
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

1-2004

Heuristics for a Brokering Set Packing Problem Heuristics for a Brokering Set Packing Problem

Yunso GUO
National University of Singapore

Andrew LIM
Hong Kong University of Science and Technology

Brian Rodrigues
Singapore Management University, brianr@smu.edu.sg

Yi ZHU
Hong Kong University of Science and Technology

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

 Part of the Operations and Supply Chain Management Commons

Citation Citation
GUO, Yunso; LIM, Andrew; Rodrigues, Brian; and ZHU, Yi. Heuristics for a Brokering Set Packing Problem.
(2004). Eighth International Symposium on Artificial Intelligence and Mathematics: January 4-6, 2004,
Fort Lauderdale, Florida: Proceedings. 1-8. Research Collection Lee Kong Chian School Of Business.
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/2385

This Conference Proceeding Article is brought to you for free and open access by the Lee Kong Chian School of
Business at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge
at Singapore Management University. For more information, please email libIR@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13246913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F2385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F2385&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Heuristics for a Brokering Set Packing Problem

Y. Guo1, A. Lim2, B. Rodrigues3, Y. Zhu2

1Dept of Computer Science, National University of Singapore

Science Drive 2, Singapore 117543

guoyunso@comp.nus.edu.sg
2Dept of IEEM, Hong Kong University of Science Technology

Clear Water Bay, Kowloon,Hong Kong

{iealim,zhuyi}@ust.hk
3School of Business, Singapore Management University

469 Bukit Timah Road, Singapore 259756

br@smu.edu.sg

Abstract

In this paper we formulate the combinatorial auction brokering problem as a Set Pack-
ing Problem (SPP) and apply a simulated annealing heuristic to solve SPP. Experimental
results are compared with a recent heuristic algorithm and also with the CPLEX Integer
Programming solver where we found that the simulated annealing approach outperforms
the previous heuristic method and CPLEX obtaining results within smaller timescales.

1 Introduction

In [5], a model was proposed for modeling a brokering problem as a set packing problem (SPP).
This problem was motivated by the need to provide an intelligent agent-based framework that
supports fourth-party logistics operations. Combinatorial optimization problems on bidding
auction have been extensively studied in the literature [1][2]. Recently, combinatorial auction
theory has become a subject of interest. Vries and Vohra provide an excellent survey for such
problems, including the SPP and two other relevant problems, the set partition and covering
problems[7]. While there are some previous papers on the approaches to set partition and
covering problems, set packing problem is relatively less analyzed [3][4][6].

In this work, we study the broker model which can be described as follows: Assume there
are n bids and m jobs and each bid can cover a number of jobs resulting in a profit to the
supplier, wj (j ∈ 1, ..., n) is the profit if bid j is selected, and [aij]m×n is a m-row, n-column 0-1
matrix, where aij = 1 if job i is included in bid j. Further, the decision variables, xj = 1 if the
supplier selects bid j, and 0 otherwise. An integer programming (IP) model for the brokering
problem as a SPP problem is then:

Maximize
∑

j∈N

wjxj (1)

1

Subject to: ∑

j∈N

aijxj ≤ 1, i ∈ M (2)

xj ∈ {0, 1}, j ∈ N (3)

where N = {1, . . . , n}, M = {1, . . . , m}.The first set of constraints ensure that each row is
covered by at most one column and the second integrality constraints ensure that xj = 1, iff
column j of the matrix is in the solution.

In [5], the SPP is directly related to bid allocation since rows represent jobs submitted
and columns represent bids for a subset of rows and the problem is to find a set fo bids with
the maximum weight which cover a given set of jobs at most once. The weights were derived
by the three factors of pricing, preference and fairness and is indicative of how good any bid
is. Although the SPP is well known, we have to the best of our knowledge not found any
application of heuristic to this problem, except in [5] where an Iterative Greedy (IG) approach
was proposed for the problem. The IG method is applied to problems of up to 200 jobs and
100 bids. In this paper, we develop a heuristic method using an simulated annealing heuristic
embedded with a greedy search which provides a guide to the main algorithm. From extensive
experiments performed, we found that this approach gave better results with less time spent
compared with the IG approach. And when applied to large test cases with up to 1500 jobs
and 1500 bids, the new method gave good results compared with those obtained by CPLEX
and in much less time.

The paper is organized as follows: in the next section we propose a new simulated anneal-
ing heuristic embedded with greedy local search to solve SPP and also discuss the solution
techniques in detail. The elaborate experimental results are presented in section 3, where the
results of our method are compared with CPLEX solver and the previous heuristic method.
The paper gives the conclusion in section 4.

2 Simulated Annealing with Greedy Search

Simulated Annealing (SA) is a meta-heuristic that differs from the traditional hill-climbing
method. It accepts local moves which may decrease the current objective value with a certain
probability. It comprises of two major components - a local search and temperature cooling
schedule. We developed a hybrid meta-heuristic which basically uses an SA approach and with
a greedy search for selecting local moves.

2.1 The SA Framework

Our heuristic algorithm is illustrated in Algorithm 1, where the m× n matrix a denotes a job-
bid 0-1 matrix where aij = 1 if bid j includes job i (1 ≤ i ≤ m, 1 ≤ j ≤ n). Before the program
embarks on the heuristic search, we preprocess input data to eliminate redundant calculations
possible in the heuristic. The preprocessing would first calculate a 0-1 matrix C = [cij]n×n,
where cij = 1 if bid i and bid j both contain job k (1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ m), and
bid i and bid j are called “conflict” each other. If there exists any bid i (1 ≤ i ≤ n) such that
cij = 0 for any j (1 ≤ j ≤ n), we include the bid i in the final solution and do not consider
such bids in the heuristic search.

Here, we combine the greedy local search with the SA search as the greedy method by itself
would easily go into local optima but if it is used to guide the SA search, the results turn out
much better than the IG method in [5] or if we use SA alone. The extent to which the greedy

2

Algorithm 1 Simulated Annealing Framework

S ← {}; best value ← 0; Temperature ← Tmax; Iter ← 0
preprocess()
while Iter < Max Iter and Temperature > T Terminate do

with probability p1

S ← SA Localsearch(s);
Cool(Temperature)

with probability (1 − p1)
S ← Greedy Localsearch(s);
if value(S) > best value then

best value ← value(S);
end if
iter ← iter + 1

end while

Figure 1: SA exchange 2 Example

local search is embedded with the SA search is an important factor, and in our implementation,
this is expressed by the probability p1.

2.2 SA Local Search and Cooling Schedule

Unlike hill climbing, SA local search can accept moves that will lower the current objective
value in order to escape from possible local optima. The SA local search algorithm is sketched
in Algorithm 2, where C4 is a constant.

We have made use of 2 types of neighborhood moves: SA exchange 1 and SA exchange 2.
These would select 1 or 2 bids at one time respectively to add to the current solution S, and
then remove any bids in S that conflict with the newly added bids. For example, the algorithm
for SA exchange 2() is illustrated by Algorithm 3. Also refer to Fig 1. In this example, we have
7 bids in all with 4 already selected in Stemp. SA exchage 2 would select 2 non-conflicting
bids 5, 7 from outside Stemp to add to it, and remove bid 3 from Stemp because it conflicts
with the newly added bids. For a cooling scheme, we set the initial temperature Tmax to have a
large value with a cooling schedule Temperature = C5 × Temperature where C5 is a constant
a little smaller than 1.

2.3 Greedy Local Search

The greedy local search is used with the SA local search to improve the performance. In a
greedy local search, the greedy value determination is directly related to the performance of

3

Algorithm 2 SA local search
Stemp ← S
with probability p2

SA exchange 1(Stemp)
with probability 1 − p2

SA exchange 2(Stemp)
δ = value(Stemp) − value(S)
if δ > 0 then

return Stemp
else {from S to Stemp is a downhill move}

T ← C4 × Temperature
p = e−δ/T

with probability p
S ← Stemp

return S
end if

Algorithm 3 SA exchange 2(Stemp)

if At least 2 non-conflict bids are not in Stemp then
Randomly select bid i and bid j where i, j /∈ Stemp and cij = 0
Remove bid k from Stemp if cik = 1 or cjk = 1
Stemp ← Stemp ∪ {i, j}

end if
return Stemp

the search. In SPP, a natural approach is to use the profit of a bid as the greedy value. However,
this approach ignores the nature of a bid in the way that more jobs a bid contains, the more
likely the bid would conflict with other bids and constrain bids that the supplier can select
which makes solutions inferior. In our greedy local search, we assign a penalty cost to each bid,
and take the profit less the penalty cost as the greedy value.

2.3.1 Relative Penalty Cost

In order to derive the relative penalty cost, we first introduce an absolute penalty cost |penalty|
given by:

|penalty|i =
n∑

j=1

C1 ∗ profitj ∗ cij, 1 � i � n.

[cij]n×n is a n-row, n-column 0-1 matrix where cij = 1 iff ∃k ∈ M aik = 1 and ajk = 1.
When bid i conflicts with a high-profit bid j, if we select bid i and not bid j, the outcome

may be detrimental; thus, we assign a penalty cost to each bid according to the profits accrued
from all other conflicting bids as above. Here, C1 is a constant.

We can now define a relative penalty:

penaltyi =
n∑

j=1

(C2 ∗ profitj − C3 ∗ |penalty|j) ∗ cij, 1 � i � n.

4

Figure 2: Greedy Search Example

The main advantage that a relative penalty has over an absolute penalty is that, when
bid j has a large absolute penalty and we are unlikely to pick it in the greedy process, we
need not incur the absolute penalties of other bids that conflict with bid j since we subtract
C3 ∗ |penalty|j. Here, C2 and C3 are both constants.

2.3.2 Greedy Selection

The greedy local search chooses among the bids that do not conflict with any of the bids already
selected in S one with the largest (profit − penalty) value. As in Fig. 2, suppose we have 6
bids and we have selected current bids S = {1, 3, 4} where there are conflicts between bid 1,5
and bid 2,6. After the greedy local search is applied, the resulting set is S = {1, 3, 4, 6}.

3 Experimental results

In this section, we present experimental results and compare these with the IG method in [5]
and Ilog CPLEX 7.0.1 using the SPP IP model described in this paper. We generated the test
cases following the mechanisms described in [5] with various sizes. These involve restricting the
number of jobs a bidder can bid and the minimum and maximum profit each job can provide,
etc. In [5] the maximum size of test case is m = 200 and n = 100 and in this work, we use values
up to m = 1500 and n = 1500. For comparison with our SA with greedy search (SAG), we
tested 4 variations of the IG method in [5] and from our experimental results all 4 methods do
not significantly differ from each other in results. For comparisons, we use the second variation
of the IG method, a deterministic divergent search and deterministic partial cover described
in [5]. All instances on SAG and IG are run on a machine with PIII-800 dual CPU and 1GB
memory; all instances on CPLEX are run on a local machine with PIV-1.7G CPU and 384M
memory.

3.1 Optimality Comparisons of SAG and IG with CPLEX

We randomly generated 10 small test cases following the generation mechanism introduced in
[5] for which CPLEX can provide optimal results in reasonable time and were able to compare
the performance of SAG and IG for small instances. The results are given in Table 1. The
time spent on these 10 instances is less than 10 seconds for both SAG and IG methods; and
less than 30 seconds for CPLEX.

5

M N SAG IG δIG
1 CPLEX

100 100 19495.02†2 17400.77 10.74% 19495.02
100 100 20543.42† 20435.92 0.52% 20543.42
100 100 18556.59† 16993.77 8.42% 18556.59
100 100 20690.86† 19590.13 5.32% 20690.86
100 100 18485.96† 18485.96† 0 18485.96
200 200 26284.21† 23920.52 8.99% 26284.21
200 200 28473.75† 26142.23 8.19% 28473.75
200 200 27894.38† 27894.38† 0 27894.38
200 200 30748.64† 30748.64† 0 30748.64
200 200 27558.78† 25636.82 6.97% 27558.78

1 δIG measures the difference between IG and optimal solution

2 † means optimal solution is obtained

Table 1: Optimality Comparison for Small Instances

M N # instance SAG best IG best µSAG. t1 µIG. t2 δ1

1000 500 100 94 1 74750.66 33.88 70295.46 31.73 6.34%
500 1000 100 91 8 65874.39 77.06 62732.89 143.62 5.01%
1000 1000 100 94 5 85205.58 88.70 80256.87 188.29 6.17%
1000 1500 100 100 0 84422.91 151.50 80404.98 286.84 5.00%
1500 1500 100 93 1 103426.68 192.93 98255.77 314.04 5.26%

1 δ measures the percentage SAG result outperforms IG result

Table 2: Experimental Results on Large Instances

From Table 1, we see that SAG can find optimal solutions for the 10 small instances, while
IG finds 3 out of 10. We can conclude that SAG works better than IG for small size instances.

3.2 Comparisons between SAG and IG Heuristics on Large Instances

In order to compare the performance of the SAG and IG heuristic in real world situations, we
generated several sets of large test cases of the SPP and apply SAG and IG to solve. 500 test
cases are grouped into 5 sets up to m = 1500 and n = 1500 as in Table 2, where µSAG and
µIG are the arithmetic average of the 100 instances in each group for SAG and IG method
respectively, and t1 and t2 are arithmetic average times in seconds of 100 instances in each
group for the SAG and IG methods.

From Table 2, we see that the SAG method always gives a 5 to 6 percent improvement in
results. The number of instances of each 100-instance group for our SAG method wins over
IG is more than 90, which means SAG consistently outperforms the previous IG method. In
addition, the time spent of SAG is always about 1/2 that of IG under same conditions excluding
the first set of test cases which has a relatively small size and both SAG and IG run in about 30
seconds where SAG results are more than 6% better. In addition, the 500 instances are available
at http://logistics.ust.hk/˜ zhuyi/instance.zip, to serve as our benchmark for the SPP.

6

M N SAG t1 CPLEX δCPLEX
1 IG t2 δIG

1

1000 1000 87138.76 87.64 77977.06 10.51% 80712.11 143.29 7.37%
1000 1000 82914.83 88.89 81398.69 1.83% 77132.22 130.24 6.97%
1000 1000 85536.72 86.63 77995.93 8.81% 81958.07 134.54 4.18%
1000 1000 83254.88 88.82 74232.00 10.84% 74157.05 141.06 10.93%
1000 1000 87177.65 89.92 80210.71 7.99% 81097.49 141.13 6.97%
1500 1500 108008.96 193.11 98482.81 8.82% 99975.09 306.34 7.44%
1500 1500 100897.01 190.46 99377.82 1.51% 93638.39 322.40 7.19%
1500 1500 104749.69 192.50 94153.32 10.12% 100033.68 329.04 4.50%
1500 1500 101049.25 193.05 91548.39 9.40% 94955.79 321.58 5.99%
1500 1500 100658.78 192.08 97390.90 3.25% 96419.52 318.41 4.21%

1 δIG and δCPLEX measure the result difference of IG and CPLEX from SAG

Table 3: Comparision among SAG, Cplex and IG on Large Instances

3.3 Comparisons between SAG and CPLEX on Large Instances

We randomly selected 10 instance from section 3.2 with size m = 1000 , n = 1000 and m = 1500,
n = 1500. We give CPLEX 3600 seconds time limit to run each instance (Hence the CPLEX
solutions may not optimal) and compare the results. The statistics are found in Table 3.

From Table 3 we see that the optimal solution cannot be found by CPLEX when instance
size is large. On the other hand, the SAG heuristic provides results which are reasonably better
than CPLEX and the IG heuristic with higher time efficiency. Also, we note that IG does not
provide better results than CPLEX always, whereas the SAG method does.

4 Conclusion

In this paper, we modelled the combinatorial auction brokering problem as a NP-complete set
packing problem and discussed a meta-heuristic hybrid method to solve the problem. Although
almost all approaches to the SPP have used IP techniques, we implemented a simulated an-
nealing heuristic which provides good results with less time spent. When compared with the
single other paper which uses heuristics for the SPP, our algorithm fairs better. Similarly, when
compared with IP solutions obtained from CPLEX, our heuristics performs better. We also
established our benchmark set for future research on SPP.

References

[1] M. Tenhunen A. Anderson and F. Ygge. Integer programming for combinatorial auction
winner determination. In Proceedings of the Fourth International Conference on Multi-Agent
Systems (ICMAS00), pages 39–46, 2000.

[2] M. Aourid and B. Kaminska. Neural networks for the set covering problem: An applica-
tion to the test vector compaction. In IEEE international Conference on Neural Networks
Conference Proceedings, volume 7, pages 4645–4649, 1994.

7

[3] E. Balas and A. Ho. Set covering algorithm using cutting planes, heuristics, and subgradient
optimization: A computational study. In Mathematical Programming, volume 12, pages 37–
60, 1980.

[4] E. Balas and M. W. Padberg. Set partitioning: A survey. In SIAM Review, volume 18,
pages 710–760, 1976.

[5] Hoong Chuin Lau and Yam Guan Goh. An intelligent brokering system to support multi-
agent web-based 4th-party logistics. In Proceedings of the Fourteenth International Confer-
ence on Tools with Artificial Intelligence, pages 10–11, 2002.

[6] M. W. Padberg. On the facial structure of set packing polyhedra. In Mathematical Pro-
gramming, volume 5, pages 199–215, 1973.

[7] Sven De Vries and Rakesh V. Vohra. Combinatorial auctions: A survey. In INFORMS
Journal on Computing, volume 15, pages 284–309, 2003.

8

	Heuristics for a Brokering Set Packing Problem
	Citation

	AIMAFinal.dvi

