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Abstract. We obtain the off-diagonal Muckenhoupt-Wheeden conjec-
ture for Calderón-Zygmund operators. Namely, given 1 < p < q < ∞
and a pair of weights (u, v), if the Hardy-Littlewood maximal function
satisfies the following two weight inequalities:

M : Lp(v) → Lq(u) and M : Lq
′
(u1−q′) → Lp

′
(v1−p

′
),

then any Calderón-Zygmund operator T and its associated truncated
maximal operator T? are bounded from Lp(v) to Lq(u). Additionally, as-
suming only the second estimate for M then T and T? map continuously
Lp(v) into Lq,∞(u). We also consider the case of generalized Haar shift
operators and show that their off-diagonal two weight estimates are gov-
erned by the corresponding estimates for the dyadic Hardy-Littlewood
maximal function.

1. Introduction and Main results

In the 1970s, Muckenhoupt and Wheeden conjectured that given p, 1 <
p < ∞, a sufficient condition for the Hilbert transform to satisfy the two
weight norm inequality

H : Lp(v)→ Lp(u)

is that the Hardy-Littlewood maximal operator satisfy the pair of norm
inequalities

M : Lp(v)→ Lp(u),

M : Lp
′
(u1−p′)→ Lp

′
(v1−p′).

Moreover, they conjectured that the Hilbert transform satisfies the weak-
type inequality

H : Lp(v)→ Lp,∞(u)

provided that the maximal operator satisfies the second “dual” inequality.
Both of these conjectures readily extend to all Calderón-Zygmund operators
(see the definition below). Very recently, both conjectures were disproved:
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the strong-type inequality by Reguera and Scurry [11] and the weak-type
inequality by the first author, Reznikov and Volberg [5].

Remark 1.1. A special case of these conjectures, involving the Ap bump
conditions, has been considered by several authors: see [1, 2, 3, 4, 5, 9].

In this note we prove the somewhat surprising fact that the Muckenhoupt-
Wheeden conjectures are true for off-diagonal inequalities. Our main result
is Theorem 1.2 below. We also prove an analogous result for the Haar
shift operators (the so-called dyadic Calderón-Zygmund operators) with the
Hardy-Littlewood maximal operator replaced by the dyadic maximal oper-
ator: see Theorem 1.3 below.

To state our results we first give some preliminary definitions. By weights
we will always mean non-negative, measurable functions. Given a pair of
weights (u, v), hereafter we will assume that u > 0 on a set of positive
measure and u < ∞ a.e., and v > 0 a.e. and v < ∞ on a set of positive
measure. We will also use the standard notation 0 · ∞ = 0.

Calderón-Zygmund operators. A Calderón-Zygmund operator T is a
linear operator that is bounded on L2(Rn) and

Tf(x) =

∫
Rn
K(x, y)f(y)dy, f ∈ L∞c (Rn), x /∈ supp f,

where the kernel K satisfies the size and smoothness estimates

|K(x, y)| ≤ C

|x− y|n
, x 6= y,

and

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C |x− x
′|δ

|x− y|n+δ
,

for all |x− y| > 2|x− x′|.
Associated with T is the truncated maximal operator

T?f(x) = sup
0<ε<ε′<∞

∣∣∣ ∫
ε<|x−y|<ε′

K(x, y)f(y)dy
∣∣∣.

Let M denote the Hardy-Littlewood maximal operator, that is,

Mf(x) = sup
Q3x
−
∫
Q
|f(y)|dy = sup

Q3x

1

|Q|

∫
Q
|f(y)|dy.

where the supremum is taken over all cubes in Rn with sides parallel to the
coordinate axes.

Theorem 1.2. Given a Calderón-Zygmund operator T , let 1 < p < q <∞
and let (u, v) be a pair of weights. If the maximal operator satisfies

(1.1) M : Lp(v)→ Lq(u) and M : Lq
′
(u1−q′)→ Lp

′
(v1−p′),

then

(1.2) ‖Tf‖Lq(u) ≤ C‖f‖Lp(v) and ‖T?f‖Lq(u) ≤ C‖f‖Lp(v).
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Analogously, if the maximal operator satisfies

(1.3) M : Lq
′
(u1−q′)→ Lp

′
(v1−p′),

then

(1.4) ‖Tf‖Lq,∞(u) ≤ C‖f‖Lp(v) and ‖T?f‖Lq,∞(u) ≤ C‖f‖Lp(v).

If the pairs of weights (u, v) satisfy any of the conditions in (1.1), then

the weights u and v1−p′ are locally integrable. This is a consequence of a
characterization of the two weight norm inequalities for the maximal oper-
ator due to Sawyer [12]. He proved that the Lp −Lq inequality holds if and
only if for every cube Q,(∫

Q
M(v1−p′χQ)(x)qu(x) dx

)1/q

≤ C
(∫

Q
v(x)1−p′ dx

)1/p

<∞,

and the Lq
′ − Lp′ inequality holds if and only if(∫

Q
M(uχQ)(x)p

′
v(x)1−p′ dx

)1/p′

≤ C
(∫

Q
u(x) dx

)1/q′

<∞.

It is straightforward to construct pairs of weights that satisfy these con-
ditions. For instance, in R both of these conditions follow easily for every
1 < p ≤ q <∞ and the pair of weights (u, v) with u = χ[0,1] and v−1 = χ[2,3]

(i.e., v = 1 in [2, 3] and v = ∞ elsewhere). Indeed, we only need to check
Sawyer’s inequalities for cubes Q that intersect both [0, 1] and [2, 3], in
which case we have M(χ[2,3]∩Q)(x) ≤ |[2, 3]∩Q| for every x ∈ [0, 1]∩Q, and
M(χ[0,1]∩Q)(x) ≤ |[0, 1] ∩ Q| for every x ∈ [2, 3] ∩ Q. These readily imply
the desired estimates.

Dyadic Calderón-Zygmund operators. A generalized dyadic grid D in
Rn is a set of generalized dyadic cubes with the following properties: if
Q ∈ D then `(Q) = 2k, k ∈ Z; if Q,R ∈ D and Q ∩ R 6= Ø then Q ⊂ R or
R ⊂ Q; the cubes in D with `(Q) = 2−k form a disjoint partition of Rn (see
[9] and [10] for more details).

We say that gQ is a generalized a Haar function associated with Q ∈ D if

(a) supp(gQ) ⊂ Q;

(b) if Q′ ∈ D and Q′ ( Q, then gQ is constant on Q′;

(c) ‖gQ‖∞ ≤ 1.

Given a dyadic grid D and a pair (m, k) ∈ Z2
+, a linear operator S is a gen-

eralized Haar shift operator (that is, a dyadic Calderón-Zygmund operator)
of complexity type (m, k) if it is bounded on L2(Rn) and

Sf(x) =
∑
Q∈D

SQf(x) =
∑
Q∈D

∑
Q′∈Dm(Q)
Q′′∈Dk(Q)

〈f, gQ
′′

Q′ 〉
|Q|

gQ
′

Q′′(x),
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where Dj(Q) stands for the dyadic subcubes of Q with side length 2−j`(Q),

gQ
′′

Q′ is a generalized a Haar function associated with Q′ and gQ
′

Q′′ is a gener-

alized a Haar function associated with Q′′. We say that the complexity of
S is κ = max(m, k). We also define the truncated Haar shift operator

S?f(x) = sup
0<ε<ε′<∞

|Sε,ε′f(x)| = sup
0<ε<ε′<∞

∣∣∣ ∑
Q∈D

ε≤`(Q)≤ε′

SQf(x)
∣∣∣.

An important example of a Haar shift operator on the real line is the
Haar shift (also known as the dyadic Hilbert transform) Hd, defined by

Hdf(x) =
∑
I∈∆

〈f, hI〉
(
hI−(x)− hI+(x)

)
,

where, given a dyadic interval I, I+ and I− are its right and left halves, and

hI(x) = |I|−1/2
(
χI−(x)− χI+(x)

)
.

After renormalizing, hI is a Haar function on I and one can write Hd as
a generalized Haar shift operator of complexity 1. These operators have
played a very important role in the proof of the A2 conjecture: see [4, 6, 7]
and the references they contain for more information.

Associated with the dyadic grid D is the dyadic maximal function

MDf(x) = sup
x∈Q∈D

−
∫
Q
|f(y)|dy.

Note that MD is dominated pointwise by the Hardy-Littlewood maximal
operator.

We can now state our result for dyadic Calderón-Zygmund operators.

Theorem 1.3. Let S be a generalized Haar shift operator of complexity κ.
Given 1 < p < q < ∞ and a pair of weights (u, v), if the dyadic maximal
operator satisfies

(1.5) MD : Lp(v)→ Lq(u) and MD : Lq
′
(u1−q′)→ Lp

′
(v1−p′),

then

(1.6) ‖Sf‖Lq(u) ≤ Cκ2‖f‖Lp(v) and ‖S?f‖Lq(u) ≤ Cκ2‖f‖Lp(v).

Analogously, if the dyadic maximal operator satisfies

(1.7) MD : Lq
′
(u1−q′)→ Lp

′
(v1−p′)

then

(1.8) ‖Sf‖Lq,∞(u) ≤ Cκ2‖f‖Lp(v) and ‖S?f‖Lq,∞(u) ≤ Cκ2‖f‖Lp(v).
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2. Proofs of the Main results

Proof of Theorem 1.2. We will prove our estimates for T?; the ones for
T are completely analogous.

Given a dyadic grid D we say that {Qkj }j,k is a sparse family of dyadic

cubes if for any k the cubes {Qkj }j are pairwise disjoint; if Ωk := ∪jQkj ,
then Ωk+1 ⊂ Ωk; and |Ωk+1 ∩ Qj,k| ≤ 1

2 |Q
k
j |. Given D and a sparse family

S = {Qkj }j,k ⊂ D , define the positive dyadic operator A by

A f(x) = AD ,S f(x) =
∑
j,k

fQkj
χQkj

(x)

where fQ = −
∫
Q f(y)dy.

For our proof we will use the main result in [9, 10]. Given a Banach
function space X and a non-negative function f ,

(2.1) ‖T?f‖X ≤ C(T, n) sup
D ,S
‖AD ,S f‖X ,

where the supremum is taken over all dyadic grids D and sparse families
S ⊂ D . To prove Theorem 1.2 we apply this result with X = Lq(u)
or X = Lq,∞(u); it will then suffice to show that our assumptions on M
guarantee that AD ,S satisfies the corresponding two weight inequalities.

To prove this fact we will use a result by Lacey, Sawyer and Uriate-
Tuero [8]. Given a sequence of non-negative constants α = {αQ}Q∈D , define
the positive operator

Tαf(x) =
∑
Q∈D

αQfQχQ(x).

Further, given R ∈ D we define the “outer truncated” operator

TRα f(x) =
∑
Q∈D
Q⊃R

αQfQχQ(x).

In [8] it was shown that for all 1 < p < q < ∞, Tα : Lp(v) → Lq(u) if and
only if there exist constants C1 and C2 such that for every R ∈ D

(2.2)

(∫
Rn
TRα (v1−p′χR)(x)qu(x)dx

) 1
q

≤ C1

(∫
R
v(x)1−p′dx

) 1
p

,

and

(2.3)

(∫
Rn
TRα (uχR)(x)p

′
v(x)1−p′dx

) 1
p′

≤ C2

(∫
R
u(x)dx

) 1
q′

.

Furthermore, for 1 < p < q <∞, Tα : Lp(v)→ Lq,∞(u) holds if and only if
there exists a constant C2 such that for every R ∈ D , (2.3) holds.

We can apply these results to the operator A = AD ,S where D and S
are fixed, since A = Tα with αQ = 1 if Q ∈ S and αQ = 0 otherwise. Fix

R ∈ D ; to estimate A R, take the increasing family of cubes R = R0 ( R1 (
R2 ( . . . with Rk ∈ D and `(Rk) = 2k`(R). Define R−1 = Ø. Note that
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supp A R ⊂ ∪k≥0Rk. Then for every non-negative function f and for every
x ∈ Rk \Rk−1 with k ≥ 0 we have that

0 ≤ A R(fχR)(x) ≤
∞∑
j=0

(fχR)RjχRj (x) = fR

∞∑
j=k

2−j n

. fR2−k n = (fχR)Rk ≤MD(fχR)(x).

Consequently, for every x ∈ Rn,

(2.4) 0 ≤ A R(fχR)(x) .MD(fχR)(x) ≤M(fχR)(x).

Inequality (2.4) together with our hypothesis (1.1) implies (2.2) and (2.3).
Therefore, we have that A : Lp(v)→ Lq(u) with constants depending on the
dimension, p, q and the implicit constants in (1.1). Therefore, by Lerner’s
estimate (2.1) we get T? : Lp(v)→ Lq(u) as desired.

For the weak-type estimates we proceed in the same manner, using the
fact that (1.3) yields (2.3) and therefore A : Lp(v) → Lq,∞(u). This in
turn implies, by Lerner’s estimate (2.1) applied to X = Lq,∞(u), that T? :
Lp(v)→ Lq,∞(u).

Proof of Theorem 1.3. Fix D and a generalized Haar shift operator of
complexity κ. As before we can work with S?. We can repeat the previous
argument except that we want to keep the fixed dyadic structure D . A
careful examination of [9, Section 5] shows that, given a Banach function
space X, we have

(2.5) ‖S?f‖X ≤ Cnκ2 sup
S
‖AD ,S f‖X , f ≥ 0,

where the supremum is taken over all sparse families S ⊂ D . We emphasize
that in [9, Section 5] there is an additional supremum over the dyadic grids
D . This is because at some places the dyadic maximal operator is majorized
by the regular Hardy-Littlewood maximal operator and the latter is in turn
controlled by a sum of ADα,Sα for 2n dyadic grids Dα. However, keeping
MD one can easily show that (2.5) holds. Details are left to the interested
reader.

Given (2.5), we fix a sparse family S ⊂ D and write A = AD ,S . Ar-
guing exactly as before we obtain (2.4). Thus, (1.5) implies (2.2) and (2.3)
and therefore the result from [8] yields A : Lp(v) → Lq(u) with constants
depending on the dimension, p, q and the implicit constants in (1.5). Com-
bining this with Lerner’s estimate (2.5) applied to X = Lq(u) we conclude
as desired that S? : Lp(v) → Lq(u). We get the weak-type estimate by
adapting the above proof in exactly the same way.
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