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HIGHLIGHTS 

 Lupine protein hydrolysates attenuate expression of proinflammatory cytokines 

 Lupine protein hydrolysates decrease migration capability of macrophages 

 Lupine hydrolysates may help to prevent diseases related to chronic 

inflammation 

*Highlights (for review)
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Abstract 

The effect of two different lupine protein hydrolysates (LPHs) on in vitro macrophage 

activation in a THP-1-derived macrophage model was investigated. THP-1-derived 

macrophages were exposed to RPMI medium containing two LPHs obtained by 

enzymatic hydrolysis using two different proteases: Izyme AL and Alcalase 2.4 L. 

Cytokine’s expression was measured by quantitative PCR. THP-1-derived macrophages 

exhibited attenuated expression of proinflammatory cytokines (tumour necrosis factor 

(TNF), IL-6, IL-1β) and increased expression of anti-inflammatory marker genes 

(chemokine (C-C motif) ligand 18 (CCL18)) relative to control without LPH. The anti-

inflammatory effect of both hydrolysates favoured M2 polarization by quenching C-C 

chemokine receptor type 2 (CCR2) expression and migratory capacity. Furthermore, 

LPHs significantly decreased nitric oxide production. Moreover, LPHs promoted the 

survival of human THP-1-derived macrophages. Therefore, inclusion of LPHs in foods 

may help to prevent chronic diseases associated with chronic inflammation. 

Keywords

Anti-inflammatory activity, bioactive peptides, lupine protein hydrolysates, macrophage 

polarization
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1. Introduction 

The consumption of dietary protein drives many fundamental metabolic processes and is 

particularly important in nutrient-based biological functions (Gersh, Sliwa, Mayosi & 

Yusuf, 2010). In addition to providing essential amino acids to various systemic 

modulatory pathways, proteins and peptides produced by the hydrolysis of food proteins 

may also elicit potent anticancer, antimicrobial, hypocholesterolaemic, antihypertensive, 

antithrombotic, and anti-inflammatory effects (Möller, Scholz-Ahrens, Roos & 

Schrezenmeir, 2008). Bioactive peptides can be cleaved from polypeptide chains through 

gastrointestinal digestion, by fermentation or ripening during food processing, and by 

controlled hydrolytic processes using exogenous proteases (Pedroche et al., 2007). Many 

of these biologically active peptides are derived from both plant and animal sources, with 

most potentially stemming from milk-based products and legumes, such as soybean. 

Many reports have shown the potential health benefits of enzymatic hydrolysates 

prepared from milk, egg, and soy proteins (Möller et al., 2008; Shahidi & Zhong, 2008). 

Much research has focused on hydrolysates with angiotensin-converting enzyme 

inhibitory and antioxidant activities whereas other bioactive properties such as anti-

inflammatory effect are less studied. In fact, very few studies report anti-inflammatory 

properties of protein hydrolysates (Vo, Ryu & Kim, 2008; Xu, Yang, Yin, Liu & Mine, 

2012). Regarding the bioactive properties of lupine, it was previously reported that 

protein extracts from white lupine can lower plasma cholesterol (Weiβe et al., 2010) and 

triacylglycerol concentrations (Spielmann et al., 2007) in hypercholesterolaemic animal 

models. Furthermore, lupine has shown anti-atherogenic effects in laboratory animals due 

to its lipid-lowering properties. In this study, Marchesi et al. (2008) demonstrated that a 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

protein isolate from lupine reduces focal plaque development in the common carotid 

arteries in a rabbit model of atherosclerosis. However, no information has been reported 

about the anti-inflammatory properties of lupine proteins and peptides. 

Inflammation is an important normal immune response during lesions and infections. 

However, an excessive inflammation can contribute to several acute and chronic diseases 

characterised by uncontrolled production of pro-inflammatory cytokines, eicosanoids 

derived from arachidonic acid, reactive oxygen  species (ROS) and adhesion molecules 

(Calder, 2006). Therefore, inhibitors of the pro-inflammatory cytokines have been 

considered as a candidate of anti-inflammatory drugs. Chronic inflammation is a 

hallmark of several pathologies, such as rheumatoid arthritis, inflammatory bowel 

disease, atherosclerosis and cancer. The macrophage is the key player of the chronic 

inflammatory response, which the monocytic cell line THP-1 represents an appropriate 

model system to study immune responses (Weldon, Mullen, Loscher, Hurley, & Roche, 

2007). It is well known that macrophages are key players during inflammatory responses 

and their phenotype determines the cytokine secretion profile. Thus, classically activated 

M1 macrophages contribute to the development and enhancement of inflammatory and 

immunity processes and are, therefore, associated with high microbicidal activity, 

supporting the activity of Th1 cells (Mills, Kincaid, Alt, Heilman, & Hill, 2000). This 

type of activation is associated with an elevated production of pro-inflammatory 

cytokines, such as tumour necrosis factor (TNF), IL-6, and IL-1; ROS; and nitrogen 

intermediates (Cathcart, 2004). Alternative macrophage activation (M2) is triggered in 

response to IL-4 or IL-13 and is associated with tissue remodeling and immunoregulation 

(Gordon & Martinez, 2010). M2 macrophages produce anti-inflammatory cytokines, such 
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as IL-10, chemokine (C-C motif) ligand 18 (CCL18), and IL-1 receptor antagonist. Due 

to their anti-inflammatory profile, M2 macrophages are frequently associated with all 

types of activation triggered by anti-inflammatory stimuli. 

The increase in the incidence of inflammation related disorders has led to the search of 

proteins and peptides with anti-inflammatory properties (Ndiaye, Vuong, Duarte, Aluko, 

& Matar, 2012). There is evidence of the ability of distinct food compounds, including 

proteins, to modulate inflammation in experimental models involving macrophages 

(Boesch-Saadatmandi et al., 2011; Hämäläinen et al., 2011; Yu, Correll, & Vanden 

Heuvel, 2002). Indeed some peptides with anti-inflammatory activity have been purified 

from plants (Dia, Wang, Oh, de Lumen, & Gonzalez de Mejia, 2009).  

In a previous paper, we have described that blue lupine protein hydrolysates (LPHs) 

inhibited some enzymes involved in the inflammatory pathway, such as phospholipase 

A2 and cyclooxygenase-2 (Millán-Linares, Yust, Alcaide-Hidalgo, Millán, & Pedroche, 

2014). In this work, we investigated the potential anti-inflammatory activity of two lupine 

protein hydrolysates (LPHs) in a THP-1-derived macrophage model. LPHs were obtained 

by hydrolysis of lupine protein isolate (LPI) with Izyme AL and Alcalase 2.4 L, two 

food-grade proteases produced by Novozymes. Izyme AL has trypsin-like activity 

whereas Alcalase is a non-specific endoprotease. Both trypsin and Alcalase have

previously been used for the generation of bioactive peptides (Korhonen & Pihlanto, 

2006).

2. Materials and methods 

2.1 Materials 
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LPI was prepared according to Yust, Pedroche, Millán-Linares, Alcaide-Hidalgo and 

Millán (2010). Izyme AL and Alcalase 2.4 L were provided by Novozymes (Bagsvaerd, 

Denmark). The cell type used was THP-1 monocytes, ATCC® Number TIB-202TM. The 

medium for this line was Gibco® RPMI 1640 (Life Technologies SA, Alcobendas, 

Spain). PBS, foetal bovine serum (FBS), and penicillin/streptomycin (P/S) solution were 

obtained from Gibco® as well. Dimethyl sulphoxide (DMSO), formyl-methionyl-leucyl-

phenylalanine (fMLP), phorbol 12-myristate 13-acetate (PMA), trypan blue solution, and 

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and Griess 

reagent (1% sulphanilamide in 5% phosphoric acid and 0.1% N-naphthylenediamine-

HCl) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Ribonuclease A 

was obtained from Nacalai Tesque (Kyoto, Japan). The iScript cDNA Synthesis Kit was 

from Bio-Rad Laboratories (Hercules, CA, USA). The Annexin V-FITC Kit was obtained 

from Miltenyi Biotec GmbH (Bergisch Gladbach, Germany). Brilliant II Syber® Green 

QPCR Master Mix was purchased from Agilent Technologies (Santa Clara, CA, USA). 

Primers were purchased from Eurofins Biolab S.L.U. (Barcelona, Spain). NucleoSpin 

RNA II was obtained from Macherey-Nagel GmbH & Co. KG (Düren, Germany). 

Human TNF and IL-10 ELISA Sets were from Bionova Científica (Madrid, Spain). 

2.2 Preparation of LPHs 

Hydrolysis was performed in a bioreactor while stirring at a controlled pH and 

temperature. LPI was suspended in distilled water (10% w/v), and two types of 

hydrolysis were performed: one with Izyme AL followed by Alcalase and one using only 

Alcalase. The following conditions were used: 

http://www.eurofins.es/es-es/quimico-farmaceutico/contacto/eurofins-biolab.aspx
http://en.wikipedia.org/wiki/Phenyl
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
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Hydrolysis with Izyme AL and Alcalase: First, LPI was hydrolysed with Izyme AL for 1 

h at pH 10, 50ºC, E/S = 100 EU/g protein. A second step of hydrolysis with Alcalase at 

pH 8, 50ºC, E/S = 0.3 AU/g protein, was then performed for 15 min. 

Hydrolysis with Alcalase: pH 8, 50ºC, E/S = 0.3 AU/g protein, and duration of hydrolysis 

of 15 min. 

Enzymes were inactivated by heating at 85ºC for 15 min, centrifuged at 8000 rpm for 15 

min, and the supernatants constituted LPHs. LPH obtained with Izyme AL followed by 

Alcalase was designated I+15A, and LPH obtained using only Alcalase was designated 

15A. 

2.3 Cell culture and treatments 

The human monocytic THP-1 cell line, was cultured in suspension in RPMI 1640 

medium supplemented with 1% P/S and 10% heat-inactivated FBS. To induce monocyte-

macrophage differentiation; THP-1 cells were cultured in the presence of PMA (100 

nmol/L) for 4 days (Weldon et al., 2007). PMA-stimulated THP-1 cells (referred to as 

THP-1-derived macrophages) were exposed to RPMI medium (supplemented with 1% 

FBS) for 24 h and then treated with the LPH I+15A or the LPH 15A at a concentration of 

500 μg/mL RPMI medium (1% FBS) for 6 h. 

2.4 Measurement of cell proliferation by the MTT method 

THP-1-derived macrophage proliferation was evaluated by measuring optical density at 

different concentrations of treatments in a 96-well plate. Cells were incubated at 37ºC 

with the LPH I+15A or the LPH 15A at final concentrations of 100, 300, 500, 700, or 

2000 µg/mL for 18 h. An aliquot of 20 μL of MTT (5 mg/mL) was added to each well 

and incubated at 37°C for 6 h. MTT is reduced to purple formazan in living cells

http://en.wikipedia.org/wiki/Formazan
http://en.wikipedia.org/wiki/Purple
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(Carmicheal, DeGraff, Gazdar, Minna, & Mitchell, 1987). The supernatant was removed, 

and 200 µL of DMSO were added to each well to dissolve the insoluble purple formazan

product into a colored solution, followed by shaking for 10 min. Absorbance was 

measured at 570 nm using a microplate reader, and cell proliferation was calculated. 

RPMI medium (1% FBS) was used as control. 

2.5 Analysis of cellular DNA content 

Cellular DNA content was assessed by propidium iodide (PI) staining and FACS analysis 

as previously described, with modifications (Mills et al., 2000). The cells were exposed to 

RPMI medium (1% FBS) containing the LPH I+15A or the LPH 15A at a concentration 

of 500 μg/mL for 24 h of treatment. The cells were then fixed in 1% paraformaldehyde in 

PBS containing 0.5% saponin for 5 min at 4ºC. After centrifugation, the cells were 

incubated in buffer containing 5 μg/mL PI and 1 mg/mL ribonuclease A for 10 min at 

4ºC. The cells were analyzed using a BD FACSCanto II flow cytometer and BD 

FACSCanto II Software (BD Biosciences, San Jose, CA, USA). FBS 1% and FBS 10% 

were used as negative and positive control, respectively. Cells that were hypodiploid due 

to DNA fragmentation were regarded as apoptotic cells. 

2.6 Cell viability 

Cells were exposed to the LPH I+15A or the LPH 15A at 100, 300, 500, 700, 1000, or 

2000 µg/mL for 24 h, rinsed with PBS, and evaluated for live/dead cells using the trypan 

blue exclusion test. Viable cells excluded the dye, whereas dead cells were stained an 

intense blue. At least 200 cells were scored to assess live/dead cells. The number of 

viable cells was quantified by confocal microscopy (Olympus IX81, Tokyo, Japan). 

http://en.wikipedia.org/wiki/Formazan
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RPMI medium (1% FBS) was used as control. Cells were tested in triplicate, and the 

results were averaged. 

2.7 Measurement of apoptotic cells 

Early events associated with apoptosis were evaluated using the binding of annexin V to 

detect the translocation of phosphatidylserine from the inner side to the outer leaflet of 

the plasma membrane of apoptotic cells and using PI to detect the DNA of necrotic cells, 

as described in the Annexin V-FITC Kit. An analysis of stained cells was performed by 

measuring fluorescence emission using a BD FACSCanto II flow cytometer at 530 nm 

and 585 nm for fluorescein isothiocyanate and PI, respectively, and using BD 

FACSCanto II Software. RPMI medium (1% FBS) was used as control and staurosporine 

(pro-apoptotic) as positive control. 

2.8 mRNA extraction and analysis of PCR products 

Total RNA was extracted from the THP-1-derived macrophages using NucleoSpin® RNA 

II. RNA quality was assessed using the OD260:OD280 ratio determined by a NanoDrop 

ND-1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA). One microgram 

of total RNA was subjected to RT-PCR to obtain cDNA according to the manufacturer’s 

protocol. 

The mRNA levels for specific genes were determined using an Mx3000P Real-Time PCR 

System (Stratagene, La Jolla, CA, USA). For each QPCR, 10 ng of cDNA template was 

added to Brilliant SYBR Green QPCR Master Mix containing primer pairs for TNF, IL-

6, IL-1β, CCL18, C-C chemokine receptor type 2 (CCR2), and chemokine (C-C motif) 

ligand 2 (CCL2). The reference genes HPRT and GAPDH were used to correct for RNA 

concentration differences between the samples. 
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The sequence of and information about the primers that were used in this study are as 

follows: TNF (NM_000594.3): 5′-TCCTTCAGACACCCTCAACC-3′ and 5′-

AGGCCCCAGTTTGAATTCTT-3′ (reverse); IL-6 (NM_001001928): 5′-

GTTTGAGGGGGTAACAGCAA-3′ and 5′-GCTAACTGCAGAGGGTGAGG-3′; IL-1β

(NM_138712): 5′-GCTGTGCAGGAGATCACAGA-3′ and 5′-

GGGCTCCATAAAGTCACCAA-3′; CCL18 (NM_002957): 5′-

GGGTTTTCTTCCCTTTCGAG-3′ and 5′-GCGTGTTCCTTTTCCACAAT-3′; CCR2 

(NM_001002): 5′-TCGACAATGGCAGCATCTAC-3′ and 5′-

ATCCGTCTCCACAGACAAGG-3´; CCL2 (NM_002982.3): 5´-

CCCCAGTCACCTGCTGTTAT-3´ and 5´-TGGAATCCTGAACCCACTTC-3´; HPRT 

(NM_000194.2): 5´-ACCCCACGAAGTGTTGGATA-3´ and 5´-

AAGCAGATGGCCACAGAACT-3´; and GAPDH (NM_002046.4): 5′-

GAGTCAACGGATTTGGTCGT-3′ and 5′-TTGATTTTGGAGGGATCTCG-3′.

All amplification reactions were performed in triplicate. The magnitude of the change in 

mRNA expression for the candidate genes was calculated using the standard 2–(ΔΔCt)

method. All data were normalized to endogenous reference genes (HPRT and GAPDH) 

levels and expressed as a percentage of the control. 

2.9 Enzyme-linked immunosorbent assay (ELISA). 

TNF and IL10 concentrations in cell culture supernatants were quantified by commercial 

ELISA kits according to manufacturer’s instructions. 

2.10 Measurements of nitrite in THP-1-derived macrophages cells.  

As an indicator of NO production, nitrite (NO2
-) concentration was measured in the cell 

culture supernatants. Equal volumes of culture supernatants and Griess reagent were 
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mixed and the absorbance was read at 540 nm in the microplate reader (Green et al.,

1981). The amount of nitrite was obtained by an extrapolation from a standard curve with 

sodium nitrite. 

2.11 Migration assays 

THP-1-derived macrophages were collected in RPMI-1640 medium containing 10% 

FBS, and 1% P/S and seeded in 24-well culture plates at 5 × 105 per well to allow high-

density adhesion of the macrophages. After removing the floating cells, the adherent cells 

were incubated at 37°C in 5% CO2 for 24 h to form a confluent monolayer. The 

macrophage monolayer was wounded by scratching with a thin pipette tip. The cells were 

treated with each LPH (I+15A and 15A) and allowed to migrate for 24 h. The migration 

of THP-1-derived macrophages was examined and quantified by confocal microscopy. 

Images were captured at the beginning and at 24 h of cell migration to close the wound 

and compared to quantify the migration rates of the cells. 

2.12 Statistical analysis 

The data are presented as the mean ± SEM of three independent determinations. Group-

wise statistical comparisons were performed by a one-way ANOVA with a post-hoc 

Bonferroni test. Differences were considered to be significant at P < 0.05. 

3. Results and discussion 

3.1 LPHs does not alter the cellular integrity of THP-1-derived macrophages 

Before assessing the anti-inflammatory activity, cell viability and the potential 

cytotoxicity of the LPHs were evaluated (Gülden & Seibert, 2003). 

To investigate whether LPHs may cause a cytotoxic effect, an MTT assay was performed 

on THP-1-derived macrophages after separately adding each LPHs at increasing 
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concentrations to conditioned RPMI culture medium for 6 h. The LPHs I+15A and 15A 

had no significant effects (Fig. 1A and 1B) compared with the untreated control group. 

Moreover, using flow cytometric analysis to study the DNA distribution in the cell cycle

(Sawai & Domae, 2008), we observed that the percentage of S population among THP-1-

derived macrophages treated with the LPH I+15A or the LPH 15A was slightly increased 

(Fig. 1C), but did not reach significance. For the quiescent phase (G0/G1) and G2/M 

population no differences were found in relation to the control (1% FBS). For all 

samples, even though a degree of proliferative activity, which was not significant, was 

observed, the cells remained in the quiescent phase for a longer period. The addition of 

10% FBS was used as a positive control. 

The contribution of LPHs to the activation of programmed cell death (apoptosis) was also 

investigated. Interestingly, apoptosis was reduced in the presence of the LPH 60I+15A or 

the LPH 15A (29 and 35%, respectively) compared with the control (Fig. 1D). This effect 

seems to endow both LPHs with a protective effect against apoptosis. To complete the 

feasibility studies of the LPHs, cell viability was assayed by trypan blue exclusion in 

THP-1-derived macrophages treated with increasing concentrations of the LPH I+15A or 

the LPH 15A for 24 h. As expected, there was no differences in cell viability after 24 h of 

incubation in the presence of higher concentrations of the LPH I+15A, which ranged 

from 100 to 2000 µg/mL, when compared with the control (Fig. 2A). The same pattern 

was observed after treatment with the LPH 15A (Fig. 2B). 

Taken together, these results suggest that in general, LPHs do not compromise the 

integrity of THP-1-derived macrophages. Although cell viability was decreased upon 

exposure to higher concentrations, this decrease did not reach 30% cell loss for either of 
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the LPHs tested. Hence, LPHs did not have any major effect on membrane integrity in 

the selected cell model. 

3.2 Effect of LPHs on the expression of pro and anti-inflammatory cytokines 

Several diseases, such as obesity-associated insulin resistance, diabetes, and metabolic 

syndrome, are sustained by chronic subclinical inflammation (Faloia et al., 2012). 

Elevated levels of cytokines, such as leptin, TNF, IL-1, and IL-6, are generally increased 

during inflammatory diseases (Hajer, Van Haeften, & Visseren, 2008). A growing body 

of evidence has shown that biologically active peptides derived from plants can prevent 

many inflammatory disorders due to the peptides’ antioxidant and anti-inflammatory 

effects (Politis, Theodorou, Lampidonis, Chronopoulou, & Baldi, 2012; Vernaza, Día, & 

González de Mejía, 2012). Classically activated macrophages (with an M1 phenotype) 

mediate tissue damage and initiate inflammatory responses by releasing pro-

inflammatory mediators (Olefsky & Glass, 2010). These mediators recruit additional 

macrophages, establishing a feed-forward process that further increases leukocytes 

content and propagates the chronic inflammatory state (Shen, Lu, Duan, & Duan, 2011). 

Herein, we first evaluated the ability of LPHs (I+15A and 15A) to modulate the 

expression of the pro-inflammatory cytokines TNF, IL-1β, and IL-6 in THP-1-derived 

macrophages (Fig. 3A-C). TNF showed significant inhibition after 6 h of incubation with 

either hydrolysate. This reduction was markedly pronounced after I+15A treatment 

(TNF: -45%, IL-1: -32%, and IL-6: -43%). The LPH 15A induced the downregulation of 

TNF and IL-1 in activated macrophages by 30 and 35%, respectively, whereas IL-6 

levels were blunted (70%). No significant differences were observed between the 

treatments. These results indicate that LPHs tend to decrease the pro-inflammatory 
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capacity of activated M1 macrophages by diminishing cytokines expression, setting a 

trend of regulation of the inflammatory process. Macrophage polarization dramatically 

alters the immune properties of these cells, as evidenced by the potent anti-microbial 

properties of M1 macrophages compared with the prominent anti-inflammatory tissue 

repair properties of M2 macrophages (Joshi et al., 2010). Depending on the cytokine 

microenvironment, the M2 macrophage phenotype is characterized by the expression of 

cell surface proteins such as CD206 and CD163 and of soluble factors such as CCL18 

(Bellón et al., 2011). To corroborate the hypothesis that LPHs have potential anti-

inflammatory role, the expression of CCL18 and IL10 (an M2 markers) after 6 h of 

incubation with the LPHs 15A or the LPH I+15A were evaluated. Surprisingly, both 

LPHs highly increased CCL18 expression, doubling the value compared with the control 

(Fig. 3D). However, no significant differences were observed in the IL10 expression In 

THP-1-derived macrophages after treatment with LPHs (Fig. 3E). 

Taken together, these data suggest that the LPHs I+15A and 15A may have a beneficial 

capability to skew activated M1 macrophages toward the anti-inflammatory M2 

phenotype.  

3.3 Effect of LPHs on cytokines production  

To corroborate the effect of LPHs on cytokines mRNA expression, the concentration of 

TNF and IL-10 was measured in cell culture supernatants. The production of TNF was 

decreased by both LPHs (Fig. 4A). This inhibition was higher in LPH I+15A, which 

inhibited more than 80% TNF production. Regarding IL-10, significant differences were 

not observed among LPHs and control (Fig. 4B). These data coincided with the ones

obtained by quantitative PCR, where THP-1-derived macrophages exhibited attenuated 
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expression of proinflammatory cytokine TNF, and showed no significant differences in 

the expression of IL-10. 

3.4 Effect of LPHs on the nitrite production 

Nitric oxide (NO) has been shown to play a central role in inflammatory and immune 

reaction activities and macrophages appear to be the main cellular source of NO 

(Montserrat-de la Paz, Fernández-Arche, Ángel-Martín & García-Giménez, 2012). The 

effect of LPHs on the release of this inflammatory mediator is depicted in Fig. 5. Both 

LPHs inhibited approximately 50% of NO production. Other legume protein hydrolysates 

have shown inhibition of NO production by activated macrophages (Ndiaye et al., 2012). 

3.5 LPHs impair the chemotactic capacity of human THP-1-derived macrophages 

Previously, Fontanari, Batistuti, da Cruz, Hilario, and Saldiva (2012) investigated the 

potential hypolipidaemic effect of a total protein extract from Lupinus albus, which is 

associated with a mechanism shared with soya proteins (Duranti et al., 2004; Lovati et al., 

2000; Lovati, Manzoni, Gianazza & Sirtori, 1998). Furthermore, soy-based diets have 

been shown to reduce atherosclerotic lesions through downregulation of the expression 

levels of monocyte chemokines essential for the initiating events in atherosclerosis, such 

as monocyte chemoattractant protein-1 (MCP-1) or CCL2. CCL2 have a systemic role in 

the regulation of metabolism, and particularly in controlling leukocyte extravasation and 

chemotaxis toward inflamed tissues. For instance, Weisberg et al. (2006) reported a 

significant reduction in plaque macrophage content in mice lacking CCR2 (CCR2-/-

mice). Furthermore, certain evidence has indicated an increase in M1 and decrease in M2 

macrophages in obese adipose tissue (Lumeng, Bodzin, & Saltiel, 2007). Interestingly, 

such a phenotypic switch was not observed in CCR2-/- mice, suggesting that the MCP-
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1/CCR2 pathway could contribute to M2 macrophage polarization.  

We hypothesized that as occurs with soy proteins, lupine hydrolysates may exert a 

beneficial effect on the chemotaxis mechanism by modulating the CCR2/CCL2 axis. To 

examine this issue, the expression of CCR2 and CCL2 in human THP-1-derived 

macrophages was evaluated after 6 h of incubation with either LPH. As expected, the 

CCL2/CCR2 axis was noticeably modulated by both LPHs. Fig. 4A shows a dramatic 

reduction in CCR2 expression by the LPH I+15A (-62%), whereas this expression was 

more blunted by the LPH 15A (-84%). Despite the significant reduction in CCR2, we 

could not find any significant difference in the expression of its ligand, CCL2 (Fig. 4B), 

but did note a decreasing tendency. Accordingly, the migration index was reduced after 

24 h of treatment with the LPH I+15A (-44%) or the LPH 15A (-58%). A potent 

chemotactic agent, fMLP, was used as positive control (Fig. 4C).  

Thus far, the results indicate that the addition of LPHs to fully differentiated THP-1 

macrophages results in the decreased expression of both CCR2 and CCL2 and, 

consequently, a decrease in the cells’ migration capability. These findings suggest that 

infiltrating activated macrophages exposed to LPHs may lose their chemotactic ability, 

which ameliorates the inflammatory state. 

In conclusion, after LPH treatment, THP-1-derived-macrophages showed attenuated 

expression of TNF, IL-6, IL-1β (proinflammatoty cytokines) and increased expression of 

CCL18 (antiinflammatory). Moreover, NO production was inhibited. Thereby, LPHs 

displayed hyporeactivity to M1-type ligands and polarization to the M2 phenotype. 

Furthermore, our data demonstrates that both LPHs attenuate the macrophage migratory 

response, which is partly mediated by skewing THP-1-derived macrophages toward 
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alternatively activated M2 macrophages, which are equipped for repair and resolution of 

the inflammatory response. Thus, this study is the first to describe the anti-inflammatory 

effect of LPHs in THP-1-derived macrophages and the influence in the control of 

macrophage polarization in the context of inflammatory state. 

Acknowledgements 

This work was supported by the grant AGL2012-40247-C02-01 from the Spanish 

Ministry of Economy and Competitiveness. We thank Prof. F.J.G. Muriana for his critical 

reading of this manuscript. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

18 

References

Bellón, T., Martínez, V., Lucendo, B., del Peso, G., Castro, M. J., Aroeira, L. S., & Bajo, 

M. A. (2011). Alternative activation of macrophages in human peritoneum: implications 

for peritoneal fibrosis. Nephrology Dialysis Transplantation, 26, 2995-3005. 

Boesch-Saadatmandi, C., Loboda, A., Wagner, A.E., Stachurska, A., Jozkowics, A., 

Dulak, J., & Rimbach, G. (2011). Effect of quercetin and its metabolites isorhamnetin 

and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. The 

Journal of Nutritional Biochemistry, 22, 293-299. 

Calder, P. C. n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. 

(2006). The American Journal of Clinical Nutrition, 83, 1505S-1519S. 

Carmicheal, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D., & Mitchell, J. B. (1987). 

Evaluation of a tetrazolium-based semiautomatic colorimetric assay: assessment of 

chemosensitivity testing. Cancer Reserach, 47, 936–942. 

Cathcart, M. K. (2004). Regulation of superoxide anion production by NADPH oxidase 

in monocyte/macrophage: contributions to atherosclerosis. Arteriosclerosis, Thrombosis, 

and Vascular Biology, 24, 23–28. 

Dia, V. P., Wang, W:, Oh, V. L., de Lumen, B. O., & Gonzalez de Mejia, E. (2009). 

Isolation, purification and characterisation of lunasin from defatted soybean flour and in 

vitro evaluation of its anti-inflammatory activity. Food Chemistry, 114, 108-105.

Duranti, M., Lovati, M. R., Dani, V., Barbiroli, A., Scarafoni, A., Castiglioni, S., & 

Morazzoni, P. (2004). The α´ subunit from soybean 7S globulin lowers plasma lipids and 

upregulates liver β-VLDL receptors in rats fed a hypercholesterolemic diet. Journal of 

Nutrition, 134, 1334-1339. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19 

Faloia, E., Michetti, G., De Robertis M., Luconi, M. P., Furlani, G., & Boscaro, M. 

(2012). Inflammation as a link between obesity and metabolic syndrome. Journal of

Nutrition and Metabolism, doi:10.1155/2012/476380.

Fontanari, G. G., Batistuti, J. P., da Cruz, R. J., Hilario, P., & Saldiva, P. H. N. (2012). 

Cholesterol-lowering effect of whole lupin (Lupinus albus) seed and its protein isolate. 

Food Chemistry, 132, 1521-1526.

Gersh, B. J., Sliwa, K., Mayosi, B. M., & Yusuf, S. (2010). Novel therapeutic concepts: 

the epidemic of cardiovascular disease in the developing world: global implications. 

European Heart Journal, 31, 642-648. 

Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: mechanism 

and functions. Immunity, 32, 593–604. 

Green, L. C., Wagner D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & 

Tannenbaum, S. R. (1981). Analysis of nitrate, nitrite, and [15N]nitrate in biological 

fluids. Analytical Biochemistry, 126, 131-138. 

Gülden, M., & Seibert, H. (2003). In vitro-in vivo extrapolation: estimation of human 

serum concentrations of chemicals equivalent to cytotoxic concentrations in vitro. 

Toxicology, 189, 211-222.

Hajer, G. R., Van Haeften, T. W., & Visseren, F. L. J. (2008). Adipose tissue dysfunction 

in obesity, diabetes, and vascular diseases. European Heart Journal, 29, 2959–2971.

Hämäläinen, M., Nieminen, R., Asmawi, M. Z., Vuorela, P., Vapaatalo, H., & Molainen, 

E. (2011). Effects of flavonoids on prostaglandin E2 production and on COX-2 and 

mPGES-1 expressions in activated macrophages. Planta Medica, 77, 1504–1511. 

Joshi, A. D., Oak, S. R., Hartigan, A. J., Finn, W. G., Kunkel, S. L., Duffy, K. E., & 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

20 

Hogaboam, C. M. (2010). Interleukin-33 contributes to both M1 and M2 chemokine 

marker expression in human macrophages. BMC Immunology, 11, 52. 

Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. 

International Dairy Journal, 16, 945-960. 

Lovati, M. R., Manzoni, C., Gianazza, E., Arnoldi, A., Kurowska, E., Carroll, K. K., & 

Sirtori, C. R.. (2000). Soy protein peptides regulate cholesterol homeostasis in Hep G2 

cells. Journal of Nutrition, 130, 2543-2549. 

Lovati, M. R., Manzoni, C., Gianazza, E., & Sirtori, C. R. (1998). Soybean protein 

products as regulators of liver low-density lipoprotein receptors. I. Identification of active 

β-conglycinin subunits. Journal of Agricultural and Food Chemistry, 46, 2474-2480. 

Lumeng, C. N., Bodzin, J. L., & Saltiel, A. R. (2007). Obesity induces a phenotypic 

switch in adipose tissue macrophage polarization. The Journal of Clinical Investigation,

117, 175-184. 

Marchesi, M., Parolini, C., Diani, E., Rigamonti, E., Cornelli, L., Arnoldi, A., & Chiesa, 

G. (2008). Hypolipidaemic and anti-atherosclerotic effects of lupin proteins in a rabbit 

model. British Journal of Nutrition, 4, 1-4. 

Millán-Linares, M. C., Yust, M. M., Alcaide-Hidalgo, J. M., Millán, F., & Pedroche, J. 

(2014). Lupine protein hydrolysates inhibit enzymes involved in the inflammatory 

pathway. Food Chemistry, 151, 141-147. 

Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., & Hill, A. M. (2000). M-1/M-2 

macrophages and the Th1/Th2 paradigm. Journal of Immunology, 164, 6166–6173. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

21 

Möller, N. P., Scholz-Ahrens, K. E., Roos, N., & Schrezenmeir, J. (2008). Bioactive 

peptides and proteins from foods: indication for health effects. European Journal of 

Nutrition, 47, 171-182.

Montserrat-de la Paz, S., Fernández-Arche, M. A., Ángel-Martín, M., & García-Giménez, 

M. D. (2012). The sterols isolated from Evening Primrose oil modulate the release of 

proinflammatory mediators. Phytomedicine, 19, 1072-1076.

Ndiaye, F., Vuong, T., Duarte, J., Aluko, R. E., & Matar, C. (2012). Anti-oxidant, anti-

inflammatory and immunomodulating properties of an enzymatic protein hydrolysate 

from yellow field pea seeds. European Journal of Nutrition, 51, 29-37.

Olefsky, J. M., & Glass, C. K. (2010). Macrophages, inflammation, and insulin 

resistance. Annual Review of Physiology, 72, 219-246. 

Pedroche, J., Yust, M. M., Lqari, H., Megías, C., Girón-Calle, J., Alaiz, M., & Millán, F. 

(2007). Obtaining of Brassica carinata protein hydrolysates enriched in bioactive 

peptides using immobilized digestive proteases. Food Research International, 40, 931-

938. 

Politis, I., Theodorou, G., Lampidonis, A. D., Chronopoulou, R., & Baldi, A. (2012). 

Soya protein hydrolysates modify the expression of various pro-inflammatory genes 

induced by fatty acids in ovine phagocytes. British Journal of Nutrition, 108, 1246-1255. 

Sawai, H., & Domae, N. (2008). Release of cytochrome c from mitochondria precedes 

Bax translocation/activation in Triton X-100-induced apoptosis. Leukemia Research, 32, 

445-453. 

Shahidi, F., & Zhong, Y. (2008). Bioactive peptides. Journal of AOAC International, 91, 

914-931 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 

Shen, Z., Lu, M., Duan, S., & Duan, S. (2011). Macrophage polarization and 

inflammation at the interface of cardiovascular disease and metabolism. North American

Journal of Medicinal Sciences, 4, 191-195.

Spielmann, J., Shukla, A., Brandsch, C., Hirshe, F., Stangl, G. I., & Eder, K. (2007). 

Dietary lupin protein lowers triglyceride concentrations in liver and plasma in rats by 

reducing hepatic gene expression of sterol regulatory element-binding protein-1c. Annals 

of Nutrition and Metabolism, 51, 387-392. 

Vernaza, M. G., Día, V. P., González de Mejía E., & Chang Y. K. (2012). Antioxidant 

and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. 

Food Chemistry, 134, 2217–2225.

Vo, T.-S., Ryu, B., & Kim, S.-K. (2013). Purification of novel anti-inflammatory 

peptides from enzymatic hydrolysates of the edible microalgal Spirulina maxima. Journal 

of Functional Foods, 5, 1336-1346. 

Weisberg, S. P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., & 

Ferrante, A. W. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat 

feeding. The Journal of Clinical Investigation, 116, 115–124. 

Weiβe, K., Brandsch, C., Zernsdorf, B., Nkengfack Nembongwe, G. S., Hofmann, K., 

Edere, K., & Stangl. G. I. (2010). Lupin protein compared to casein lowers the LDL 

cholesterol: HDL cholesterol-ratio of hypercholesterolemic adults. European Journal of 

Nutrition, 49, 65-71. 

Weldon, S. M., Mullen, A. C., Loscher, C. E., Hurley, L. A., & Roche, H. M. (2007) 

Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-

stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

23 

Journal of Nutritional Biochemistry, 18, 250258. 

Xu, C., Yang, C., Yin, Y., Liu, J., & Mine, Y. (2012). Phosphopeptides (PPPs) from hen 

egg yolk phosvitin exert anti-inflammatory activity via modulation of cytokine 

expression. Journal of Functional Foods, 4, 718-726. 

Yu, Y., Correll, P. H., & Vanden Heuvel, J. P. (2002). Conjugated linoleic acid decreases 

production of pro-inflammatory products in macrophages: evidence for a PPAR gamma-

dependent mechanism. Biochimica et Biophysica Acta, 1581, 89–99.

Yust, M. M., Pedroche, J., Millán-Linares, M. C., Alcaide-Hidalgo, J. M., & Millán, F. 

(2010). Improvement of functional properties of chickpea proteins by hydrolysis with 

immobilized Alcalase. Food Chemistry, 122, 1212-1217.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

24 

FIGURE CAPTIONS 

Figure 1. Effect of LPHs (500–2000 μg/mL) I+15A (A) and 15A (B) on cell proliferation 

of human THP-1-derived macrophages determined by MTT assay after 6 h. Study of the 

DNA distribution in the cell cycle ( % G0/ G1, % S and % G2/M) in THP-1- derived 

macrophages treated with LPH I+15A or LPH 15A (C). Percentage of apoptotic cell 

death in THP-1-derived macrophages after exposure to LPHs at 500 µg/mL for 24 h (D). 

Values marked with different letter are significantly different (P < 0.05).

Figure 2. Cell viability (%), determined by trypan blue exclusion assay, in presence of 

LPHs I+15A (A) and 15A (B), after 24 h of treatment and different concentrations (100-

2000 µg/mL). Some images obtained with confocal microscopy are presented.

Figure 3. TNF (A), IL-1β (B), IL-6 (C),  CCL18 (D), and IL10 (E) mRNA expression in  

THP-1-derived macrophages after 6 h of treatment with LPHs (I+15A, and 15A). Values 

marked with different letter are significantly different (P < 0.05).

Figure 4. Effect on TNF (A) and IL-10 (B) production of THP-1-derived macrophages. 

after 48 h of treatment with LPHs (I+15A, and 15A). Values marked with different letter 

are significantly different (P < 0.05). 

Figure 5. NO production (%) in THP-1-derived macrophages after 48 h of treatment with 

LPHs (I+15A, and 15A). Values marked with different letter are significantly different (P 

< 0.05). 

Figure 6. CCR2 (A) and CCL2 (B) mRNA expression in THP-1-derived macrophages 

after 6 h of treatment with LPHs (I+15A, and 15A). Migration Index (C) of THP-1-

derived macrophage after 24 h of incubation. Values marked with different letter are 

significantly different (P < 0.05). 
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