion system rules have to be fired on the basis of the data stored in the
orking memory of the production system. The rule matching algo-

ithms receive information about the changes made to the working

emory of the production system and determine the changes that

ave to be made in the conflict set. The conflict set contains all rules

hat have to be fired. As there is a conflict, as to which rules should

e fired first, the conflict set has to be solved using a conflict set res-

lution strategy, such as first come, first serve or the prioritization

f the rules. Regarding the introduced driving system, the conflict

et is the broken rules queue module of the processing layer (Fig. 3),

hich is solved by the recommendations inference engine using the

rst come, first serve principle. The rule matching algorithms com-

are productions (rules) against data tuples (facts). In the presented

riving system, the rules are represented by the driving rules and the

acts are stored in the working memory of the short-term knowledge

ase. The rules are described by conditions and consequences. For ex-

mple, a condition of a rule is Rpm > 2500 and a consequence is to

how the recommendation to shift the gear. The rule is passed to the

onflict set when the facts match the conditions of that rule. Accord-

ng to the conflict set resolution strategy, the consequence of the rule

s fired when the conflict set is solved. There are several rule matching

lgorithms such as Rete, Treat, or Leaps, which are briefly described

n the following section.

The Rete (Latin for net) algorithm (Forgy, 1982) uses a tree struc-

ured network, also called rete network, to represent the rules, see

ig. 5, whereby every rule has its own rete network. A rete network

ontains alpha and beta nodes, where each alpha node represents

ne condition of a rule and stores the fact that matched its condi-

ion. The beta nodes are used to store partial matches when different

acts are joined from the nodes. Upon every update of a fact stored in

he working memory, the old fact stored in the corresponding alpha

r beta node memory is deleted. The updated fact is then pushed into

he Rete network, which passes the fact to the corresponding alpha

ode. The alpha node then checks whether the new fact satisfies the

ode condition. The fact that satisfies the condition is stored in the

lpha memory and is passed to the beta node. The beta node repre-

ents the joining of the alpha nodes and checks whether the joining

etween the alpha nodes is satisfied on the basis of the newly re-

eived fact. If the beta node is satisfied, the rule is put to the conflict

et. The conflict set resolution strategy of the Rete algorithm has to

e defined. Fig. 5 illustrates the data flow of the Rete algorithm, in

hich the Rete network of the rule shift as soon as possible (Rule1)

ith the conditions RPM > 2500 and Gear < 6 is shown. The initial

orking memory, rete network, and conflict set are empty. However,

he facts Rpm 3000 and Gear 3 are added to the working memory in

he next cycle. The working memory passes the new facts to the rete

etwork using an add operation. The root node of the rete network

ands the incoming facts over to the corresponding alpha nodes that

heck if the facts satisfy their conditions and then stores them in their



Fig. 4. Data flow of the processing layer.

Fig. 5. Illustration of the Rete algorithm with the operations add and delete.

A

A

a

t

alpha memory. The facts are then passed to the beta node that checks

if they satisfy the joining of the two alpha nodes. If they do, the facts

are stored in the beta memory and the Rule1 is put in the conflict set.

In the next cycle of Fig. 5, the fact Rpm 3000 is updated to Rpm 2400.

This update causes a delete operation of the old fact Rpm 3000 in the

alpha memory and a removal of the facts in the beta node memory.
n add operation passes the new fact Rpm 2400 to the Rete network.

s the Rpm 2400 does not satisfy the condition Rpm > 2500 of the

lpha node, it is not stored in the alpha memory and is not passed to

he beta node. Thus, the Rule1 is not put into the conflict set again.

According to Wright and Marshall (2003) the worst-case space

complexity of Rete is O(W n−1), where W is the number of working



Fig. 6. Illustration of the Treat algorithm with the operations add and delete.

m

i

o

T

e

R

w

n

R

w

c

c

t

c

i

t

i

K

w

o

a

a

n

a

S

w

n

a

S

a

c

r

d

b

p

r

s

c

t

i

b

t

T

n

3

T

p

D

a

t

t

i

w

&

d

m

o

w

c

t

D

R

g

s

d

a

g

c

n

o

emory elements and n is the number of rule conditions. The match-

ng of a rule in Rete comprises the operations add and delete. The add

peration is used when a new fact is put into the working memory.

he computational costs of an addition in Rete is represented by the

quation R(n), that is according to Wright and Marshall (2003)

(n) = 1

n + 1

n∑
i=0

R(i, n)

here i is the alpha node that is entered by the fact in a network with

+ 1 alpha nodes. R(m, n) is defined as

(m, n) =
{

K(n) m ≤ 1∑n
i=m

a0ai

am

∏i−1
j=1 aj p j otherwise

here K(n) represents the full computation of the Rete network in-

luding the comparisons of the facts against the alpha nodes and the

omputation of the intermediate relations of the alpha nodes when

he Rete network is entered at the alpha node a0 or a1. Otherwise the

ached state of the Rete network is used. a0 is the first alpha node, ai

s the ith alpha node and am the entering alpha node. aj represents

he jth alpha node, whereas the matching probability of the fact that

s stored in the beta node is pj. K(n) is

(n) =
{

a1 n = 1∑n−1
i=1 aj + 1

∏i−1
j=0 aj + 1pj + 1 + a1 otherwise

here n > 0 and p0 = 0. p j + 1 is the constant matching probability

f a fact stored in the jth beta node. The delete operation of the Rete

lgorithm is represented by the equation R(n) + S(n) as a delete oper-

tion causes a recomputation of the alpha and beta nodes in the Rete

etwork. The cost of the additional search of a beta node for deleting

fact is represented by S(n) that is

(n) = 1

n + 1

n∑
i=0

S(i, n)

here i is the alpha node that is entered by the fact in a network with

+ 1 alpha nodes. S(m, n) represents the search of a beta node within

n entry point m.

(m, n) =
n∑

i=m

a0

i∏
j=1

ai p j

As the update of a working memory element causes a delete and

n add operation in Rete, an update of an working memory element

an be described in the Rete algorithm as 2S(n) + R(n).
The Treat algorithm (Miranker, 1987) is based on the Rete algo-

ithm. It improves Rete, for example, in the memory usage, as it

oes not use beta nodes to join the alpha nodes and does not use a

eta memory to store the facts that satisfied the joining of the al-

ha nodes. Instead, the satisfaction of the joining is checked when

equired. When an incoming fact satisfies an alpha node, the fact is

tored in the alpha memory and the joining of the alpha node is re-

omputed. If the result of the computation is positive, which means

hat the facts satisfied the conditions of the alpha nodes, the rule

s added into the conflict set. Fig. 6 illustrates the process on the

asis of the driving rule shift as soon as possible Rule1 with the condi-

ions RPM > 2500 and Gear < 6. The driving rule is represented in the

reat algorithm also by a Rete network, however, without the beta-

odes. The initial working memory contains the facts 3000 rpm and

rd gear, in which the revolutions per minute is updated to 2600 rpm.

his causes the Treat algorithm to delete the old fact stored in the al-

ha memory and also to delete Rule1 directly from the conflict set.

uring the add operation the new fact is passed to the corresponding

lpha node, which checks if the fact satisfies the alpha node condi-

ion. On satisfaction of the condition, the intermediate relations of

he alpha nodes are recomputed, which causes, in our example, an

nsertion of Rule1 into the conflict set.

The worst-case space complexity of the Treat algorithm is O(W),

here W is the number of elements in the working memory (Wright

Marshall, 2003). In contrast, to Rete the add operation in Treat is

efined as K(n), as Treat does not use beta nodes to store the inter-

ediate relations of the alpha nodes. Thus, the intermediate relations

f the alpha nodes are computed when needed. The delete operation

ithin the Treat algorithm requires the deletion of the fact from its

orresponding alpha node. According to Wright and Marshall (2003),

he delete operation is represented by D(n) that is

(n) = 1

n + 1

n∑
i=0

ai

An update of a working memory element in Treat is similar to

ete, it causes a delete and an add operation within the Treat al-

orithm. Thus, an update of a working memory element can be de-

cribed as K(n) + D(n).

The conflict set resolution strategy of the Treat algorithm must be

efined, similarly to the conflict set resolution strategy in the Rete

lgorithm. According to the results of Miranker (1987), the Treat al-

orithm is more effective than the Rete algorithm, as it needed fewer

omparisons until it bound the facts to the corresponding nodes and

eeded less memory due to the missing beta nodes and beta mem-

ries. Moreover, during a deletion of a fact, Treat manipulates the



Fig. 7. Illustration of the Leaps algorithm when a new fact is added.

t

c

i

c

o

p

t

r

2

w

t

a

s

alpha nodes and the conflict set directly, instead of recomputing the

joinings of the alpha nodes. In contrast, Rete has to recompute the

joinings of the alpha nodes when a fact of the working memory is

deleted, to keep the beta nodes up to date. However, Nayak, Gupta,

and Rosenbloom (1993) showed in their evaluation that the Rete al-

gorithm outperforms the Treat algorithm, especially when it is used

in static structures, as the Rete algorithm joins the alpha nodes in

static structures once, instead of recomputing the joinings every time.

Nayak et al. define a structure as static when a single fact is not re-

moved from the working memory, thus Rete has to compute every

joining only when the whole structure is removed or added. Accord-

ing to Nayak et al. the results of their evaluation differ from the results

of Miranker (1987), because Miranker counted only the number of

comparisons, which may not reflect the intrinsic differences between

the match algorithms (Nayak et al., 1993).

The Leaps (Lazy Evaluation Algorithm for Production Systems) al-

gorithm (Miranker, 1990) is a rule matching algorithm based on the

Treat algorithm. Its space complexity is according to Miranker et al.

O(max(ts)∗c). The Leaps algorithm uses alpha nodes to store the facts

and calculates joinings of the alpha nodes when they are needed. In

contrast to the presented rule matching algorithms Rete and Treat,

Leaps also considers the conflict set resolution strategy by combin-

ing the conflict set resolution strategy with the search for rule activa-
ions. Thus, Leaps does not have a conflict set. Instead, Leaps fires the

onsequence of a rule immediately when the rule conditions are sat-

sfied. Leaps is using lazy evaluation to find rules whose alpha node

onditions are satisfied by inspecting the facts of that rule one by

ne. If a rule is found whose alpha node conditions are satisfied, it

auses the current search and fires the rule consequence. Fig. 7 illus-

rates one cycle of the Leaps algorithm with two rules. The driving

ule “shift as soon as possible” (Rule1) with the conditions RPM >

500 and Gear < 6 is used along with the rudimentary Rule2, which

is illustrated only for demonstrating the processing of Leaps.

The driving rules are represented in the Leaps algorithm like the

Rete network without the beta nodes, as beta nodes are not used in

Leaps. The initial working memory is empty, which is why the alpha

memories of Rule1 are empty. The working memory is then updated

ith the facts 3000 rpm and 3rd gear. Leaps now starts to search for

he rule by checking the conditions of Rule1. As the conditions as well

s the joining of the alpha nodes are satisfied by the facts, the con-

equence of Rule1 is fired immediately. After the firing of Rule1, the

working memory is updated with the fact revolution per minute 2400

rpm. As the search with the fact 3000 rpm caused a firing of a rule,

the search is suspended and Leaps starts a new search using the up-

dated fact of 2400 rpm. However, if the old search did not fire a rule, it

would not be suspended. Instead, the updated fact would be pushed



o

t

s

t

i

R

i

t

o

d

o

i

c

e

s

n

m

a

c

N

r

i

o

s

o

a

f

g

s

b

a

H

fl

i

b

w

c

f

t

i

t

t

fi

s

i

s

g

4

s

fi

t

m

r

e

o

f

a

m

w

t

t

b

w

m

t

e

R

o

c

r

w

i

f

m

p

n

f

b

s

t

h

H

i

w

s

r

p

t

t

r

f

r

u

d

>

e

n

c

s

w

t

g

o

n

i

e

t

t

v

n

f

t

o

m

w

r

i

b

s

e

u

fi

w

r

T

i

nto a stack until the old search is finished. After the finished search,

he updated fact would be popped from the stack and Leaps would

tart the search with the new fact. As the old search is suspended,

he facts stored in the alpha memories are not deleted, but instead

gnored in the new search. Leaps now carries on to search the rules

ule1 and Rule2 using the updated working memory. When the search

s finished, Leaps resumes the suspended search with the old fact un-

il all rules are checked. Finally, when all rules are checked with the

ld fact that is not in the working memory anymore, the old fact is

eleted from the alpha memories of all rules. According to the results

f Miranker (1990), the lazy evaluation of the rules allows Leaps to

ncrease the rule firing rates and decrease the execution time. This

an be achieved because Leaps avoids the computation of all rules in

ach cycle like Rete or Treat does. Instead, Leaps suspends the current

earch when a rule is fired and carries on to search the rules with the

ew fact.

The Treat algorithm tries to improve Rete by omitting the beta

emories. Thus, it does not have to recompute the joinings of the

lpha nodes on every change of the working memory. Instead, it re-

omputes the joinings only when necessary. However, according to

ayak et al. (1993) the Rete algorithm outperforms the Treat algo-

ithm, especially in static structures. As the facts within the work-

ng memory of the introduced driving system are updated instead

f deleted or added, the working memory of the introduced driving

ystem has a static structure. However, updating the working mem-

ry is not considered in the Treat and Rete algorithms, which is why

n update of the working memory results in deleting and adding the

acts within these algorithms. Due to this fact, the Treat and Rete al-

orithms are not the ideal rule matching algorithms for the driving

ystem. The evolution of the Treat is the Leaps algorithm, which com-

ines the lazy rule matching with the solving of the conflict set. This

llows the Leaps algorithm a faster firing of the rule consequences.

owever, this also makes the Leaps algorithm inflexible, as the con-

ict set resolution strategy cannot be changed. The conflict set of the

ntroduced driving system, called the broken rules queue, is solved

y the recommendations inference engine, which processes the rules

ithin the broken rules queue according to the first in, first out prin-

iple. Each rule is checked by the recommendations inference engine

or whether the firing of the consequence has to be suppressed, as

he driver may be under stress. Due to this fact, the Leaps algorithm

s also not the ideal solution for matching the rules against the facts in

he driving system, because it fires the rules instantly without the op-

ion to suppress the recommendations. On the basis of the elaborated

ndings, a rule matching algorithm for the usage within the driving

ystem will be created. The Rete algorithm will be the basis for the

mproved rule matching algorithm because it is designed to work in

tatic structures. In the next section, the improved rule matching al-

orithm will be explained in detail.

. Improved rule matching algorithm

The Rete algorithm is developed for environments with static

tructures. According to Nayak et al. (1993) static structures are de-

ned as facts in a working memory which are not removed. Thus,

he introduced driving system has a static structure, as the facts (the

easured values from the car) stored in the working memory are not

emoved. Instead, they are updated with a frequency of 100Hz. How-

ver, an update operation using the Rete or Treat algorithms consists

f deleting the old fact from the Rete network and adding the new

act. The delete and add operations are shown in Figs. 5 and 6. The us-

ge of the Rete or Treat algorithms in the driving system would cause

assive delete and write operations within the used network, as they

ould have to update the facts with a frequency of 100 Hz. To avoid

he write and delete operations upon every update of the facts and

herefore, to improve the performance, a rule matching algorithm has

een created on the basis of the Rete algorithm, as it is designed to
ork in static structures. Instead of storing the fact within the node

emories, the improved rule matching algorithm stores pointers to

he corresponding facts within the working memory. Thus, upon ev-

ry update of the facts within the working memory, the improved

ete network does not have to be updated. Instead, the network is

nly triggered to check whether the updated facts satisfy the node

onditions. Listing 1 contains an abstract description of the improved

ule matching algorithm. Upon every update of the facts within the

orking memory, every improved rete network is triggered to check

ts alpha nodes with the updated facts. If the result of the check dif-

ers from the previous result stored within the corresponding node

emory, the old result is deleted and the new result is put in the al-

ha memory. If there is a beta node, the result is passed to that beta

ode, which checks first if both parents are updated with the new

acts. Then, the beta node starts to check the intermediate relation

etween the alpha nodes. If the result of the check differs from the

tored value in the beta node memory, the new result is stored and

he old result is deleted from the beta node memory. If the beta node

as another beta node, the result is passed to the child beta node.

owever, if there is no beta node, the conflict set is updated accord-

ng to the result of the check. If the result of the check was positive,

hich means that the rule is broken, the rule is put into the conflict

et. If the rule is not broken and the conflict set contains it, the rule is

emoved from the conflict set. The explained approach allows a faster

rocessing of the rule matching algorithm, because it does not have

o update the memory of every alpha or beta node using the fact of

he working memory. Furthermore, the improved rule matching algo-

ithm avoids storing redundant information in the alpha nodes, as the

acts of the working memory are not stored within the node memo-

ies.

An example in Fig. 8 shows the improved Rete network and the

pdate process of the improved rule matching algorithm using the

riving rule shift as soon as possible (Rule1) with the conditions RPM

2500 and Gear < 6. The initial working memory in the example is

mpty as well as the memory of the alpha and beta nodes. The beta

ode points to the memory of the alpha nodes, which is needed to

heck whether the intermediate relation between the alpha nodes is

atisfied. During the initial add operation, pointers to the facts in the

orking memory are passed to the corresponding alpha nodes. After

he initialization of the pointers, the improved Rete network is trig-

ered to check the conditions against the facts in the working mem-

ry according to the abstract algorithm in Listing 1. First, the alpha

odes check their condition against the fact. The result of the check

s stored in the corresponding alpha node using a logical value. In the

xample, the facts stored in the working memory satisfy the condi-

ion of the alpha nodes, which then trigger the beta node to check

he intermediate node relation. As the beta node checks the logical

alues of the parent nodes, which are both true, the conflict set is ma-

ipulated by adding Rule1 into the conflict set. After the update of the

act RPM to 2400 rpm, the improved Rete network is triggered again

o check the conditions within the network against the facts, instead

f deleting the old and adding the new fact within the alpha node

emories, like the Rete or Treat algorithm does. Thus, the alpha node

ith the condition RPM > 2500 checks its condition against the cor-

esponding fact in the working memory and stores the result, which

s in the example false, in its node memory. Afterwards, it triggers the

eta node to check if the intermediate relation of the alpha nodes is

atisfied, using the values stored in the alpha node memories. In our

xample, the beta node memory consists of the value false after the

pdate, as the intermediate relation of the alpha nodes is not satis-

ed. Thus, the beta node removes Rule1 from the conflict set, as Rule1

as in the conflict set before.

The improved rule matching algorithm is based on the Rete algo-

ithm and uses therefore alpha and beta nodes for the rule matching.

hus, the space complexity of the improved rule matching algorithm

s similar to the Rete algorithm: O(W n−1), where W is the number of



Listing 1. Abstract improved rule matching algorithm, which shows the matching of the rule using the facts stored in the working memory.

q

a

a

f

i

6

a

s

T

e

o

d

r

g

s

i

c

t

i

n

c

r

t

A

m

w

a

working memory elements and n is the number of rule conditions.

Table 2 shows the computational costs of the operations in the differ-

ent rule matching algorithms. The computational cost of an add and a

delete operation in the improved rule matching algorithm is the same

as in the Rete algorithm, as the pointers have to be added or deleted

from their corresponding nodes similarly to the Rete algorithm. In

Rete and Treat, there is no update operation available, however, an

update of a working memory element causes a delete and an add

operation in Rete and Treat, why an update in Rete is 2R(n) + S(n)

and in Treat K(n) + D(n). The improved rule matching algorithm pro-

vides an update operation that is R(n), as an update of an element in

the working memory causes only the recomputation of the alpha and

beta nodes in the improved rule matching algorithm. Thus, the per-

formance of the improved rule matching algorithm should be higher

than Rete and Treat in the driving system, as the data within the driv-

ing system is updated frequently by the sensors of the car, the driver

and the environment.

The basis for the improved rule matching algorithm is the driv-

ing rule file (DRR), which contains the rules used for matching the

facts within the improved rule matching algorithm. The antecedent

and consequence of the rules are based on the driving rules listed in

Table 1. On the basis of the description within the DRR files, the im-

proved Rete network for the described rules is generated. The driv-

ing rule to shift the gear, when the rpm is higher than 2500 and

the gear is not the maximum gear, which is 6 in the example, is de-

fined by the following schema in the DRR file: #rule ecoRPM #when

Rpm>2500 & Gear<6. The start of a rule in the DRR file is indicated

by the tag #rule, which is followed by the name of the rule between
uotation marks, ecoRPM in the example. The conditions of the rule

re defined after the keyword #when and are separated by the char-

cter &. The conditions can be defined using terms, in which the

acts of the working memory can be used by defining their names

n the terms. In the example, the terms Rpm > 2500 and Gear <

are defined as the conditions of the rule, whereby the facts Rpm

nd Gear are used. The defined conditions are followed by the con-

equence of the rule, which is indicated by the key word #then.

he consequence of the rule is defined in the Long Term Knowl-

dge Base, which is placed in the Data Layer, and consists of the rec-

mmendation, which will be shown to the driver. It is possible to

efine multiple consequences in order to show the driver multiple

ecommendations.

On the basis of the defined rule, the improved rule matching al-

orithm creates the corresponding improved Rete network. The ab-

tract algorithm for generating the improved Rete network is shown

n Listing 2. For each rule in the DRR file, a root node for the rule is

reated. Then the algorithm parses the DRR file to find defined condi-

ions for that rule. For any found condition, the improved rule match-

ng algorithm creates an alpha node and sets it as a child of the root

ode. If another condition is found, another alpha node is created as a

hild of the root node. Furthermore, a beta node is created, which rep-

esents the intermediate relation of the created alpha nodes. In addi-

ion, pointers to the alpha node memories are stored in the beta node.

fter the generation of the improved Rete network, the improved rule

atching algorithm starts to listen for an initial add of a fact in the

orking memory in order to pass the pointer to the corresponding

lpha nodes and to match the facts against rules.



Fig. 8. The improved rule matching algorithm is using pointers to the facts and triggers the improved Rete network to check the conditions against the facts on every update of the

working memory.

Table 2

The computation complexity of the operations add, delete and upate in the different

rule matching algorithms.

Operation Rete Treat Improved

Add R(n) K(n) R(n)

Delete R(n) + S(n) D(n) R(n) + S(n)

Update 2R(n) + S(n) K(n) + D(n) R(n)

b

i

q

I

n

w

i

d

R

w

p

o

5

b

An improved rule matching algorithm has been adapted on the

asis of the Rete algorithm and optimized for the usage in the driv-

ng system, respectively in environments whose data is changing fre-

uently. This has been achieved by adapting the alpha and beta nodes.
Listing 2. Abstract improved matching algorithm, which illustrates the generatio
nstead of storing all facts that satisfied the node condition within the

ode memories, the alpha nodes are pointing to the facts stored in the

orking memory and the beta nodes are pointing to the stored value

n the alpha memory. The nodes store only the logical value that in-

icates if the node condition is satisfied. Furthermore, the improved

ete algorithm allows the definition of the rules within the DRR files

hereby terms represent the conditions of the rule, which are used to

ass the pointers to the corresponding nodes during the generation

f the improved Rete network.

. Evaluation

For the evaluation, the improved rule matching algorithm has

een implemented in the Rule and Data Element Selector module of
n of the improved Rete network based on the rules defined in the DRR file.



Fig. 9. Driving system during the evaluation of the driving rule “shift as soon as possible”.

t

n

t

o

v

n

d

6

c

t

t

r

t

a

d

e

n

d

a

n

a

t

t

i

f

0

(

m

s

p

o

A

r

a

i

t

f

R

i

t

n

u

the driving system. Besides the improved rule matching algorithm,

the Rete and Treat algorithm has been implemented as well, as the

results of its evaluation show the differences in the performance of

the algorithms. Miranker (1987) and Nayak et al. (1993) used differ-

ent metrics in their experiments to measure the performance of the

rule matching algorithms. Therefore, a combination of the metrics

was used in the evaluation of the improved rule matching algorithm.

The following metrics have been used in the evaluation: (1) counting

the comparisons of the facts against the node conditions; (2) count-

ing the accesses to the node memories; (3) measuring the average

execution time.

The improved rule matching algorithm and the original Rete al-

gorithm were evaluated using the driving rules: (1) to switch the

gear as soon as possible, (2) not to exceed the speed limit and (3)

to keep enough distance from the car in front. These driving rules

were described within the driving system with the rule conditions

(1) Rpm > 2500 & Gear < 6, (2) Carspeed <Speedlimit and (3) Dis-

tanceToCar <Carspeed/2. On the basis of the three rules, the eval-

uations of the algorithms were done using 15 different journeys.

During the different journeys, the rules (1)–(3) were used to initial-

ize the algorithms, which created one Rete network for every rule.

However, to have the same evaluation environment for every algo-

rithm, the driving simulator shown in Fig. 9 was used to record the 15

journeys on a rural road. The recorded journeys consisted of informa-

tion about the virtual car, like revolutions per minute, car speed, cur-

rent gear and so on. The recorded journeys were played back on every

run, which allowed the evaluation of the algorithms using the same

conditions.

The recorded driving speeds of the journeys were compared

against the average driving speeds on a rural road in the European

Union, which is 77 km/h (André & Hammarström, 2000), using the

one-tailed t-test. The one-tailed t-test is a statistical hypothesis test

hat allows to check whether the mean of samples are differing sig-

ificantly from a particular value. Thus, using the t-test to check if

he recorded data is able to represent the average driving behavior

n a rural road. The result of the statistical hypothesis test was an h-

alue of 0 and a p-Value of 0.0515. Thus, the t-test does not reject the

ull hypothesis that the recorded data is able to represent the average

riving behavior at a significance level of 5.15%.
. Results and discussion

During the evaluation, the accesses to the node memories, the

omparisons of the facts to the node conditions, and the execution

ime of the algorithm were measured. Table 2 shows the results of

he evaluation. According to the results, it is clear that the improved

ule matching algorithm outperforms the Rete and Treat algorithm in

he environment of the driving system. The improved rule matching

lgorithm needed fewer comparisons of the facts to the node con-

itions, fewer accesses to the node memories, and took less average

xecution time. Thus, it can be assumed that passing a pointer to the

odes and storing the result of the comparison of the facts to the con-

itions is more efficient than passing the facts to the Rete network

nd storing the fact, which satisfies the node condition, within the

ode memories.

The results of the fact comparisons to the node conditions and

ccesses to the memory nodes are dependent on the duration of

he journey. The longer the journey, the higher the comparisons to

he node conditions and accesses to the node memories. However,

n all 15 journeys, the improved Rete algorithm needed about 97%

ewer accesses to the node memories than the Rete with a p-Value of

.0000000004 or Treat algorithm with a p-Value of 0.0000000002

Fig. 10). This is related to the logical value stored within the node

emories and the pointer to the fact in the working memory. The

tored pointers to the facts of the working memory allow the im-

roved rule matching algorithm to avoid the deletion and addition

f the facts within the node memories, like the Rete or Treat does.

nother point is that the stored logical value is only altered when the

esult of the condition check differs from the stored logical value. This

lso saves accesses to node memories. Due to the missing beta nodes

n the Treat algorithm, it needed fewer accesses to the memory nodes

han the Rete algorithm (Table 3) .

Furthermore, the improved rule matching algorithm needed 35%

ewer comparisons to the node conditions during all journeys than

ete with a p-Value of 0.000000000000004 and 15% fewer compar-

sons than Treat with a p-Value of 0.000000000001 (Fig. 10), because

he improved rule matching algorithm triggers the improved Rete

etwork to compare its node conditions to the facts after all facts are

pdated within the working memory. Therefore, the nodes have to



Table 3

The result of the evaluation based on 15 journeys.

Journeys

Algorithms 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Accesses to node memories Improved 219 203 215 317 175 159 247 207 131 291 283 191 182 171 166

Rete 4331 8091 4821 5437 6873 11173 7549 7913 7981 6711 6437 9887 7148 7547 6510

Treat 3437 6945 3997 4583 5991 8515 7325 7591 7603 5467 5531 7055 6890 7059 6688

Fact comparisons against node conditions Improved 2860 3865 2960 3645 3640 3730 3695 3695 3595 3725 3835 3380 3450 3550 3540

Rete 4423 5949 4512 5357 5482 5794 5841 5813 5649 5796 5463 5362 5344 5556 5308

Treat 3462 4620 3516 4254 4314 4362 4464 4404 4248 4422 4146 4050 4110 4200 4182

Average execution time (in ms) Improved 4 5 5 5 5 5 4 4 4 4 4 4 4 4 4

Rete 11 12 11 11 12 12 12 11 12 11 11 11 12 12 11

Treat 10 11 11 10 11 11 10 10 10 10 10 10 10 10 9

Fig. 10. The average results of 15 journeys.

c

R

w

t

o

h

i

c

f

t

t

l

R

i

n

t

g

0

V

t

i

t

t

a

p

t

T

a

t

m

R

m

w

T

l

d

g

m

i

7

r

b

m

n

i

b

e

a

f

o

t

a

r

i

c

n

t

p

d

a

w

i

R

f

t

t

r

t

r

l

g

a

R

A

B

heck each condition against the facts once. In contrast, the Treat and

ete algorithms pass each fact from the working memory to their net-

orks for the comparison to the node conditions. For example, when

he facts speed and speed limit are updated within the working mem-

ry, the corresponding node in the improved rule matching algorithm

as to compare the condition speed < speed limit once to the work-

ng memory. In contrast, using the Rete or Treat algorithm, an update

onsists of deleting the old fact and adding the new fact. Thus, the

acts speed and speed limit are first removed from the network. Then,

he new facts are passed in succession to the network, which first has

o check the fact speed against the condition and then the fact speed

imit. Thus, an update with two facts in one condition causes in the

ete and Treat algorithm two comparisons instead of one comparison

n the improved matching algorithm. Because the Treat algorithm has

o beta nodes, whose node memories have to be updated on a dele-

ion of a fact, it needs fewer comparisons than the Rete algorithm.

The evaluation showed that the improved rule matching al-

orithm was about 62% faster than the Rete with a p-Value of

.0000000000000002 and 57% faster than Treat algorithm with a p-

alue of 0.000000000000000001 (Fig. 10). Thus, passing a pointer to

he facts in the working memory to the node memories and trigger-

ng the improved Rete network to check the node conditions against

he updated facts needed less execution time than passing the facts to

he network and storing them in the alpha and beta node memories

s in Rete, or storing the facts in the alpha memories and the recom-

utation of the alpha node joins. However, according to the results of

he evaluation, the Treat algorithm is faster than the Rete algorithm.

hus, the computation of the alpha node joins is more efficient in the

rea of the driving system than the recalculation of the beta nodes as

he Rete algorithm does.

The results of the evaluated metrics showed an higher perfor-

ance of the improved rule matching algorithm compared to the

ete and Treat algorithm. The main advantage of the improved rule

atching algorithm is the ability to update a working memory fact
ithout using a delete and an add operation, like Rete or Treat does.

his allows a faster processing of facts that are changing frequently,

ike the car, driver or environmental information used in the intro-

uced driving system. However, this also limits the introduced al-

orithm to the context of the driving system, as the improved rule

atching algorithm is specific to the handling of frequently changing

nformation.

. Conclusion and further work

The goal of this research was to develop a rule matching algo-

ithm for detecting broken driving rules within an adaptive and rule-

ased driving system that improves the performance of existing rule

atching algorithms, as the performance of existing algorithms are

ot sufficient for matching rules against frequently changing data. It

s clear, based on 15 journeys and three driving rules, that this has

een achieved, as the improved rule matching algorithm outperforms

xisting rule matching algorithms like Rete and Treat.

In contrast to the existing algorithms, the improved rule matching

lgorithm stores pointers to the working memory facts, instead of the

acts themselves. It also checks the node conditions after the update

f all working memory facts, rather than checking the node condi-

ions upon the change of a single working memory fact. Furthermore,

n update of a fact causes in the improved rule matching algorithm a

ecomputation of the alpha and beta nodes, whereas Rete and Treat

nitiate first a removal of the old fact from the nodes, including a re-

omputation of the nodes to keep the network up-to-date. Then, the

ew fact is added to the network, followed by another recomputa-

ion of the alpha and beta nodes. This leads to a performance im-

rovement of the improved rule matching algorithm during the up-

ate of the working memory facts, as an update in the introduced

lgorithm does not imply a delete and an add operation of a single

orking memory fact, like in Rete and Treat. Based on these find-

ngs, the introduced algorithm has a higher performance than the

ete or Treat algorithm, when used in the driving system to match

requently changing information against rules. Thus, it will be used in

he energy-efficiency and safety relevant driving system for matching

he data about the car, the driver, and the environment to the driving

ules.

As the rule matching algorithm is tested in the environment of

he driving simulator, further work will include testing it in the envi-

onment of a real car. Furthermore, as the rule matching algorithm is

imited to the context of the driving system, it is planned to investi-

ate the performance of the algorithm outside of the automotive area

nd in environments with less frequent changing data.

eferences

ndré, M., & Hammarström, U. (2000). Driving speeds in Europe for pollutant emis-
sions estimation. Transportation Research Part D: Transport and Environment, 5(5),

321–335.
arkenbus, J. N. (2009). Eco-driving: an overlooked climate change initiative. Energy

Policy, 38(2), 762–769.

http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0001
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0001
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0001
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0001
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0002
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0002


M

M

N

N

P

Bongard, A.-E. (2007). The environment and the driving instructor. Last visit: 07.10.2014
http://www.drivers.com/article/413/.

Brookhuis, K. A., & de Waard, D. (2010). Monitoring drivers mental workload in driving
simulators using physiological measures. Accident Analysis and Prevention, 42(3),

898–903.
Burton, D., Delaney, A., Newstead, S., Logan, D. Fildes, B. (2004). Evaluation of anti-lock

braking systems effectiveness. Royal Automobile Club of Victoria Ltd.
Chin, H.-C., & Quek, S.-T. (1997). Measurement of traffic conflicts. Safety Science, 26(3),

169–185.

Cho, H. J. (2008). Eco driving system. Last visit: 07.10.2014 http://kia-buzz.com/eco-
driving-system/.

Fiat (2010). Eco-driving uncovered: the benefits and challenges of eco-driving, based
on the first study using real journey data.

Forgy, C. L. (1982). Rete: a fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19(1), 17–37.

Gao, T., Qiu, X., & He, L. (2013). Improved RETE algorithm in context reasoning for web

of things environments. In Proceedings of IEEE international conferance on green
computing and communications and IoT and cyber, physical and social computing

(pp. 1044–1049).
German Statistical Office(2014). Verkehr-Verkehrsunfälle 2013.

Haworth, N., & Symmons, M. (2001). Driving to reduce fuel consumption and improve
road safety. In Proceedings of road safety research, policing and education conference:

vol. 1 (p. 7).

Helms, H., Lambrecht, U., & Hanusch, J. (2010). Energieeffizienz im Verkehr. Energieef-
fizienz, 1, 309–329.

Jo, J., Lee, S. J., Park, K. R., Kim, I.-J., & Kim, J. (2014). Detecting driver drowsiness using
feature-level fusion and user-specific classification. Expert Systems with Applica-

tions, 41, 1139–1152.
Khayyam, H., Nahavandi, S., & Davis, S. (2012). Adaptive cruise control look-ahead sys-

tem for energy management of vehicles. Expert Systems with Applications, 39, 3874–

3885.
Li, Y., Liu, W., Cao, B., Yin, J., & Yao, M. (2016). An efficient MapReduce-based rule match-

ing method for production system. Future Generation Computer Systems, 54, 478–
489.

Liu, G., Huang, S., Zhang, D., & Du, Y. (2014). A Rete rule reasoning algorithm based on
the audit method ontology. International Journal of Hybrid Information Technology,

7(3), 211–224.

Lotan, T., & Toledo, T. (2006). An in-vehicle data recorder for evaluation of driving behav-
ior and safety: Paper No. 061607 (pp. 1–14). Transportation Research Board of the

National Academies.
Milanes, V., Perez, J., Godoy, J., & Onieva, E. (2012). A fuzzy aid rear-end collision warn-
ing/avoidance system. Expert Systems with Applications, 39, 9097–9107.

iranker, D. P. (1987). Treat: a better match algorithm for ai production systems. In
Proceedings of AAAI-87: vol. 1 (pp. 42–47).

iranker, D. P. (1990). On the performance of lazy matching in production systems. In
Proceedings of AAAI-90: vol. 1 (pp. 685–692).

ayak, P., Gupta, A., & Rosenbloom, P. (1993). Comparison of the RETE and TREAT pro-
duction matchers for Soar (a summary). The Soar Papers, 1, 621–626.

ew Zealand Transport Agency (2007). Your safe driving policy: helping you to manage

work-related road safety and keep your employees and vehicles safe on the roads.
atil, S. K. (2012). Regenerative braking system in automobiles. International Journal of

Research in Mechanical Engineering and Technology, 2, 45–46.
Spencer, C. (2008). Ford tests show eco-driving can improve fuel economy by an

average of 24 percent. Last visit: 07.10.2014 http://www.at.ford.com/news/cn/
ArticleArchives/27527.aspx.

UNECE – United Nations Economic Commission for Europe (2004). Aggressive driving

behaviour (background paper). Last visit: 07.10.2014 http://www.unece.org/trans/
roadsafe/rs4aggr.html.

van Mierlo, J., Maggetto, G., van de Burgwal, E., & Gense, R. (2004). Driving style and
traffic measures – influence on vehicle emissions and fuel consumption. Proceed-

ings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engi-
neering, 218,, 43–50.

Wessellink, B., Harmsen, R., & Eichhammer, W. (2010). Energy savings 2020. EcoFys and

Fraunhofer Institute.
Wright, I., & Marshall, J. (2003). The execution kernel of RC++: RETE∗, a faster RETE with

TREAT as a special case. International Journal of Intelligent Games and Simulation,
2(1), 36–48.

Xiaoqiu, F., Jinzhang, J., & Guoqiang, Z. (2011). Impact of driving behavior on the traffic
safety of highway intersection. In Proceedings of third international conference on

measuring technology and mechatronics: vol. 2 (pp. 370–373).

Yay, E., & Martínez Madrid, N. (2013). SEEDrive – an adaptive and rule based driving
system. In Proceedings of the 9th international conference on intelligent environments,

IE’13: 1 (pp. 262–265).
Yay, E., Martínez Madrid, N., & Ortega Ramírez, J. A. (2014). Using an improved rule

match algorithm in an expert system to detect broken driving rules for an energy-
efficiency and safety relevant driving system. Procedia Computer Science, 35, 127–

136.

http://www.drivers.com/article/413/
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0003
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0003
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0003
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0003
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0004
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0004
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0004
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0004
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0005
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0005
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0006
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0006
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0006
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0006
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0006
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0007
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0007
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0007
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0007
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0008
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0008
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0008
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0008
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0008
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0009
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0009
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0009
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0009
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0009
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0009
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0009
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0010
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0010
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0010
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0010
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0010
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0011
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0011
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0011
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0011
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0011
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0011
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0011
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0012
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0012
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0012
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0012
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0012
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0012
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0013
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0013
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0013
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0013
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0014
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0014
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0014
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0014
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0014
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0014
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0015
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0015
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0016
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0016
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0017
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0017
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0017
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0017
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0017
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0018
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0018
http://www.at.ford.com/news/cn/ArticleArchives/27527.aspx
http://www.unece.org/trans/roadsafe/rs4aggr.html
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0019
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0019
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0019
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0019
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0019
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0019
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0020
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0020
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0020
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0020
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0020
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0021
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0021
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0021
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0021
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0022
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0022
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0022
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0022
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0022
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0023
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0023
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0023
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0023
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0024
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0024
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0024
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0024
http://refhub.elsevier.com/S0957-4174(15)00748-4/sbref0024

	Detecting the adherence of driving rules in an energy-efficient, safe and adaptive driving system
	1 Introduction
	2 Adaptive and rule-based driving system
	2.1 Adaptive and rule-based driving system cycle
	2.2 Driving rules
	2.3 Architecture
	2.3.1 Processing layer


	3 Rule matching algorithms
	4 Improved rule matching algorithm
	5 Evaluation
	6 Results and discussion
	7 Conclusion and further work
	 References




