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Context: The quality of business process models (i.e., software artifacts that capture the relations
between the organizational units of a business) is essential for enhancing the management of business
processes. However, such modeling is typically carried out manually. This is already challenging and time
consuming when (1) input uncertainty exists, (2) activities are related, and (3) resource allocation has to
be considered. When including optimization requirements regarding flexibility and robustness it
becomes even more complicated potentially resulting into non-optimized models, errors, and lack of
flexibility.
Objective: To facilitate the human work and to improve the resulting models in scenarios subject to
uncertainty, we propose a software-supported approach for automatically creating configurable business
process models from declarative specifications considering all the aforementioned requirements.
Method: First, the scenario is modeled through a declarative language which allows the analysts to spec-
ify its variability and uncertainty. Thereafter, a set of optimized enactment plans (each one representing a
potential execution alternative) are generated from such a model considering the input uncertainty.
Finally, to deal with this uncertainty during run-time, a flexible configurable business process model is
created from these plans.
Results: To validate the proposed approach, we conduct a case study based on a real business which is
subject to uncertainty. Results indicate that our approach improves the actual performance of the busi-
ness and that the generated models support most of the uncertainty inherent to the business.
Conclusions: The proposed approach automatically selects the best part of the variability of a declarative
specification. Unlike existing approaches, our approach considers input uncertainty, the optimization of
multiple objective functions, as well as the resource and the control-flow perspectives. However, our
approach also presents a few limitations: (1) it is focused on the control-flow and the data perspective
is only partially addressed and (2) model attributes need to be estimated.
1. Introduction

A Business Process (BP) can be defined as a set of activities
which are performed in coordination in an organization to achieve
a business goal [93]. These activities can be manual activities, other
BPs, or even pieces of software. Nowadays, in order to support BPs,
BP Management (BPM) embraces methods, techniques, and soft-
ware to design, enact, control, and analyze operational processes
involving humans, organizations, applications, and other sources
of information [90]. Such management generally follows a strict
methodology to ensure the quality of the information systems
which are created. Typically, the traditional BPM life cycle [93]
includes four phases, i.e., process design & analysis (i.e., a design
of the BP is created following the requirements), system configura-
tion (i.e., the software defined in the BP design is implemented),
process enactment (i.e., the software is executed following the BP
design) and evaluation (i.e., monitoring information or logs are
analyzed to look for design improvements) [93].

The quality of a BP design has a great influence on all the phases
of the BPM life cycle and it is essential for BP improvement, which
has been ranked as the number one priority for top management
by the 2010 Gartner survey [36].
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Fig. 1. Motivation overview.
1.1. Problem statement

In the process design & analysis phase the BP models are typi-
cally specified by hand using imperative languages like EPC or
BPMN [12]. This way, a precise activity sequence which establishes
how a given set of activities has to be performed is defined. Such a
sequence typically includes temporal relations between activities
or even dependencies with input data. Typically, such activities
are related to a set of attributes (e.g., duration and cost) which
need to be estimated. Furthermore, in many real scenarios such
estimates might be subject to input uncertainty (e.g., non-punctual
clients imply uncertainty in their arrival times) [84]. In addition,
the BP performance can be greatly influenced by how the different
resources are assigned to each activity that has to be performed
[45,81]. Therefore, regarding such scenarios and motivated by the
case study described in the paper, when designing a BP model, ana-
lysts have to face certain design requirements (cf. Fig. 1 (1)), such
as:

1. Dealing with activity attributes and their estimated values.
2. Managing the input uncertainty which exists in many real sce-

narios [84] in which providing a range of possible values for a
BP property is most reliable that providing an exact value which
may be difficult to know. For example, the arrival time of clients
can be considered uncertain due to unpunctual clients.

3. Dealing with relations between the activities, i.e., control-flow
as well as temporal and data constraints of the BP.1

4. Considering resource allocation.

Since uncertain scenarios are considered, managing such input
uncertainty becomes necessary. For this, flexibility and robustness
are proposed since we consider this is the best way to properly
address the considered uncertainty. The situation is further com-
plicated if the aforementioned design requirements have to be
addressed along with optimizing some (potentially) conflicting
objective functions (e.g., time and cost). Such optimization require-
ments (cf. Fig. 1 (2)) can be summarized as follows:

1. Flexibility, i.e., the capability to adapt to input uncertainty
[34,66,78]. For this, designed models should consider different
execution alternatives to support such uncertain scenarios [93].

2. Robustness, i.e., the capability to withstand the uncertainty to
some extent [18,20,27]. For his, BP models should be designed
to avoid making unnecessary adaptations which typically are
costly.

3. Other objective functions are commonly considered since
the BP design usually involves a trade-off between different
1 Note that the considered scenarios are focused on the control-flow and the
resource perspectives of the BPs and the data perspective is only partially considered.
quality dimensions which may be in conflict or be opposed
[67].

This task of creating a BP design can form a very complex prob-
lem and be very time consuming (cf. Fig. 1 (3)). For this, methods
and tools for supporting analysts during the BP design are becom-
ing more and more important. Moreover, the resulting models may
be non-optimized, potentially contain errors, and might be too
strict [29,58,94] (cf. Fig. 1 (4)).

In such context, there exist some proposals for generating BP
models or that could be extended in such direction (cf.
[29,40,47,53,60,63,64,75,94]). These proposals are based on gener-
ating a single execution plan which fulfills all the BP constraints
starting with a constraint-based specification. This plan could be,
in turn, used for the generation of an imperative model. As a major
drawback of existing proposals, considering only one single execu-
tion plan unnecessarily restricts the flexibility of the resulting
imperative model. Thus, to the best of our knowledge, the existing
proposals are not sufficient to address all the previously mentioned
requirements, e.g., dealing with the flexibility needs of existing BPs
[66].
1.2. Contribution

In order to facilitate the human work which is involved in the
process design & analysis phase and to improve the resulting
imperative BP models we propose a method for automatically cre-
ating configurable BP models (i.e, a modeling artifact that captures
a family of process models in an integrated manner) [22] from
declarative specifications [29] (cf. Fig. 2). The proposed approach
considers all the aforementioned requirements which have to be
considered when creating a suitable BP model, i.e., activity attri-
butes, resource allocation, input uncertainty, relation between
activities, optimization of several objective functions, as well as
flexibility and robustness issues, and is detailed in the following.

Declarative models are typically easier to specify and less time-
consuming than imperative models in scenarios where high vari-
ability is required [29]. Therefore, we propose to use a declarative
specification as starting point of the proposed approach. For this,
the Declare language2 [63] is used as basis, since it allows the spec-
ification of BP activities together with the constraints which must be
satisfied for correct BP enactment and for the goal to be achieved.
We extend Declare in order to widen its design flexibility by consid-
ering stochastic values for modeling the uncertainty of the scenario
(as required in the considered problems, cf. Section 1.1), resulting in
the SDeclare language. To be more precise, with the proposed exten-
sion, some properties of a BP (such as activity attributes, data and
temporal constraints, and resource availability) can be expressed
2 Declare is one of the most referenced and used declarative BP languages in the
context of BPM.
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Fig. 2. Contribution overview.
through probabilistic mass functions instead of with fixed values. For
example, our approach allows one to specify the uncertainty about
the duration of an activity by using a flat discrete range (e.g.,
[15–20], meaning that such an activity may last 15, 16, 17, 18, 19
or 20 units of time with the same probability). This can be used,
for example, for specifying that the arrival time of clients is
uncertain due to unpunctual clients, or that the availability of some
resources is subject to uncertainty. The SDeclare language is then
used for the declarative specification of the BP models (cf. Fig. 2 (1)).

Since a declarative model captures highly variable scenarios, it
may include many execution alternatives that are not desirable
for the business regarding the optimization of a set of objective
functions. For this, the current approach is based on extracting a
desirable part of the variability of a declarative model through
the generation of multi-objective optimized enactment plans (cf.
Fig. 2 (2)), while discarding bad execution alternatives. This pro-
cess is done automatically using a constraint-based approach
which obtains the best execution alternatives of a declarative
model according to a set of given objective functions, i.e., any
quantitative property that can be measured related to an enact-
ment plan like completion time, cost, etc. For this, activities to be
executed have to be selected and ordered (planning problem
[33]) considering both control-flow constraints as well as resource
and data constraints imposed by the declarative specification
(scheduling problem [14]).

Since the generated set of multi-objective optimized enactment
plans may contain similar alternatives or non-robust alternatives,
such set must be filtered, as proposed in our approach. That filter-
ing step is performed regarding how the set of plans manages the
input uncertainty in such a way that flexibility and robustness are
optimized. Specifically, those alternatives which are too strict (i.e.,
not robust [18,20,27]) or which only withstand an extent of the
uncertainty which is already withstood by another alternative
(i.e., do not contribute to the flexibility of the final solution
[34,78,66]), are discarded.3 Therefore, the variability of the source
declarative model is reduced to a set of relevant plans (cf. Fig. 2
3 Note that robustness could be considered as an additional objective function to be
optimized when generating the optimized enactment plans. However, since both
flexibility and robustness help to deal with the considered uncertainty, we separate
them from the remaining objective functions to be optimized with the goal of
considering both together in the same step. In fact, when solving the considered
problems, while the other objective functions are considered when generating the set
of optimized enactment plans, flexibility and robustness are considered in a second
step to filter such set.
(3)) where most of the non-desirable alternatives are removed. In
this way, the proposed approach manages both flexibility and
robustness at design-time,4 as motivated in Section 1.1.

Typically the enactment plans which are kept after such filter-
ing process share many commonalities since they are created from
the same declarative specification and optimize the same objective
functions. Therefore, a configurable BP model [22,35,39,49,71,88]
can be created by merging all these plans (cf. Fig. 2 (4)). The goal
of creating configurable BP models in the proposed approach is
twofold: (1) supporting the analysts in the management of the
set of optimized plans, and (2) helping the analysts understand
what the different plans share, what their differences are, and
why and how these differences occur [71].

In previous related work (cf. [44]) we presented an approach for
generating optimized enactment plans from constraint-based spec-
ifications. However, this paper significantly extends this previous
work by: (1) extending the considered constraint-based language
(i.e., SDeclare) by allowing the specification of stochastic attributes,
(2) efficiently improving the constraint-based algorithm to obtain
optimized enactment plans regarding several objective functions,
(3) generating configurable BP models from those optimized enact-
ment plans regarding flexibility and robustness concerns, and (4)
applying the proposed approach to a real scenario, and using such
scenario to validate the proposed approach in practical settings
through the analysis of different performance measures.

The remainder of this paper is structured as follows: Section 3
introduces backgrounds on related areas, Section 4 shows how a
configurable BP model is extracted from a SDeclare model, Sec-
tion 5 explains a real example, Section 6 deals with the evaluation,
Section 7 presents a critical discussion, Section 2 summarizes
related work, and Section 8 includes some conclusions and future
work.
2. Related work

The Declare language [63] has been extended in several works
[60,61,94]. In fact, SDeclare is based on the time extension defined
4 Note that flexibility can be managed by: (1) design, i.e., at design-time some
control-flow patterns which allows one to consider different alternatives (e.g., OR
structures) are included in the model or (2) flexible PAISs, i.e., at run-time several
activities of a flexible BP model (e.g., a declarative model) are enabled to be executed
[66]. Since this approach is focused on the process design & analysis phase, flexibility
at run-time is out of the scope of this paper.



5 With the term executable models we refer to imperative models which are rather
strict and which represent only one enactment plan (or at most only few decision
points are included).
in [60] where it is possible to define time lags over the different
Declare constraints. The same time-aware extension is considered
in [94] where, additionally, a deep reasoning based on a finite
automaton is performed to warn the users to avoid wrong states.
Furthermore, a data-aware extension has been recently proposed
in [61]. Such extension is considered in the current approach. Nev-
ertheless, unlike the current approach, Montali et al. [61] is based
on Event Calculus and it is focused on monitoring and operational
support. As a major contribution of SDeclare regarding existing
proposals [60,61,94], it allows specifying the input uncertainty of
real scenarios by using stochastic values.

We are not aware of any other approaches for generating con-
figurable BP models–or set of enactment plans- from declarative
specifications. However, there exist some further proposals which
could be extended in such direction [40,47,53,60,63,74]. Specifi-
cally, Pesic [63] proposes the generation of a non-deterministic
finite state automaton from constraint-based specifications which
represents exactly all traces that satisfy the constraints. However,
the big disadvantage following such an approach would be that
the process of generating the automaton from the declarative spec-
ifications is exponential with respect to the size of the formula
[62], and, unlike the proposed approach, no heuristic is used. Addi-
tionally, CLIMB [60] could be used to generate quality traces from
declarative specifications, and calculate its values for different
objective functions. Unlike the proposed approach, Montali [60]
does neither consider optimality nor resource availabilities. There-
fore, these would only cover the planning part of the current pro-
posal, but not the scheduling aspects. In a related way, the work
[47] plans and schedules tasks considering resources and the
optimization of one objective function through an integer
constraint-based specification. Although [47] presents a similar
constraint-based approach, it misses dealing with multi-objective
optimization, and does not support high level constraints. More-
over, in [53], a constraint formalization is proposed to generate
variations of an ad-hoc BPMN sub-processes. In a similar way,
Rychkova et al. [74] proposes the specification of processes based
on a first-order logic language and translates them to an impera-
tive language. In turn, related to BP, Hummer et al. [40] provides
a model-driven approach which produces an imperative process
specification from a declarative specification. Unlike our approach,
Hummer et al. [40], Lu et al. [53] and Rychkova et al. [74] do not
consider the optimization of any objective function. Furthermore,
none of this approaches [40,47,53,60,63,74] considers the uncer-
tainty of the scenario through stochastic attributes.

As mentioned, several approaches exist for dealing with flexibil-
ity issues [3,18], even in the context of BP [66,78]. However, in this
paper as a novel contribution, we provide quantitative definitions
for both robustness and flexibility which allow us to measure
how the uncertainty of a real scenario is supported by an enact-
ment plan and by a configurable BP model respectively.

In literature, different approaches deal with the variability of
BPs [39,48,69,71,77,80]. In PESOA [77] and C-EPC [69,71] configu-
rable BP models are used as basis. Variation points are either
defined by a set of annotations of activities [77] or by including
configurable BP nodes [69,71]. In turn, the work [69] improves
the C-EPC language by incorporating both resource and data nota-
tion in the C-EPC models. Unlike C-EPC and PESOA, Provop [39] and
RULE [48] consider a base process model which is configured using
a set of predefined change operations [39] or applying some busi-
ness rules [48]. Furthermore, there are other approaches which
mix declarative specifications with configurable BP models, e.g.,
ConfDeclare [80] presents a declarative language in which activi-
ties can be hidden and constraints can be omitted. Regarding
how configurable BP models are created, essentially, there are
two ways: manually and automatically. On the one hand, the man-
ual creation of configurable BP models can be carried out from
scratch by manually specifying the variation points [22,35,39,
48,71,77]. The main problems of the manual creation is that it is
typically a very time consuming task and requires deep skills on
the modeling language. On the other hand, an automatic method
has been proposed to generate a configurable BP model, in C-EPC
language, from a set of BP models by analyzing the similarities of
the source BP models and including variation points where they
differ [68,70]. The main problem of the automatic creation of con-
figurable BP models is that it requires a family of BP models inde-
pendently specified. Since we propose to automatically create
configurable BP models, the current approach builds upon these
techniques.

3. Background

Using a constraint-based BP model as starting point, this
approach applies constraint-based planning and scheduling tech-
niques considering multiples objectives functions in order to gen-
erate a configurable BP model. When generating the configurable
BP models, flexibility and robustness concerns are considered.

3.1. Constraint-based BP models

Different paradigms for process modeling exist, e.g., imperative
and declarative. Irrespective of the chosen paradigm, desired
behavior must be supported by the process model, while forbidden
behavior must be prohibited [60,63]. While executable process
models specify exactly how things have to be done,5 declarative
models only focus on what should be done. In literature, several
rule-based and constraint-based languages for declarative BP model-
ing are proposed (e.g., [23,54,63,64,92]). In our proposal we use the
constraint-based language Declare (also known as ConDec) [63,64]
for the BP control-flow specification. We consider Declare to be a
suitable language, since it allows the specification of BP activities
together with the goal to be achieved (cf. Definition 1).

Definition 1. The goal of a BP is specified through the constraints
which must be satisfied during the BP enactment.

Moreover, Declare allows to specify a wide set of BP models in a
simple and flexible way. In addition, Declare has been widely ref-
erenced in the past years in the context of BPs [17,51,55,60].
Declare is based on constraint-based BP models (cf. Definition 2).

Definition 2. A constraint-based BP model CM ¼ ðA;CBPÞ consists
of a set of activities A, and a set of constraints CBP prohibiting
undesired execution behavior. Each activity a 2 A can be executed
arbitrarily often if not restricted by any constraints.

Such definition is provided to formalize the concepts which
already exist in the literature related to constraint-based BP model.

Constraints can be added to a Declare model to specify forbidden
behavior, restricting the desired behavior. For this, Declare pro-
poses an open set of templates which can be divided into 4 groups:

1. Existence templates: unary relationships concerning the num-
ber of times one activity is executed, e.g., Exactly(N,A) specifies
that A must be executed exactly N times.

2. Relation templates: positive binary relations used to impose
the presence of a certain activity when some other activity is
performed, e.g., Precedence(A,B) specifies that to execute
activity B, activity A needs to be executed before.
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3. Negation templates: negative relationships used to forbid the
execution of activities in specific situations, e.g., NotCoexis-
tence(A,B) specifies that if B is executed, then A cannot be exe-
cuted, and vice versa.

4. Choice templates: n-ary relationships expressing the need of
executing activities belonging to a set of possible choices, e.g.,
ExactlyChoice(N,{A,B,C}) specifies that exactly N activities of
the set {A,B,C} must be executed.

Due to their flexible nature, there are different ways to execute
a constraint-based BP model in such a way that all constraints are
fulfilled, i.e., the process goal is reached (cf. Definition 1 and Exam-
ple 1).

Example 1. Fig. 3(a) shows a constraint-based BP model where
traces6 <AAB>;<AB>;<ABAB>;<ABB>;<A> are some of the valid
ways of executing such model, while traces <BA>;<BB>;<BAAB>
are invalid since A must precede B. In contrast, Fig. 3(b) shows an
executable model where there is only one valid execution trace,
<AB>.

The different valid execution alternatives related to a specific
constraint-based BP model, however, can greatly vary in respect
to their quality, i.e., how well different performance objective func-
tions (cf. Definition 3) can be achieved.

Definition 3. The objective function of a BP is the function to be
optimized during the BP enactment, e.g., minimization of overall
completion time.

Many real scenarios require the optimization of multiple objec-
tive functions. Thus, we suggest the automatic generation of a
multi-objective optimized configurable BP model from a con-
straint-based BP model by applying constraint programming for
Planning and Scheduling (P&S) the BP activities.
6 For the sake of clarity, traces represent sequences of activities, i.e., no parallelism
is considered in the examples. Moreover, only completed events for activity
executions are included in the trace representation.
3.2. Planning, scheduling and constraint programming

The area of scheduling includes problems in which it is neces-
sary to determine a schedule for a set of activities related by tem-
poral and resource constraints (in our context the control-flow
constraints). A schedule states (1) the start and end times of the
activities to be executed and (2) the resource which is assigned
to perform each activity. Since different activities may require
the same resources, they may compete for limited resources (i.e.,
resource constraints). In scheduling problems several objective
functions are usually considered to be optimized, in most cases
related to temporal measures, or considering the optimal use of
resources.

In a wider perspective, in Artificial Intelligence (AI) planning
[33], the activities to be executed are not established a priori,
hence it is necessary to select them from a set of alternatives
and to establish an ordering. In general, the objective in planning
consists of, given a set of available activities, generating a sche-
dule by selecting and ordering a set of activities in a way that
the resulting plan reaches a given goal. Furthermore, in planning
problems, usually the optimization of certain objective functions
is considered.

In such context temporal analysis is typically applied over the
resulting schedules to figure out the temporal slack of the activities
[14,37], i.e., to calculate which activities can delay or advance their
execution without affecting the completion time of the schedule. In
this respect, different techniques such as CPM, PERT or Gantt charts
[31] can be used to perform this analysis in order to calculate the
enactment plan (cf. Definition 4) related to a specific schedule.
The same enactment plan can be related to different schedules,
as shown in Fig. 4.

Definition 4. An enactment plan P ¼ ðpid;ActsÞ is identified by pid
and is composed of a set of activities act 2 Acts which are executed
without preemption. Each activity act is a tuple <actid; Pred; dur;
es; le; res> where: actid is an unique identifier in the enactment
plan, Pred is the list of its precedence activities (i.e., those activities
which must be executed before act), dur is the estimated duration
of act, es is the earliest start time (i.e., the soonest that the activity



act can start), le is the latest end time (i.e., the latest that the
activity act can finish), and res is the resource which performs the
activity act in the plan.7

Such definition is provided to formalize the concepts which
already exist in the literature related to that term.

The activities of an enactment plan which are not preceded by
any other activity are called initial activities. In a similar way,
the activities which do not precede any other activity are called
final activities. Therefore, regarding the precedence relations
between the activities (stated by the Pred attribute) and the paral-
lelism that exists between activities which are executed by differ-
ent resources (stated by the res attribute) the schedule can be
represented as a graph (cf. Definition 5). We use the graph defini-
tion introduced in [70]. In such graph, both a start node which pre-
cedes all of the initial activities and a final node which is preceded
by all the final activities are additionally included.

Definition 5. A Graph G ¼ ðgid;N; EdgesÞ is identified by gid and
consists of a set of pairs of nodes n 2 N, i.e., Edges. Each edge
denotes a direct edge between two nodes in the graph. A node
n 2 N is a tuple < nid; l; t > where nid is an unique identifier of a
node in the graph, l is its label, and t is its type.

Such definition of graph allows to represent a schedule (i.e., an
enactment plan) in many different languages, e.g., BPMN or EPC (cf.
Example 2). Note that a one-to-one relation is considered between
a graph and an enactment plan. As an example, the types of nodes
(i.e., t) in BPMN language [12] are ‘activity’, ‘event’, or ‘gateway’. A
node of type ‘gateway’ allows labels (i.e., l) ‘AND’, ‘OR’, ‘XOR’, etc.,
while ‘event’ nodes allow ‘start’ and ‘end’ labels.

Example 2. Fig. 4 (a) shows two schedules related to how to
prepare a holiday where the activities book a hotel, select the clothes
and prepare the luggage are considered. Since both schedules
include the same activities, which are executed by the same
resources and also in the same order, they result in the same
enactment plan. As can be seen in the Gantt diagram related to the
enactment plan (cf. Fig. 4 (b)), the activity Book hotel presents 1
temporal unit of slack. In addition, Fig. 4 (c) shows the related
graph using BPMN.8 This graph consists of the following 7 nodes (cf.
Definition 5): <1;start;event>;<2;AND;gateway>;<3;book;activity>;
< 4;select;activ ity>;<5;AND;gateway>;<6;pack;activity> and <7;
end;event>; which are paired (cf. Definition 5) as follows:
ð1;2Þ;ð2;3Þ;ð2;4Þ;ð3;5Þ;ð4;5Þ;ð5;6Þ, and ð6;7Þ.

In such context, constraint programming (CP) [72] supplies a
suitable framework for modeling and solving problems involving
P&S aspects [76]. In order to solve a problem through CP, it needs
to be modeled as a constraint satisfaction problem (CSP) (cf. Defi-
nition 6).

Definition 6. A CSP P ¼ ðV ;D;CCSPÞ is composed of a set of
variables V, a set of domains D which is composed of the domain
of values for each variable vari 2 V , and a set of constraints CCSP

between variables, so that each constraint represents a relation
between a subset of variables and specifies the allowed combina-
tions of values for these variables.
7 Note that, since activities are executed without preemption and the same
resource cannot be used to perform more than one activity in parallel, there are
implicit precedence relations between the activities which are executed by the same
resource since our approach does not allow a resource doing multiple activities in
parallel.

8 For simplicity, role information is shown inside the activity boxes in the BP graph.
In [70], a general solution for managing role information and other non-control-flow
elements is shown.
The given definition is provided to formalize the concepts
which already exist in the literature related to CSP.

A solution to a CSP (cf. Definition 7) consists of assigning values
to CSP variables.

Definition 7. A solution S ¼< ðvar1;val1Þ; ðvar2;val2Þ; . . . ðvarn;

valnÞ > for a CSP P ¼ ðV ;D;CCSPÞ is an assignment of a value
vali 2 domi to each variable vari 2 V .

A solution is feasible when the assignments variable-value sat-
isfy all the constraints, i.e., a goal state is reached. In a similar way,
a CSP is feasible if at least one feasible solution for this CSP exists.
From now on, Svar refers to the value assigned to variable var in a
solution S.

Similar to CSPs, constraint optimization problems (COPs, cf.
Definition 8) require solutions that optimize an objective function.

Definition 8. A COP Po ¼ ðV ;D;CCSP ; oÞ related to a CSP
P ¼ ðV ;D;CCSPÞ is a CSP which also includes an objective function
o to be optimized.

A feasible solution S for a COP is optimal when no other feasible
solution exists with a better value for the objective function o.

Constraint programming allows to separate the models from
the algorithms, so that once a problem is modeled in a declarative
way as a CSP, a generic or specialized constraint-based solver can
be used to obtain the required solution. Furthermore, constraint
based models can be extended in a natural way, maintaining the
solving methods. Several mechanisms are available for solving
CSPs and COPs [72], which can be classified as search algorithms
(i.e., for exploring the solution space to find a solution or to prove
that none exists) or consistency algorithms (i.e., filtering rules for
removing inconsistent values from the domain of the variables).
In turn, search algorithms can be classified as complete search
algorithms (i.e., performing a complete exploration of a search
space which is based on all possible combinations of assignments
of values to the CSP variables) and incomplete search algorithms
(i.e., performing an incomplete exploration of the search space so
that, in general, to get a feasible or an optimal solution is not guar-
anteed). In this work we apply P&S to generate different possible
enactment plans from the same constraint-based BP model
through an incomplete search algorithm.

Since actual problems typically involve multiple conflicting
objective functions, multi-objective constraint optimization prob-
lems (MO-COPs, cf Definition 9) are considered in the current
work. The reader is referred to [26] for a review of the literature
on MO-COPs.

Definition 9. A MO-COP MPo ¼ ðV ;D;CCSP;OFsÞ related to a CSP
P ¼ ðV ;D;CCSPÞ is a CSP which also includes a set of objective
functions OFs to be optimized (maximized or minimized).

Such definition is provided to formalize the concepts which
already exist in the literature related to that MO-COP.

In multi-objective optimization problems, usually no unique
optimal solution exists, but a set of Pareto optimal solutions (cf.
Definition 10) can be found.

Definition 10. Let Sols be the set of all the solutions of a MO-COP
MPo which includes n objective functions, i.e, OFs ¼ OF1; . . . ;OFn.
Then, a solution sol1 2 Sols is Pareto optimal if 9= sol2 2 Sols such
that 8OF 2 OFs : solOF

2 is better or equal than solOF
1 , i.e., for obtaining

a feasible solution which improves one objective functions, at least
another objective function needs to be deteriorated.

Since many MO-COPs present NP complexity [32], Pareto opti-
mized solutions are considered (cf. Definition 11).
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9 As there is not ambiguity, some labels are not shown (i.e., they are the same as in
the branch).
Definition 11. Let Sols be the set of all the solutions of a MO-COP
MPo and let Solsz # Sols be the subset of the solutions already
explored at certain time. Then, a solution sol1 2 Solsz is Pareto
optimized if it is Pareto optimal regarding only the subset Solsz,
i.e., if 9= sol2 2 Solsz such that 8OF 2 OFs : solOF

2 is better or equal
than solOF

1 .

To solve multi-objective optimization problems there are, basi-
cally, three approaches:

1. Defining a new objective function by combining the original
objective functions, e.g., trough weighted-sum function
[16,30,95]. However, these approaches does not necessarily
guarantee that the final solution will be neither acceptable
[4,19,46,59,85] nor Pareto optimized [19].

2. Working with stochastic algorithms like genetic, simulated
annealing or ant colonies algorithms to obtain a set of Pareto
optimized solutions. For example, previous works applied the
simulated annealing technique [83,87] and evolutionary
multi-objective optimization algorithms [21,82] for solving
multi-objective optimization problems.

3. Optimizing one of the objective functions while constraining
the other ones (e.g., e-constraint method [38]). These methods
are based on optimizing only one of the objective functions
while all the others objective functions are used to state addi-
tional constraints. Here, the main challenge is to select the
proper bounds for the objectives which are not optimized. Each
approach typically solves this issue with its own method. In
general, each single-objective problem is solved several times
by varying the value of the bound. The complete set of Pareto
optimal solutions can be figured out if the bounds are ade-
quately varied [52].

In this work, the e-constraint method [38] is applied since it
appeared well suited for our purposes and typically provides good
results. In addition, in a previous approach [44], such a technique
was applied and it achieved good results. Furthermore, the base
algorithm to be used in the e-constraint method were developed
and analyzed in previous approaches [7,9] and results showed its
effectiveness for improving performance. However, other promis-
ing multi-objective optimization techniques (e.g., stochastic
algorithms) could be also applied.

3.3. Configurable BP models

Typically, different enactment plans (cf. Definition 4), also
called variants in the context of BPs, can be performed in
scenarios which entail high variability. In most cases these
plans share many commonalities. Hence, these variations can
be combined in a configurable BP model leading to a compact
representation [22,49,70,71]. Generally, configurable BP models
allow analysts to understand what these variations share,
what their differences are, and why and how these differences
occur [71].
Configurable BP models are typically created by hand (1) from
scratch, (2) from an existing BP model by including possible adap-
tations [35], or (3) by merging some BP models related to the same
or similar goals which already exist [70]. In the last case, the source
BP models need to be compared and merged, which might result in
a tedious, time-consuming and error-prone process if it is per-
formed by hand [70]. To overcome these problems, there exist
approaches focused on automatically merging different BP models
in a configurable BP model [68,70].

Configurable BP models can be represented by configurable BP
graphs, which are defined (cf. Definition 12) based on [70].

Definition 12. A Configurable BP Graph CG ¼ ðG; E2I;N2LIÞ con-
sists of: (1) a graph, G ¼ ðgid;N; EdgesÞ (cf. Definition 5), (2) a
function E2I that maps each edge e 2 Pairs to a set of process graph
identifiers (i.e., E2I identifies which branches of CG belong to each
source graph which is merged in CG), (3) a function, N2LI that maps
each node n 2 N to a set of pairs < gpid; l > where gpid is a graph
identifier and l is the label of node n in graph gpid (i.e., N2LI
identifies which nodes, with the corresponding label, belong to
each graph which is merged in CG).

In the current approach, configurable BP models are created by
using the process merger tool presented in [70] after being adapted
to work with BPMN. This tool is based on a merging algorithm
which analyzes the similarities of the input models (i.e., the
graphs) and creates a new model (i.e., the configurable BP graph)
which includes configuration nodes for those points where the
input models are different. Therefore, each branch and node of
the configurable BP model can be related either to one or more
graphs. To store these relations, each branch/node of the configura-
ble BP graph includes identifiers related to the corresponding plan
(i.e., E2I function). In addition, nodes also store the associated label
related to each identifier (i.e., N2LI function). Since a configurable
BP model includes different graphs, we consider that a configura-
ble BP model includes different enactment plans (cf. Example 3).

Example 3. Fig. 5 shows 2 graphs which are merged into a
configurable BP model.9 The first gateway in Fig. 5(b) is a config-
urable node which corresponds to an ‘OR’ gateway in the process 1
and an ‘AND’ gateway in the process 2.
3.4. Dealing with uncertainty

Uncertainty is typically present in most real scenarios. There-
fore, mechanisms to deal with uncertainty are required for real
systems. In such context, flexibility and robustness concerns have
received increasing attention in last years [3,18,20,34,37,86], also
in the context of BPs [66,78].

Although flexibility and robustness are typically used to evalu-
ate techniques or tools which cope with the natural uncertainty of



real scenarios, literature related to adaptability-like topics
acknowledges that there is not a simple and general definition
for these terms. Some approaches even define different terms with
similar definitions [3,34], which leads to misunderstandings.
Between dozens of existing definitions of flexibility and robust-
ness, in this work a representative set of them is selected in order
to highlight their commonalities and differences.

On the one hand, flexibility was defined in the 80s as ‘‘the abil-
ity of an organization to adapt to [. . .] changes that [. . .] impact on
the organization’s performance’’ [1]. It was supported by [89] in
the 90s and more recently by [78], which applies this term to
BPs. In accordance with [1,34,66,78,89], we define the term flexi-
bility as the capability to adapt a plan to external events in order
to achieve a goal (i.e., to change the original plan to a new plan
which generally has a different performance but achieves the same
goal). Note the active feature of the verb adapt - the flexibility is an
active ability (cf. Example 4).

Example 4. A person who is going to the cinema wearing summer
clothes when it is sunny but the forecast is uncertain increases the
flexibility taking a foldable raincoat in a handbag. This way, taking
a raincoat makes adaptation to the weather possible, and hence,
the flexibility is increased (note that changing the clothes is
necessary only if it rains).

On the other hand, robustness was defined in the 70s as ‘‘the
ability to respond successfully to [. . .] environmental changes’’
[27],10 which was recently supported by [20]. Similar definitions
can be found in P&S [41], in complex systems [15] and in project
management [37]. In a related way, we define the term robustness
[15,18,20,27,37,41,42] as the capability of a process to withstand
external events in order to prevent undesirable impacts (i.e., chang-
ing the plan is not required, and hence, the same performance after
the occurrence of the events is reached). In contrast to flexibility,
robustness is considered a passive ability (cf. Example 5).

Example 5. The same person of Example 4 increases the robust-
ness wearing mid-season clothes instead of summer clothes since
the mid-season clothes can withstand good and bad weather, and
hence, the robustness is increased (note that, unlike in Example 4,
in this case changing the clothes is not required).
4. Generating an optimized configurable BP model from a
declarative specification

This section presents a method for generating an optimized
configurable BP model using a declarative specification as starting
point. For the declarative specification of BPs, in the current
approach an extension of the constraint-based language called
Declare is proposed (cf. Fig. 2 (1)). The generation of configurable
BP models from declarative specifications is divided in three steps:

1. A set of multi-objective optimized enactment plans is generated
from the declarative specification (cf. Fig. 2 (2)). For this, a con-
straint-based approach is considered. In this step the high var-
iability of the declarative specification is reduced by discarding
bad plans according to the objective functions to be optimized.

2. The generated set of enactment plans is then filtered regarding
different quality measures, i.e., robustness and flexibility (cf.
Fig. 2 (3)). This step is based on selecting those plans which
behave better against the uncertainty of the environment. Thus,
the variability is slightly reduced.
10 Actually, instead of robustness, the work [27] uses the terms ‘‘passive’’ or
‘‘internal’’ flexibility.
3. To create a unified representation of all the enactment plans, a
configurable BP model is created out of the filtered set of
optimized enactment plans (cf. Fig. 2 (4)).

4.1. SDeclare language

As mentioned in Section 1.2, to specify the process in a declar-
ative way, Declare [63] is used as basis. Motivated by requirements
described in literature [60,63] as well as the necessities of the case
study we have conducted we extend in this work Declare to SDe-
clare by considering: (1) resource reasoning, (2) temporal and data
constraints and, (3) stochastic estimates.

Definition 13. A SDeclare process model SDM = (SActs, Data, CBP ,
AvRes, OFs) related to a constraint-based BP model CM = (A, CBP)
(cf. Definition 2) is composed of: a set of SDeclare activities
(S-Activities in the following) SActs ¼ ða;Res;AttsÞ (cf. Definition 14)
related to each a 2 A, problem data information Data (which is the
information which influences the process execution), a set of
SDeclare constraints CBP (which relates the activities included in
SActs and Data), a set of available resources AvRes, and a set of
objective functions to be optimized OFs (cf. Definition 3). The set
AvRes is composed of tuples <role, #role> meaning that there are
#role available resources to role.
Definition 14. A S-Activity SAct = (a, Res, Atts) represents a BP
activity a (cf. Definition 2) which can be performed by any resource
included in Res, and which has a set of attributes associated Atts
(e.g., duration and profit). The set Atts is composed of tuples <att,
value>.
4.1.1. Resource reasoning
To support the direct reasoning with resources (which is not

possible in Declare) we extended Declare by including: (1) alter-
native resources for executing each S-Activity (cf. Res in Defini-
tion 14), and (2) the set of available resources (cf. AvRes in
Definition 13). In this way, SDeclare directly supports the most
common workflow resource pattern, i.e., the role-based distribu-
tion [73], which also supports our case study. This pattern models
the ability to specify at design-time one or more roles which will
be assigned to the instances of an activity at run-time. Note that,
besides the role-based distribution pattern, SDeclare is open to
support further resource patterns [73] by including the related
constraints in the proposed CSP model (cf. Definition 13). How-
ever, as mentioned, in this work we focus on the role-based dis-
tribution pattern, which is the one required for modeling the
considered case study.

The information related to resource availabilities can be
unknown until starting the BP enactment. Since this information
is independent of the S-Activities, it can be changed without affect-
ing the specification of the activities, and vice versa. This is not a
problem for our proposal since static information (i.e., the con-
trol-flow and resource constraints) is complemented with more
changing information (i.e., the estimates), and finally the most
dynamic information (i.e., information about resource availabili-
ties) is included. In this way, with our approach, the configurable
BP model can be automatically generated just before starting the
BP enactment by considering the actual values of the resource
availabilities and estimates.

4.1.2. Temporal and data constraints
To support increased expressiveness of Declare templates, we

extend it by considering temporal and data constraints. In this
way SDeclare allows to specify temporal constraints in a similar
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Fig. 6. Example of SDeclare process model.
way as [60,94], i.e., all the Declare constraints have been extended
to support temporal modifiers, e.g., the SDeclare constraint Prece-
dence(A, B, [5,10]) states that for starting the execution of activity
B, activity A needs to be finished between 5 and 10 time units
before. Furthermore, we extend Declare by including data con-
straints in a similar way as [60].

Therefore, input data can be related to (1) activity attributes,
e.g., in Fig. 6, the duration of the activity B is specified by the input
data, (2) resource availability, i.e., the number of available
resources of a role, and (3) SDeclare constraints, e.g., in Fig. 6, the
selection of the choice constraint depends on the input data
availableActs.

4.1.3. Stochastic estimates
As mentioned, to allow the specification of certain input uncer-

tainty in the declarative BP models which are designed, we
extended Declare by including the stochastic attributes for certain
parts of the model (i.e., S-Activity attributes, data and temporal
constraints, and resource availability). Estimates can be obtained
by interviewing business experts or by analyzing past process exe-
cutions. Moreover, both approaches can be combined to get more
reliable estimates.

Since estimating values can be quite challenging [84], SDeclare
allows specifying any discrete value of the model in a stochastic
way by using probability mass functions (PMFs in the following)
which are functions that give the probability of a variable taking
a certain value. These PMFs can be associated to any input data
(cf. Data in Definition 13) of the SDeclare model. Thus, the Data
property of a SDeclare model consist of tuples <dName; dValue/
dPMF>, meaning that the data dName can be associated to a fixed
value (dValue) or to a PMF (dPMF) (cf. Example 6).

Example 6. In Fig. 6, a SDeclare process model related to how to
prepare a holiday is depicted. To prepare a holiday three activities
need to be performed, select the cloths, pack them, and book the
flights between each stopover. The objective is to minimize the
planning time and, additionally, to minimize the use of a second
resource. Therefore, SActs = fBook; Select; Packg;OFs= {minimize sum
of dur, minimize time of R2}, AvRes = {<R1,1>;<R2; fR2>} (i.e., the
number of available resources of R2 is defined by the PMF fR2),
Data ¼<so;2> and CBP¼{Response(Select, Pack), Exactly(1, Select),
Exactly(1, Pack), Exactly(so, Book)} (i.e., the number of repetitions
of Book is defined by the input data so). In addition,
fBook; Select; Packg are three S-Activities (cf. Definition 14) where
Book=<Book; fR1;R2g; f<dur; fB>g >; Select=<Select; fR1;R2g; f<dur;
fs>g > (i.e., its durations are defined by the PMFs fB and fS), and
Pack=<Pack; fR1g; f<dur;10>g >. Note that there is uncertainty
related to the duration of Select, i.e., it may last 5, 10 or 15 units of
time and 15 is the most probable value.
Using PMFs, the estimates reflect the business reality better [2].
There are extensive studies focused on patterns of PMFs that rep-
resent the uncertainty best [2,5,28,56] that are not discussed here
since it is out of the focus of this paper.
4.2. From the SDeclare model to a set of optimized enactment plans

In this section, the generation of a set of optimized enactment
plans from a SDeclare model (cf. Definition 13) is explained. This
includes: (1) the sampling of the stochastic properties of the SDe-
clare model to obtain a set of non-stochastic models, (2) the model-
ing of the non-stochastic models as MO-COPs, (3) the use of global
constraints implemented through filtering rules to improve the
modeling of the MO-COPs and to efficiently handle the constraints
in the search for solutions, and (4) the search algorithm for solving
the MO-COPs which obtains the set of optimized enactment plans.

4.2.1. Sampling the SDeclare model
As stated in Section 4.1.3, stochastic properties can be included

in the SDeclare model (e.g., S-Activity attributes, data properties or
resource availabilities). These properties represent the input
uncertainty that is considered in the scenario and it is used to eval-
uate the flexibility of the configurable BP model and the robustness
of the optimized enactment plans included in the model, as
explained later.

For managing the uncertainty of the SDeclare model when gen-
erating the related optimized enactment plans, the different sto-
chastic properties are sampled (cf. Definition 15) by considering
their associated PMFs.

Definition 15. Let SDM ¼ ðSActs;Data;CBP ;AvRes;OFsÞ be a SDe-
care model with n stochastic properties prop1; . . . ; propn. Then: a
sample is a set of n tuples < propi; vali >; i ¼ 1 . . . n which indicates
the fixed value vali that the property propi takes in such sample.
The value vali is randomly selected considering the PMF related to
propi (i.e., fpropi

).

Each sample is used to create a non-stochastic model (cf. Defi-
nition 16) from a SDeclare model by assigning a fixed value to each
stochastic property (cf. Example 7). In the proposed approach, mul-
tiple samples are generated in order to obtain a representative set
of non-stochastic models. Each non-stochastic model is, in turn,
transformed to a MO-COP.

Definition 16. A non-stochastic SDeclare model is a SDeclare
model in which all properties are defined by fixed values.
Example 7. Regarding the SDeclare model of Fig. 6, a possible sam-
ple could be: f< fS;10 >;< fB;7 >;< fR2;0 >g. Applying the sam-
ple to the SDeclare model, the non-stochastic SDeclare model of
Fig. 7 is obtained.
4.2.2. Transforming the non-stochastic models into MO-COPs
For applying constraint programming for the generation of opti-

mized enactment plans, each non-stochastic model (i.e., a SDeclare
model plus a sample) is translated to a MO-COP (cf. Definition 9).
Regarding the proposed MO-COP, S-Activities (repeated activities
in the MO-COP, cf. Definition 17), which can be executed arbitrarily
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Fig. 8. Filtering rule for temporal precedence template in SDeclare.
often if not restricted by any constraint, are modeled as sequences
of optional scheduling activities (cf. Definition 18). This is required
since each execution of a repeated activity is considered as one sin-
gle activity which needs to be allocated to a specific resource and
temporarily placed in the enactment plan, i.e., stating values for
its start and end times.

Definition 17. A repeated activity ra ¼ ða;Res;Atts;ntÞ is a S-
Activity SAct ¼ ða;Res;AttsÞ (cf. Definition 14) which can be executed
several times. This is managed by defining a CSP variable which
specifies the number of times the S-Activity is executed (i.e, nt).

For each repeated activity, ntMAX
11 scheduling activities exist,

which are added to the CSP specification.

Definition 18. A scheduling activity sa ¼ ðst; et; res; selÞ related to
a repeated activity ra ¼ ða;Res;Atts;ntÞ represents a specific exe-
cution of ra, where st and et are CSP variables indicating the start
and the end times of sa, respectively, res 2 Res is a CSP variable
representing the resource used for its execution, and sel is a CSP
variable indicating whether or not sa is selected to be executed
(i.e., equal to 0 in the case that it is not executed and equal to 1
otherwise).

In this way, the SDeclare model SDM ¼ ðSActs;Data;CBP;AvRes;
OFsÞ is initially modified by the samples which are considered in
such a way that one non-stochastic model is generated for each
sample. Each non-stochastic model of this set is, in turn, trans-
formed to a MO-COP Po ¼ ðV ;D;CCSP;OFsÞ (cf. Definition 9) where:

1. V¼fntðaÞ;a2SActsg[fstðaiÞ;etðaiÞ;resðaiÞ;selðaiÞ;i2 ½1:. ntMAXðaÞ�;
a 2 SActsg [ OFs, i.e., V includes the CSP variables related to the
repeated and scheduling activities together with one CSP vari-
able for each objective function.

2. D is composed of the domains of each CSP variable, where
UBðvarÞ and LBðvarÞ represent the upper and lower bounds of
the domain of var, respectively.

3. CCSP is composed of the global constraints (implemented by the
filtering rules) related to CBP together with the constraints which
are inherent to the proposed model, which are listed as follows:
(a) 8a 2 SActs 8i : 1 6 i < ntðaÞ : etðaiÞ 6 stðaiþ1Þ (i.e., a specific

execution of a repeated activity precedes the next execution
of the same activity).
11 ntMAX represents the maximum value of the initial domain of nt.
(b) 8a 2 SActs 8i : 1 6 i 6 UBðntðaÞÞ : selðaiÞ ¼¼ ntðaÞ >¼ i (i.e.,
the nt variable of the repeated activity is directly related
to the sel variables of the associated scheduling activities).

(c) 8a 2 SActs 8i : 1 6 i 6 ntðaÞ : stðaiÞ þ durationðaÞ ¼¼ etðaiÞ
(i.e., the start and the end times of each scheduling activity
are related by the estimated duration of the associated S-
Activity).

(d) 8OFi 2 OFs; optimizeðOFiÞ. 12

Resource constraints are not explicitly stated since most con-
straint-based systems provide a high-level constraint modeling
specific to scheduling which includes an efficient management of
shared resources.
4.2.3. Increasing performance with filtering rules
Many constraint-based approaches for modeling and solving

P&S problems have been proposed [72]. Moreover, several pro-
posals exist for filtering rules related to specialized scheduling
constraints (e.g., [11,50]) Therefore, the considered problems
could in principle be managed by adapting existing constraint-
based approaches. However, some SDeclare templates entail com-
plex reasoning about several combined innovative aspects, such
as the alternating executions of activities together with the vary-
ing number of times which these activities are executed. There-
fore, we implemented our own specific global constraints
through innovative filtering rules to facilitate the specification
of the problems. Moreover, the related filtering rules enable the
efficiency in the search for solutions to increase since during
the search process these filtering rules remove inconsistent val-
ues from the domains of the variables [6]. In this way, the con-
straints stated in the SDeclare specification (cf. Definition 13)
are included in the MO-COP model through the related global
constraints. In the MO-COP, initial estimates are made for upper
and lower bounds of variable domains and these values are
refined during the search process by the developed filtering rules
(cf. Example 8).

In this work, filtering rules related to the constraints which
were not considered in previous works13 (i.e., [6,43,44]) have been
developed, i.e., related to choice and data.
12 The optimization can be either maximization or minimization.
13 A detailed description of the developed basic SDeclare filtering rules can be found

at http://regula.lsi.us.es/MOPlanner/FilteringRules.pdf.

http://regula.lsi.us.es/MOPlanner/FilteringRules.pdf


Example 8. The filtering rule related TemporalPrecedenceðA;B;
½min;max�Þ template is shown in Fig. 8, where the filtering rule
that describes the pruning of domains appears after symbol !.
This constraint means that between min and max units of time
before the first execution of B, at least one execution of A must be
executed.
4.2.4. Solving the MO-COP
Once the problem is modeled as a MO-COP (cf. Definition 9),

several constraint-based mechanisms can be used to obtain the
solutions to the MO-COP, i.e., multi-objective optimized enactment
plans (cf. Definition 4). Since the generation of optimal plans pre-
sents NP-complexity [32], it is not possible to ensure the optimal-
ity of the generated plans for all the cases. However, the developed
constraint-based approach allows solving the considered problems
in an efficient way as empirically demonstrate later in the case
study.

Algorithm 1. Generation of EnactmentPlans from a MO� COP

input: MO-COP P0

output: Set<EnactmentPlan> plans
1 Map<ObjectiveFunction, Range> ranges =

calculateRegions(P0);
2 Set<Region> regions= divide(P0; ranges);
3 Set<EnactmentPlan> plans with dominated=

solveRegions(P0; regions);
4 plans= removeParetoDominated(plans with dominated);

The proposed constraint-based approach includes a multi-
objective optimization search algorithm which is based on the
e-constraint method [38] (cf. Section 3.2). This search algorithm
solves a number of single-objective COPs optimizing one of the
objective functions and constraining the remaining objective func-
tions. Specifically, given a MO-COP Po ¼ ðV ;D;CCSP;OFsÞ with N
objective functions (i.e., OFs ¼ fOF1; . . . ;OFNg), the proposed algo-
rithm (cf. Algorithm 1) follows four steps:

1. For each objective function OFi 2 OFs, the related range (i.e.,
tentative maximum and minimum values that can be obtained
for OFi) is calculated (line 1 of Algorithm 1) by using the algo-
rithm calculateRegions (cf. Algorithm 2). At the beginning
of Algorithm 2 an empty set of enactment plans is created for
storing the solutions which are being generated (cf. line 1 of
Algorithm 2). Moreover, a solver which is in charge of finding
solutions (i.e., enactment plans14) for single-objective COPs is
created (i.e., solver at line 2 of Algorithm 2). For each OFi, a COP
Pi ¼ ðV ;D;CCSP ;OFiÞ which includes the same variables, domains
and constraints than Po but which only optimizes OFi is generated
(lines 4-6 of Algorithm 2). Then, an incomplete complete search
algorithm is used to find one optimized solution Soli for such
problem within a given time limit (cf. line 7 of Algorithm 2).
The solution is then stored in the set sols (cf. line 8 of Algorithm
2). All the solutions which are store in sols are then used to cal-
culate a range of tentative maximum and minimum values for
each objective function OFi (cf. lines 9-13 of Algorithm 2). This
is performed by calculating the maximum and minimum values
which are achieved for each OFi in all the solutions stored in sols
(cf. Example 9).
14 In the proposed approach the schedules (i.e., the raw solutions of the considered
COPs) are directly transformed to enactment plans. Therefore, for the sake of
simplicity, the solutions of such COPs are considered enactment plans.
Example 9. For a MO-COP with three objective functions and
sols ¼ fðOF1 ¼ 10;OF2 ¼ 5;OF3 ¼ 4Þ; ðOF1 ¼ 9; OF2 ¼ 6;OF3 ¼ 1Þ
ðOF1 ¼ 2;OF2 ¼ 4;OF3 ¼ 8Þg, the maximum (minimum) value for
each OFi, denoted as OFM

i (OFm
i ), is: OFM

1 ¼ 10;OFM
2 ¼ 6 and

OFM
3 ¼ 8 (OFm

1 ¼ 2;OFm
2 ¼ 4 and OFm

3 ¼ 1.). Then,
rangeðOF1Þ ¼ ½2;10�; rangeðOF2Þ ¼ ½4;6� and rangeðOF3Þ ¼ ½1;8�.
Algorithm 2. calulateRegions method: Calculate the range of
values for each ObjectiveFunction.
2. With the goal of obtaining an uniformly distributed set of solu-
tions for Po, the solution space (i.e., a N-dimensional space) is
divided into smaller N-dimensional regions (cf. line 2 of Alg.
1) by using the divide algorithm.15 A region of a solution space
with N objective functions consists of N sub-ranges, each one
related to one objective function. In the divide algorithm, each
range which is calculated for each objective function in the step
1, rangeðOFiÞ, is divided into a given number DIV of non-over-
lapped sub-ranges, i.e., rangejðOFiÞ 8j ¼ 1 . . . DIV . Each sub-range
rangejðOFiÞ of a range rangeðOFiÞ has the same size than the other
sub-ranges related to the same objective function OFi, with the
exception of the first and the last sub-ranges, i.e.,
82 6 j 6 DIV � 1 : rangejðOFiÞ ¼ ½OFm

i þ ðj� 1Þ � jrangeðOFiÞj=DIV ;
OFm

i þ j� jrangeðOFiÞj=DIV �, where jrangeðOFiÞj refers to the size
of rangeðOFiÞ, i.e., OFM

i - OFm
i . Regarding the first and the last sub-

ranges, since the solution space is not totally explored in step 1
(since the search algorithm stops when a time limit is reached)
we cannot ensure that no solutions exist out of the calculated
ranges. Therefore the minimum value of the first sub-range and
the maximum value of the last sub-range are not fixed with the
goal of avoiding missing some potential solutions. In this way,
range1ðOFiÞ ¼ ½�1;OFm

i þ jrangeðOFiÞj=DIV �, and rangeDIV ðOFiÞ ¼
½OFm

i þ ðDIV � 1Þ � jrangeðOFiÞj=DIV ;þ1�. Then, the sub-ranges
related to each objective function are combined with the sub-
ranges related to all the other objective functions with the goal
of obtaining different regions, Rv , where v 2 NN is a vector which
contains the indices of the sub-ranges which belong to Rv , i.e,
rangejðOFiÞ 2 Rv if and only if v ½i� ¼ j;81 6 i 6 N;81 6 j 6 DIV
(cf. Example 10).
Example 10. Fig. 9 depicts a solution space which is divided in
nine regions (i.e., R1;1;R1;2, . . ., R3;3) for a MO-COP with two
objective functions (i.e., OF1 and OF2) whose ranges are divided in
tree sub-ranges (i.e., range1ðOF1Þ; range2ðOF1Þ, . . ., range3ðOF2Þ).
15 Due to its triviality, unlike the other algorithms, the divide algorithm is not
formally shown in algorithm shape.



Fig. 10. Set of solutions for a 2-objectives MO-COP where the Pareto optimized
solutions are depicted by squares, solutions which are Pareto dominated by
solutions from the same region are depicted by crosses, and solutions which are
Pareto dominated by solutions from other regions are depicted by crosses inside a
box. Dominated regions are indicated with a big cross.

Fig. 9. Solution space with two objective functions which is divided into nine
regions.

17 In a general case, the complexity of the Pareto dominance algorithm is Oðn2Þ
3. In order to look for a uniformly distributed set of solutions, each
region is independently managed (line 3 of Alg. 1) by using the
algorithm solveRegions (cf. Algorithm 3).
Initially, an empty set of dominated regions is created (cf. line 1
of Algorithm 3). This set is created with the goal of storing all
the regions which are dominated by others. Since only the Par-
eto optimized solutions are considered, the order of solving the
regions influences the efficiency since some calculus can be
saved by applying a proper ordering. Thus, this algorithm solves
the aforementioned problems Pv ;i (i.e., a problem which opti-
mizes the objective function i in the region Rv) starting with
those problems which belong to the region which dominates
more regions (line 2 of Algorithm 3). A region Rv dominates
Rv 0 if and only if 81 6 k 6 N : v ½k� > v 0½k� (being N the number
of dimensions), cf. Example 11.16 If a solution is found in a
region, all the COPs related to the regions which are dominated
by the former do not need to be solved (line 3 of Algorithm 3)
since all their solutions are Pareto dominated by any solution
which belongs to the former region.

Example 11. In Fig. 9, region R3;3 dominates R2;2;R2;1;R1;2 and R1;1,
region R2;3 dominates R1;2 and R1;1, and so on.
16 For the sake of clarity, we assume that each objective function is maximized. The
problem of minimization is analogous.
Therefore, for each region Rv which is not dominated, an empty set
of solutions is created (cf. line 4 of Algorithm 3) to store all the
enactment plans related to such region. In addition, N COPs
Pv;i ¼ ðV ;D;Cv ;OFiÞ are generated (cf. lines 5 and 6 of Algorithm
3), where Cv ¼ CCSP [ ðOFl 2 rangev½l�ðOFlÞ;81 6 l 6 NÞ (i.e., which
only optimizes OFi and where all the objectives functions are con-
strained to be in the related sub-range rangev½l�ðOFlÞ; cf. lines 7-10
of Algorithm 3). Unlike step 1, in order to generate a wide set of
solutions, we use an anytime optimization algorithm [96] which is
an incomplete search algorithm which updates the best solution
which is found during the search. Then not only the best solution
(cf. line 11 of Algorithm 3) but some intermediate solutions are
returned.

Algorithm 3. solveRegions method: Generate EnactmentPlans
by solving the COPs related to each region.
If at least one solution is found within a region Rv (cf. line 12 of
Algorithm 3), the regions which are dominated by Rv are included
in the set dominated to avoid the search for solutions in that
dominated region (cf. line 13 of Algorithm 3). In addition, the solu-
tions which are obtained within Rv are filtered by removing the
solutions which are Pareto dominated (cf. line 14 of Algorithm 3
and Example 12).17

Example 12. For a MO-COP with two objective functions and a
solution space divided in nine regions, Fig. 10 shows the different
solutions obtained within each region, where no solutions are
found in regions R2;3 and R3;3, and where R1;1 and R2;1 are elimi-
nated (i.e., the COPs related to them are not solved) since some
solutions are found in region R3;2 which dominates R1;1 and R2;1.
In Fig. 10, each cross represents a solution which is Pareto domi-
nated by another solution in the same region.

4. After all the COPs are solved (i.e., a diversified set of solutions is
obtained), solutions which are dominated by solutions from a
different region are removed (cf. line 4 of Algorithm 1). Then
a distributed set of Pareto optimized solutions is obtained (cf.
Example 13).18
where n is the number of solutions [referecia]. Then, the fact of having all the
solutions divided in non-overlapped regions (i.e., the solutions are clustered) reduces
the complexity since Oðn2Þ < Oððn=mÞ2Þ �m;8m > 1 where m is the number of
regions.

18 The complete set of Pareto optimal solution is not the goal of the proposed
algorithm, but a representative and distributed set of Pareto optimized solutions.



Fig. 11. For two different enactment plans (a) generated from the SDeclare model of Fig. 6, and considering two uncertain variables (b), the robustness of each plan and the
flexibility of the related configurable BP model are calculated (c).
Example 13. In Fig. 10 all solutions which are dominated by any
solution which belongs to a different region are depicted by a cross
inside a box, and all the Pareto optimized solutions are depicted by
a square.

4.3. Quantifying the flexibility and the robustness

In this section definitions for both flexibility and robustness are
proposed in order to measure how the generated models deal with
the uncertainty. Such definitions are based on related literature,
which is introduced in Section 3.4. In the BP field, flexibility and
robustness can be treated as quantitative attributes related to a
specific process model. In the context of this paper, robustness
and flexibility are quantified over enactment plans (cf. Definition
4) and and configurable BP models (cf. Definition 12) respectively.

As mentioned in Section 3.3, a configurable BP model includes
different enactment plans sice there exists a one-to-one relation
between graphs and enactment plans. Each enactment plan which
is included in such models has its own level of robustness against a
specific variable which presents uncertainty (cf. Definition 19).
This uncertainty is defined through the related PMF which is
included in the SDeclare model (cf. Definition 13).

Definition 19. Let Pi be an enactment plan (cf. Definition 4); let v
be a variable related to some attribute of Pi and which is defined in
the domain DðvÞ with a PMF fv : DðvÞ ! ½0 . . . 1� ;

P
x2DðvÞfv ðxÞ ¼ 1;

and let WðPi;vÞ be the set of values of v which Pi withstands, i.e., Pi

tolerates scenarios where v takes any value in WðPi;vÞ without
changing its performance (e.g., without changing its objective
function values, cf. Definition 3). Then: the robustness of Pi

against v, RobðPi;vÞ, is the probability of the variable v taking a
value that Pi withstands. When v is a discrete variable, then
RobðPi;vÞ ¼

P
x2WðPi ;vÞfv ðxÞ. When v is a continuous variable,

WðPi;vÞ is considered as the non-overlapped ranges of values of
v (i.e., ½½r1inf ; r1sup�; ½r2inf ; r2sup� . . .�) which Pi withstands; then
RobðPi;vÞ ¼

P
rx2WðPi ;vÞð

R rxsup

rxinf
fvðxÞdxÞ.

In this way, the robustness against a variable is applied over sin-
gle alternatives (i.e., single enactment plans) of a configurable BP
model. By contrast the term flexibility (cf. Definition 20) is applied
over configurable BP models (cf. Example 14).

Definition 20. Let P be a configurable BP model which contains
different enactment plans Pi 2 P; and let v be a variable related to
some attribute of P and which is defined in the domain DðvÞwith a
PMF fv : DðvÞ ! ½0 . . . 1� ;

P
x2DðvÞfv ðxÞ ¼ 1. Then: the flexibility of P

against v, FlexðP;vÞ, is the probability of the variable v taking a
value that P withstands by adapting its workflow to any of its
alternatives Pi. When v is a discrete variable, then FlexðP;vÞ ¼P
x2
S

Pi2P
WðPi ;vÞfvðxÞ. When v is a continuous variable, WðPi;vÞ is

considered as the non-overlapped ranges of values of v (i.e.,
½½r1inf ; r1sup�; ½r2inf ; r2sup� . . .�) which Pi withstands; then FlexðP;vÞ ¼P

rx2
S

Pi2P
WðPi ;vÞð

R rxsup

rxinf
fvðxÞdxÞ.

When the variable v follows a flat distribution, the robustness
and the flexibility can be expressed as RobðPi;vÞ ¼ jWðPi;vÞj=
jDðvÞj and FlexðP;vÞ ¼ j

S
Pi2PWðPi;vÞj=jDðvÞj respectively.

Example 14. Consider the two enactment plans depicted in Fig. 11
(a), and the two probability mass functions shown in Fig. 11 (b)
(i.e., fR2 which is related to the number of available resources with
role R2 and fS which is related to the duration of the activity Select,
i.e., S). Then, some measures can be calculated (cf. Fig. 11 (c)). The
robustness of the enactment plan P1 against S;RobðP1; SÞ, is equal
to 0:15 since P1 only withstands that activity Select takes 5 units of
time. However, the robustness of P1 against R2;RobðP1;R2Þ, is
equal to 1 since P1 is valid for any availability of R2 (note that R2 is
not used in P1). In a similar way, the robustness against these 2
variables is calculated for plan P2. Considering the last column of
the table Robustness, it can be concluded that the enactment plan
P2 manages the uncertainty better than P1. In a related way, once a
configurable BP model is created by merging these two enactment
plans, then the flexibility of such model can be calculated as stated
in Definition 20. Therefore, FlexðP;R2Þ is equal to 1, since P includes
plans which can withstand any value of R2, and FlexðP; SÞ is equal to
0:5, since the value 15 for S is not withstood by any plan of P.
Considering both variables together, FlexðP;R2 ^ SÞ ¼ 0:325 which
means that the 32.5% of the input uncertainty is properly managed
by the configurable BP model.
4.4. From a set of optimized enactment plans to a configurable BP
model

In this section a method for the automatic generation of a con-
figurable BP model which subsumes the plans which are previ-
ously calculated according to flexibility and robustness issues is
detailed. Such method includes: (1) the selection of the relevant
plans, and (2) the merging of the relevant plans into a configurable
BP model.

4.4.1. Selecting the relevant plans
In order to select the relevant plans (cf. Fig. 2 (3)) from the set

of optimized enactment plans (denoted by PS from now on) a
two-steps algorithm is proposed:



Table 1
Properties which are calculated for the set of enactment plans of Fig. 11, where S and R2 are defined by the PMFs fS and fR2 respectively.

PMFs Enactment plans Measures

S fS R2 fR2 Planid sum dur timeR2 WðPi; SÞ WðPi;R2Þ RobðPi; SÞ RobðPi;R2Þ RobðPiÞ

5 0.15 0 0.5 P1 25 0 [5] [0, 1] 0.15 1.0 0.575
10 0.35 1 0.5 P2 20 5 [5, 10] [1] 0.50 0.5 0.5
15 0.5
1. Considering that the uncertainty of the scenario is specified
over the stochastic variables (i.e., vp) associated to some prop-
erties of the SDeclare model, a set of properties are calculated
for each enactment plan Pi 2 PS (cf. Example 15):
� Withstood values for each uncertain variable: For each vp,

the range of withstood values are calculated (i.e.,
WðPi;vpÞ). Note that calculating the withstood ranges of
the S-Activity attributes or of the availability of resources
might be trivial. However, when the uncertainty is specified
over data properties which affect a constraint, calculating
the withstood ranges may require more elaborated calculus.

� Robustness for each uncertain variable: The robustness
against each uncertain variable vp (i.e., RobðPi;vpÞ) is calcu-
lated as stated in Definition 19.

� Average robustness: Finally, the general robustness of a plan
(i.e., RobðPiÞ) is calculated as the mean of the individual
robustness of each stochastic variable.

Example 15. Table 1 shows a set of 2 optimized enactment
plans (cf. column Planid) generated from the SDeclare model
shown in Fig. 6 with two uncertain variables fs and R2 (cf. column
PMFs) and its associated objective function values (cf. columns sum
dur and time R2). Moreover, regarding the domains that each plan
withstands against v1 and v2 (cf. columns WðPi;v1Þ and WðPi; v2Þ
respectively), the value of the robustness against these variables
can be calculated as stated in Definition 19. The values of the
robustness are depicted on columns RobðPi;v1Þ and RobðPi; v2Þ
respectively. Furthermore, the value of the general robustness (cf.
column RobðPiÞ) is calculated as the mean of RobðPi;v1Þ and
RobðPi;v2Þ.

2. In this step, the relevant plans are selected. For this, three dif-
ferent policies can be considered:
(a) All plans are kept: No plan is removed. In this case, the non-

desirable variability is not reduced (cf. Fig. 2 (3)).
(b) The plans which present the highest robustness are kept:

The enactment plans are ranked by its average robustness.
Then, a percentage of plans which present the lowest
robustness are removed (cf. Example 16). The goal of this
policy consists of creating a configurable BP model
composed by the most robust plans to the detriment of
the flexibility, i.e., this policy is not intended to cover the
input uncertainty as much as possible.

Example 16. In Table 1 the plan P2 presents an average robustness
which is significantly lower than the robustness of the other plans,
and then it would be removed if this policy is followed.

(c) The plans which provide for the highest flexibility are kept:
The minimum set of plans which covers the maximum
input uncertainty is selected (i.e., the minimum set which
maximizes the union of the withstood domains, cf. Example
17). The goal of this policy consists of creating a configura-
ble BP model which provides for the highest flexibility, i.e.,
which embraces plans which cover as much uncertainty as
possible typically to the detriment of the robustness of
these plans.
Example 17. When following this policy, in Table 1 the plans P1
and P2 would be selected since they are not totally overlapped.

In this way, this second step removes some enactment plans
regardless of their objective function values. Therefore, good plans
(i.e., optimized plans) which were calculated in Algorithm 1 are
removed here, and then, only those plans which are relevant (i.e.,
the plans which are selected according to a policy) remain. This
way, only the plans which are both good and relevant are kept.

The proposed approach could be easily adapted to consider the
robustness as an additional objective function when generating the
set of optimized enactment plans. However, in that scenario non-
optimal solutions would be included since a new dimension would
be considered in Algorithm 1, i.e., the robustness.

4.4.2. Merging the relevant plans into a configurable BP model
As stated in Section 3.3, an adaptation of the Process Merger

tool [70] is used to create the configurable BP model out of the
selected plans. The enactment plans to be merged are identified
by a label, i.e., pid attribute (cf. Definition 4, column Plan id in
Table 1). The generated configurable BP model has special nodes
called configurable nodes which represent the variation points of
the model (cf. Fig. 5 (b)). In addition, each arc of the configurable
BP model has a reference to the labels of the plans to which the
arc belongs. The variant to be executed is selected from the config-
urable BP model before the run-time phase regarding (1) the actual
values of the uncertain variables of the scenario, (2) the robustness
of the plans which withstand such actual values, and (3) the values
of the objective functions. Just in case the flexibility which is
obtained becomes insufficient (i.e., none of the enactment plans
which are in the configurable BP model withstands the actual val-
ues of the uncertain variables), replanning becomes necessary and
new optimized BP enactment plans will be generated by consider-
ing the actual values of the uncertain variables instead of the PMFs
and then a new configurable BP model will be created.

5. A real example: a beauty salon of Seville

This section introduces a real example from a beauty salon that
is used to validate the current proposal in the considered case
study.

Motivation: The considered business has grown considerably in
the last years. It has expanded from a small salon with three
employees to more than six and included additional facilities to
be able to offer additional services. In addition, the uncertainty
regarding different aspects of the business has become an impor-
tant problem, e.g., the arrival time of the clients or the availability
of some resources during the day (e.g., due to a resource who feels
sick at the beginning of the day but not enough to leave the salon).
These changes, including the quick growth together with the com-
plex constraints which need to be obeyed, resulted in problems
related to the management of the salon. In particular, long waiting
time for clients and missing schedules for employees are causing
problems, affecting customer satisfaction and profit of the
business.



Fig. 12. SDeclare model for the beauty salon problem (top level process).

Fig. 13. SDeclare model for some of the services which are offered.
Improving the management: The goal of the business is to
improve the current situation through the optimization of some
business objective functions. Since our approach generates an opti-
mized configurable BP model, a set of optimized schedules for
employees can be suggested each one facing a different possible
uncertain scenario, and therefore, the aforementioned problems
can be overcome. Moreover, since multi-objective optimization is
considered, several important objectives (i.e., minimizing waiting
times for clients and maximizing profit) can be optimized. Further-
more, due to the high expressiveness of SDeclare, all the con-
straints which are given in the scenario together with its
uncertainty can be specified.

Scenario details: The beauty salon offers various services 19 like
dye, clean&cut, manicure and facial services. It requires its clients to
make appointment calls to know how many clients are coming as
well as the booked services. There are several full-time employees,
e.g., Amparo (A), Rosa (R), Lisset (L) and Marta (M). Each employee
has different skills, and hence some activities can be performed by
certain employees only. For all activities which are performed in
the salon, the manager knows the average estimated duration, the
profit which is obtained after their execution, and the employees
which can execute that activity. The manager of the salon wants to
plan and schedule a working day with several clients taking the fol-
lowing considerations into account:

1. The profit (P) of the resulting working plan has to be maximized
(objective function 1).

2. The waiting time (WT) of the clients has to be minimized
and distributed uniformly among all the clients (objective
function 2):

WT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
c2C

ðs:endTðcÞ�c:appTÞ�
P

b2c:served
b:estimate

� �� �2
q

C:size , where C is the set
of clients, s is the considered solution, s:endTðcÞ is the time
when the client c has finished, c:appT is the appointment time
of c; c:served is the set of services which are applied to c (i.e.,
included in the plan), and b:estimate is the estimated duration
for service b.
19 For the sake of clarity, the depicted scenario is a subset of the actual beauty salon,
i.e., the salon offers more services and has more employees.
3. The employees can offer some additional services to the client
directly in the salon, and the client can accept or refuse. How-
ever, these additional services should only be proposed if this
leads to optimized plans.

SDeclare specification: Typically, as illustrated in Fig. 12, a cli-
ent visit starts with the reception in the beauty salon. After that,
the staff applies some services to the client and, finally, the client
is charged. Complex activity Services is composed of other activi-
ties20 (e.g., dye, clean&cut, facial and manicure, cf. Fig. 13), while
Reception and Charge are BP activities (cf. Definition 14). For each
BP activity two attributes are considered: (1) estimated activity
duration, and (2) profit which is obtained after executing the activ-
ity.21 Moreover, the set of alternative resources which can perform
the BP activity is also included (cf. Example 18).

Example 18. In Fig. 12, activity Reception has an estimated
duration of 1 minute and a profit of 0, and can be performed by
A, R, M or L.

Notice that each instance created from the model of Fig. 12 rep-
resents one client visiting the beauty salon. The current problem
deals with N clients (represented by the Existence constraint of
Fig. 12, stated by the label N) which come to the salon at different
times and with different bookings during a working day which are
specified as data information.

The data perspective also appears in Fig. 12. The Client-Data
includes all the information which is related to the client bookings,
and consists of: (1) clientName, (2) bookedServices, which repre-
sents the mandatory services that the salon staff has to cover,
and (3) appointmentTime, which is the time when the client is
supposed to arrive at the salon. Through the data perspective, it
is possible to model that activity Reception cannot start before
the client appointment time (cf. Fig. 12). Moreover, a data con-
straint is used (in conjunction with the choice constraint) to ensure
that all the services the client has booked are selected, i.e., the
20 In a similar way to PSL [65], SDeclare allows hierarchical modeling (i.e., complex
activities aggregate activities).

21 As can be seen in Figs. 12 and 13, the profit of the services is associated to one of
the activities of the related services.



Table 3
Quantified variables for the embedded design.

Variable Description

minWT, minP, MaxWT,
MaxP

Initial ranges for each objective function, which are calculated in the initial searches of Algorithm 1

%SFrx The percentage of SDeclare models in which, at least one solution is found within region rx (rx 2 fr1; r2; r3; r4g) regarding the total number of
SDeclare models which are considered

NActsrx Size of the enactment plans which are generated within region rx, which is measured as the number of activities
WTrx , Prx Value for each objective function which is obtained within region rx
SAddrx Number of additional services per client which are included in the solutions which are found within region rx (i.e., those services which where

not initially booked but are included in the plan)
%PSrx Percentage of Pareto optimized solutions obtained within region rx regarding the total number of Pareto optimized solutions which are

obtained for the considered problem

Table 2
Case study research questions.

Id Research question

MQ1 Is Algorithm 1 appropriate for finding a uniformly distributed set of Pareto optimized solutions for SDeclare models of different complexity?
AQ1 Can Algorithm 1 find solutions within the different regions in which the solution space is divided?
AQ2 Does Algorithm 1 behave successfully independently of the complexity of the problems?
MQ2 Is the proposed approach useful for a business expert?
AQ3 Can the proposed approach improve the results which are manually obtained by an expert?
AQ4 Can the proposed approach generate an unified artifact which behaves properly against the input uncertainty?
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Fig. 14. Solutions which are found for a specific setting of the beauty salon
problem.
generated plans will always include the booked services (cf.
Fig. 13). In addition, in the current scenario uncertainty is mainly
present in the appointment time of clients and, less frequently,
in the duration of activities (e.g., due to a temporal malfunctioning
of the facilities or because people are not always working at the
same place; also it can take a variable amount of time to cut the
hair of a person depending on her type of hair) and in the availabil-
ity of resources (e.g., employees falling sick). To accommodate for
such situations, this uncertainty is considered in the SDeclare
model before starting the process (cf. Example 19). In this case
study flat discrete ranges are used as PMFs for simplicity.

Example 19. Let 14:30 be the appointment time of certain client.
The manager knows that such client used to be unpunctual;
therefore, she specifies in the SDeclare model her appointment
time through the flat PMF appT= {14:25, 14:30, 14:35, 14:40}.22

In addition, before starting the day (and before generating the
configurable BP model), one of the resources has informed the
manager that she does not feel well; therefore, the manager
specifies her availability through the flat PMF avR={0, 1} in the
SDeclare model.
Generating the optimized plans: Given a SDeclare model
SDM ¼ ðActs;Data;CBP;AvRes;OFsÞ for the beauty salon problem,
where Acts;Data;CBP and AvRes are shown in Figs. 12 and 13, and
OFs are described in scenario details (i.e., maximization of the
profit and minimization of the waiting time), the tool generates
multi-objective optimized enactment plans. These plans represent
personal schedules which will guide the employees to optimally
serve the clients while facing the uncertainty, i.e., potentially
avoiding unnecessary replannings. For example, the set of plans
which is generated regarding the client of Example 19 will proba-
bly include optimized plans which can deal with client arrival
times between 14:25 and 14:40. In a similar way, the approach
can deal with employees falling sick by generating different plans
(some of the plans will assign tasks to this employee and some of
them will not). These plans are, in turn, represented as a
22 In this example, 5 min is considered as the minimum amount of time which can
be measured.
configurable BP model by following one of the available policies.
Such model will support the manager of the beauty salon in man-
aging the working day in an optimized way.

In this way, the proposed approach provides support to the
manager of the beauty salon by suggesting: (1) a resource for exe-
cuting each activity, (2) the start and end time of the activities, and
(3) the services which will be offered to each client (i.e., services
which were not booked by the client).23

6. Case study

This section provides an empirical study for: (1) evaluating the
generation of multi-objective optimized enactment plans from
SDeclare specifications through the proposed constraint-based
approach, and (2) assessing whether the approach can deal with
real problems which involve uncertainty. In this section, the case
study protocol for the software engineering field proposed by
[13] is followed to improve the rigor and validity of the study. Such
protocol suggests the following sections: background, design, case
selection, case study procedure, data collection, analysis and inter-
pretation, and validity evaluation.

6.1. Background

In this section, previous research related to the topic of this
paper is identified. Different proposals related to the generation
23 As an example, two Pareto optimal plans for the beauty salon problem can be
found at http://regula.lsi.us.es/MOPlanner/PlansBeautySalon.pdf.

http://regula.lsi.us.es/MOPlanner/PlansBeautySalon.pdf


Table 4
Quantified variables for the holistic design.

Variable Description

minWT, minP, MaxWT,
MaxP

Average of the minimum and maximum values of the objective functions (i.e., waiting time and profit) which are obtained by applying the
proposed approach

WT, P Average values of the objective functions which is obtained applying the proposed approach
%DWT , %DP Average values of the percentage of increment of the objective functions of the plans which are obtained through the proposed approach

versus the real execution plan
%Dominated Percentage of problems whose real execution plan is dominated (cf. Definition 10) by the Pareto front generated by our approach

Flex Average flexibility (cf. Definition 20) of the generated configurable BP models against the uncertainty provided by the input SDeclare model

minRob, MaxRob Average values of the minimum and maximum robustness (cf. Definition 19) of the plans which are included in the generated configurable BP
models

Pareto optimized solutions

minWT MaxWT

P

WT

MaxP

minP

Execution plan from log
730

635

540

445

350
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P

WT
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dominated by

Fig. 15. Solutions which are found for a specific problem related to the beauty salon
problem with some stochastic variables.

25 The logged information comprises: (1) the number of clients of the day (i.e., N),
of optimized BP enactment plans from declarative specifications as
well as related to flexibility and robustness concerns are discussed
later when analyzing the related work. In particular, our proposal
uses the SDeclare language for the declarative specification of a
BP, generates a set of optimized BP models out of it, and, finally,
merge them into an optimized configurable BP model taking flex-
ibility and robustness concerns into account. In such context, the
purpose of this study is twofold: (1) the evaluation of the proposed
algorithm (i.e., Algorithm 1) for generating multi-objective opti-
mized BP enactment plans regarding the distribution of the gener-
ated plans along the solution space24 and (2) the evaluation of the
whole approach in terms of its suitability to deal with real problems
involving uncertainty.

Taking the purpose of the study into account, two main
research questions (MQs) are defined (cf. Table 2). In particular,
MQ1 checks the suitability of Alg. 1, i.e., evaluates if the obtained
optimized BP enactment plans are uniformly distributed over the
solution space and if the algorithm performs well when dealing
with complex problems. Since Alg. 1 is an initial step of the current
approach, the quality of its results influences the quality of the
complete approach. For this, MQ1 is divided in two additional
research questions (AQs): (1) AQ1 checks whether Alg. 1 finds solu-
tions within the different regions in which the solution space is
divided and (2) AQ2 evaluates if Alg. 1 behaves successfully (i.e.,
finds a uniformly distributed set of solutions) when solving prob-
lems of different complexity. In addition, MQ2 assesses if the cur-
rent approach can be useful to deal with real problems. For this,
MQ2 is divided into two additional questions: (1) AQ3 checks
whether the solutions which are obtained by our approach
improves the actual solutions which are manually obtained by
the domain expert for the real scenario in terms of their objective
functions, and (2) AQ4 evaluates the generated configurable BP
models in terms of its robustness and flexibility against the input
uncertainty, which is important in order to avoid replanning.

6.2. Design

The object of study is the method which is proposed for generat-
ing optimized configurable BP models from SDeclare specifications.
For this, two different designs are carried out in this case study.

1. An embedded design concerning Algorithm 1. Particularly, this
first design considers one analysis unit: the generation of opti-
mized BP enactment plans through solving MO-COPs. In this
design, for addressing MQ1 (i.e., AQ1 and AQ2), a set of different
non-stochastic SDeclare models are randomly generated lead-
ing to different complexities of the MO-COPs which have to
be solved. Note that stochastic variables are not considered in
this design.
24 Note that one of the goals of Algorithm 1 consists of obtaining an uniformly
distributed set of solutions.
2. A holistic design which considers the overall proposal as a
whole. Unlike in the embedded design, for addressing MQ2
(i.e., AQ3 and AQ4), stochastic variables are considered in this
design for the appointment time of the clients and for the avail-
ability of resources. For dealing with such variables, the sam-
pling step is configured to generate 30 different samples (cf.
Definition 15) for each SDeclare model. This way, the non-sto-
chastic SDeclare models (cf. Definition 16) are created in such
a way that the stochastic properties of the source SDeclare
model (i.e., the appointment times and the resource availabili-
ties) are fixed by considering samples which are randomly gen-
erated taking the PMFs about such properties into account.
Here, real data which are obtained from a log is considered
for generating the input SDeclare models.25

For both designs, Algorithm 1 considers dividing the solution
space in 4 regions rx (rx 2 fr1; r2; r3; r4g) and the constraint-based
search Algorithm 2 is run until a 5-minutes CPU TIME LIMIT is
reached (cf. Algorithms 2 and 3), which is a reasonable amount
of time for this business. It is run on a Intel(R) Xeon(R) CPU
E5530, 2.40 GHz, 8 GB memory, running Debian 6.0.3. In order to
solve the constraint-based problems, the developed algorithms
have been integrated into the Comet system [25]. After the appli-
cation of both the embedded and the holistic designs, the gener-
ated information (i.e., optimized BP enactment plans and
configurable BP models respectively) is analyzed to answer the
research questions (cf. Table 2).

For the embedded design, the data described in Table 3 is quan-
tified (cf. Example 20) for each SDeclare model which is
considered.

Example 20. Fig. 14 depicts the set of solutions which are found
during the search process for a specific problem. As can be seen,
Algorithm 1 divides the solution space in 4 regions. In order to
state the limits of each region (i.e., minWT;MaxWT;minP and
(2) the booked services of each client (i.e., S), (3) the appointment time of each client
(i.e., T), and (4) the resource availability of each day (i.e., AvRes). In addition, the
manager of the beauty salon logged some stochastic properties related to T and to
AvRes through PMFs.



MaxP), the solutions which are found in the first step of Algorithm
1 (cf. Algorithm 2) are used (depicted by squares in Fig. 14).

In this example, as only one problem is considered,
%SFr1 ¼ %SFr2 ¼ %SFr3 ¼ 100% since at least one solution is found
within r1; r2 and r3, and %SFr4 ¼ 0%. As stated in Algorithm 3,
since a solution is found in r1 and it dominates r4; r4 is not
explored. Note that the solutions which are depicted within r4
were obtained in the first step.

Within the overall solution space, 22 different solutions are
found. Of these 22 solutions, 9 are Pareto optimized while 13 are
dominated (cf. Definition 11). From the 9 Pareto optimized
solutions, 2 solutions belong to r1, 4 to r2 and 3 to r3, which
means that %PSr1 ¼ 22:2%;%PSr2 ¼ 44:4% and %PSr3 ¼ 33:3%. As
r4 is not solved, i.e.,%PSr4 ¼ 0%.

For the holistic design, the data described in Table 4 is quanti-
fied (cf. Example 21) for the different non-stochastic SDeclare
models which is generated for each considered SDeclare model.
In order to measure Flex;MaxRob and minRob, all plans which are
generated for each non-stochastic SDeclare model are kept, i.e.,
the ‘‘all plans’’ policy is applied.
Table 7
Quantified variables for the second experiment.

N NS minWT MaxWT minP MaxP WTðmÞ P

½8;12� ½1;1:4� 0.3 26.3 210 1501 7.1
½8;12� ð1:4;1:8� 0.1 31.0 305 1561 10.1
½8;12� ð1:8;2:2� 3.2 36.5 396 1492 9.9
½13;17� ½1;1:4� 3.1 51.6 364 1690 12.2
½13;17� ð1:4;1:8� 5.8 59.3 419 1632 18.5
½13;17� ð1:8;2:2� 5.1 63.2 538 1681 19.0
½18;22� ½1;1:4� 6.0 63.1 515 1877 24.4
½18;22� ð1:4;1:8� 7.3 60.7 638 1838 21.5
½18;22� ð1:8;2:2� 8.7 69.2 801 1845 30.8 1

Table 5
Quantified variables for the first experiment (1).

Problem Unconstrained Region 1

N NS minWT MaxWT minP MaxP %SFr1 WTr1(m) Pr1(€) NAc

10 1 0.1 29.0 273.3 660.0 74.2 14.3 479.0 90
10 1.5 1.0 31.5 350.5 793.4 63.8 15.2 491.0 98
10 2 2.1 36.3 492.7 956.3 67.0 17.6 615.2 145
15 1 3.0 32.4 360.3 782.0 70.5 15.8 515.0 116
15 1.5 9.7 43.4 538.4 891.5 61.4 22.3 698.4 154
15 2 8.0 49.6 741.8 1092.1 64.9 24.2 918.4 179
20 1 15.5 56.3 405.6 859.1 72.6 29.6 625.0 150
20 1.5 17.8 59.5 715.6 1108.0 59.9 30.9 859.7 172
20 2 16.5 59.4 950.6 1252.8 45.2 30.1 1105.2 196

Table 6
Quantified variables for the first experiment (2).

Problem Region 3

N NS %SFr3 WTr3(m) Pr3(€) NActsr3 %PSr3 SAd

10 1 100.0 17.0 340.6 79.5 49.3 1.1
10 1.5 100.0 14.5 365.5 80.1 45.4 0.9
10 2 97.0 15.8 511.3 109.7 42.4 1.4
15 1 100.0 15.1 394.2 83.4 45.3 1.1
15 1.5 96.7 22.1 566.3 129.1 50.1 0.7
15 2 100.0 21.5 735.0 162.0 44.9 0.9
20 1 95.0 26.3 498.7 99.9 46.6 0.8
20 1.5 96.2 27.6 725.9 160.4 46.4 0.7
20 2 100.0 28.4 997.2 191.8 39.1 0.6
Example 21. Fig. 15 shows the set of solutions which are obtained
when solving a specific problem related to the beauty salon
scenario. As can be seen, many Pareto optimized solutions (i.e.,
squares in Fig. 15) are obtained since the problem is solved several
times because of the uncertainty variables (i.e., different samples
are generated and solved, cf. Section 4.2.1). The maximum and
minimum values (i.e., minWT=3, MaxWT=18, minP=350 and
MaxP=730) as well as their average values (i.e., WT=10.3 and
P=601) are depicted in each axis.

In addition, the real execution plan is depicted by a circle
in Fig. 15. The difference between WT (P) and WT ¼ 14:8
(P ¼ 515) in the real execution plan is equal to DWT ¼ 4:5
(DP ¼ 86). Therefore, applying the proposed approach, the
waiting time has been reduced (i.e., %DWT ¼ 30:4%) in average
and the profit has been incremented (i.e., %DP ¼ 16:7%) in
average.

Finally, as depicted, the real enactment plan is dominated by
some Pareto optimized solutions (cf., arrows in Fig. 15) which
means that solutions which improve both objective functions are
found. Therefore, as only one problem is considered in this
example, %Dominated ¼ 100%.
(€) %DWT %DP %Dominated Flex minRob MaxRob

574.2 �26.6 38.3 100 100.0 22.2 44.4
681.6 �29.3 32.5 100 100.0 16.7 38.9
805.6 �36.8 20.0 100 95.6 22.2 27.8
721.8 �31.2 29.7 100 100.0 25.0 41.7
905.0 �27.7 21.8 100 95.6 16.7 33.3
984.3 �29.4 16.4 100 95.6 16.7 20.8
851.2 �32.4 21.7 100 88.9 16.7 30.0
969.5 �36.8 16.1 100 95.6 13.3 23.3
252.4 �41.3 8.9 100 83.3 13.3 16.7

Region 2

tsr1 %PSr1 SAddr1 %SFr2 WTr2(m) Pr2(€) NActsr2 %PSr2 SAddr2

.1 10.0 2.5 100.0 19.6 502.4 118.6 38.2 2.7

.3 9.2 1.5 100.0 26.2 517.4 128.4 43.5 1.9

.6 11.5 1.8 100.0 26.9 694.8 157.5 44.0 2.2

.9 11.1 2.1 100.0 29.6 521.0 130.0 42.1 2.6

.8 9.6 1.4 100.0 34.5 712.4 166.0 39.6 1.8

.3 9.5 0.9 96.7 39.7 982.4 181.7 42.3 1.4

.5 10.4 1.2 100.0 39.0 621.5 139.5 40.8 1.2

.1 10.5 0.6 96.2 42.9 902.8 180.6 39.1 0.9

.0 8.9 1.0 96.2 49.0 1193.6 201.1 47.9 1.1

Region 4

dr3 %SFr4 WTr4(m) Pr4(€) NActsr4 %PSr4 SAddr4

25.8 19.1 413.2 86.6 2.5 1.5
36.2 25.0 451.1 89.0 1.9 1.4
30.1 24.6 515.2 115.2 2.1 1.4
29.5 27.7 435.0 89.3 1.5 1.3
37.0 35.4 610.4 138.9 3.6 0.9
35.1 36.1 779.7 163.6 3.3 1.0
27.4 31.5 525.4 115.3 2.2 0.9
39.1 40.7 775.9 168.7 4.0 1.1
52.8 43.4 1004.5 292.5 4.1 0.8



6.3. Case selection

For this case study, the beauty salon problem is studied. We
consider this is a good and suitable case since it fulfills the follow-
ing selection criteria: (1) it has been created for an actual busi-
ness, (2) the business has grown up and now it has scheduling
problems (i.e., involves resource allocation, complex constraints
and multi-objective optimization), and (3) the problem is subject
to uncertainty, and such uncertainty can be measured, i.e., the
manager can detect the uncertainty of the scenario which can be
manually specified in the SDeclare models.

6.4. Case study procedure

The execution of the study is planned as follows.

1. The business is selected according to the selection criteria.
2. The selected business is modeled as a SDeclare model by the

business analyst.
3. We proceed differently depending on the case design we are

carrying out:
� In the case of the embedded design, different SDeclare mod-

els are randomly generated by varying the data related to
the beauty salon problem. Therefore, each generated model
includes the same activities, relations and resources, but dif-
fers in the number of clients (N), their booked services (S),
and their appointment times (T). Considering the informa-
tion which is provided by the manager of the salon (i.e.,
there are normally between 10 and 20 clients per day and
a client typically books one or two services) we consider val-
ues {1, 1.5, 2} for the average number of booked services of
the clients (i.e., NS) and the values {10, 15, 20} for the num-
ber of clients (i.e., N). Based on this information, to average
the results over a collection of randomly generated SDeclare
models, 30 data instances are randomly generated for each
pair <N;NS> by varying S and T.26

� In the case of the holistic design, we have extended the
model of Fig. 12 to reflect the reality better, i.e., the real
model includes 21 different services and 7 resources. In
addition, some services are related to each other to prevent
non-sense executions, e.g., to avoid performing the cleaning
nails service after the painting nails service. Furthermore,
the number of services per client is limited to 4.27

As mentioned, this case design considers real data which is
obtained from the log of the beauty salon. For this, the staff
of the beauty salon manually logged data for a period of 90
days. In particular, for each day they logged: (1) the number
of clients (i.e., N), (2) their booked services (i.e., S), (3) their
appointment times (i.e., T), and (4) the resource availability
of each day (AvRes). In turn, the manager of the beauty salon
provided some stochastic variables related to T (i.e., some
unpunctual clients) and to AvRes (i.e., staff who probably
become unavailable during the day). As stated in Section 5,
these stochastic variables were defined with flat PMFs (cf. Sec-
tion 4.1.3). Therefore, for each day, the same SDeclare model is
considered (i.e., they have the same activities, relations and
estimates) but each day differs in N; S; T;AvRes and the associ-
ated stochastic variables (i.e., problem data).28

These problems are grouped considering N and the average
26 The set of problems which are used for the empirical evaluation is available at
http://regula.lsi.us.es/MOPlanner/ObjectsBeautySalon.zip.

27 The full model of the beauty salon can be found at http://regula.lsi.us.es/
MOPlanner/BeautySalonModel.zip.

28 The set of data logged which is used for this experiment is available at http://
regula.lsi.us.es/MOPlanner/ObjectsBeautySalonReal.zip.
number of booked services (i.e., NS ¼jSj=N) in order to enable
the comparison with the embedded design. For this, N is
divided into three ranges ½8;12�; ½13;17� and ½18;22�, and NS
is also divided into three ranges, i.e., ½1;1:4�; ð1:4;1:8�;
ð1:8;2:2�.

4. After that, the optimized BP enactment plans and the configura-
ble BP models are obtained for the embedded and the holistic
design respectively by applying our proposal.

5. All the relevant information is collected following the collection
plan.

6. Finally, the analysis and the interpretation of the collected data
is conducted and the validity of the case study procedure is
studied.

6.5. Data collection

Different data collection plans are conducted depending on the
case study design.

1. In the embedded design, for each pair <N;NS>, the data related
to the quantified variables (cf. Table 3) is collected in three
phases while generating the optimized BP enactment plans
from the SDeclare models. Such phases are detailed as follows.
(1) After the initial searches are performed (i.e., Algorithm 2 is
executed, the solution space is divided into four regions, and
the values of the variables minWT;MaxWT;minP and MaxP are
recorded). (2) After such division, r1 is the first region to be
solved (note that, as mentioned, r4 is dominated by r1, cf. Sec-
tion 4.2.4 and Example 20). Then, the data related to
%SFr1;WTr1; Pr1;NActsr1;%PSr1, and SAddr1 is stored. (3) Finally,
r2 and r3 are solved. In the case that no solution is found in
r1; r4 is also solved. Similarly to the previous phase
%SFrx;WTrx; Prx;NActsrx;%PSrx, and SAddrx are recorded for such
regions. Tables 5 and 6 show the values related to all the quan-
tified variables which are involved in the complete data collec-
tion plan.

2. In the holistic design, for each pair <N;NS>, once the configura-
ble BP model is generated, the data related to the quantified
variables (cf. Table 4) is recorded, i.e., minWT;MaxWT;
minP;MaxP;WT; P;%DWT;%DP;%Dominated; Flex;minRob, and
MaxRob. The aforementioned values are shown in Table 7.

6.6. Analysis and interpretation

The data which is collected is analyzed to answer the research
questions and to draw conclusions.

In order to address question MQ1, sub-questions AQ1 and AQ2
need to be answered (cf. Tables 5 and 6). Regarding the problems
which are solved within each region (i.e., columns %SFrx), %SFr1

is lower than both %SFr2 and %SFr3 since r1 is the most constrained
region. In turn, the low value for %SFr4 can be explained by the fact
that solutions are not searched in r4 in the case that at least one
solution is found in r1. In addition, as the complexity of the prob-
lem increases (i.e., N and NS increase), %SFr1 decreases and there-
fore, %SFr4 increases. However, %SFr2 and %SFr3 keep similar
values and close to 100%, which means that at least one solution
can be found in r2 and r3 regardless of the complexity of the prob-
lems. Therefore, AQ1 can be answered as true as solutions can be
found in all regions.

Furthermore, some differences can be observed when analyzing
the objective function values (i.e., columns WT and P). As expected,
as the complexity of the problems increases, the value of P
increases since more services are included in the generated enact-
ment plans. Moreover, with increasing complexity of the problem
the value of WT increases as well since the clients are subject to
more delays. Note that these columns are also directly dependent

http://regula.lsi.us.es/MOPlanner/ObjectsBeautySalon.zip
http://regula.lsi.us.es/MOPlanner/BeautySalonModel.zip
http://regula.lsi.us.es/MOPlanner/BeautySalonModel.zip
http://regula.lsi.us.es/MOPlanner/ObjectsBeautySalonReal.zip
http://regula.lsi.us.es/MOPlanner/ObjectsBeautySalonReal.zip


on the number of activities of the plan (cf. columns NActs), i.e.,
when NActs increases, P and WT increase too. In general, r1 and
r4 include the most balanced solutions according to the values of
both objective functions, while the solutions with the best values
for P and WT belong to r2 and r3 respectively. This distribution
is kept independently of the complexity of the problem. Moreover,
for all problems Pareto optimized solutions were obtained (cf. col-
umns %PSrx), which means that a representative Pareto front can
be depicted. However, r4 contributes less to the Pareto front since
most of the solutions which were found within r4 are dominated
by solutions found within r2 or r3. In turn, %PSr1 also presents
low values since r1 is the hardest region to be solved (i.e., the most
constrained). Furthermore, in all regions %PSrx seems to be inde-
pendent of the complexity of the problem. Therefore, although
the time spent by Alg. 1 is only based on the TIME LIMIT constant,
it behaves as intended against all the different complexities (i.e.,
%SFr2;%SFr3 and columns %PSrx are independent on the complexity
of the problems, while WTrx and Prx values are directly dependent
on the complexity of the problems), and hence, AQ2 can be
answered as true.

Finally, for each problem, a relation among the number of addi-
tional services per client (cf. columns SAdd), P and WT exists. Spe-
cifically, as the number of services which are included increases,
the profit also increases to the detriment of the waiting time. How-
ever, as the problems become more complex, SAdd decreases in all
the regions since it is more complicated to include more services
since more clients and services have to be considered. Considering
these values and that AQ1 and AQ2 are answered as true, we can
conclude that MQ1 is also true, i.e., the proposed algorithm is suit-
able for generating a distributed set of Pareto optimized solutions
starting from a SDeclare model.

In order to address question MQ2, sub-questions AQ3 and AQ4
need to be answered (cf. Table 7). As can be seen, the column WT
shows that the solutions provided by our approach are shifted to
the lowest part of the range [minWT, MaxWT]. This means that
more solutions were found in the region related to that part than
in the other regions. In turn, the values of P are more balanced
though still being within the lowest part of the range [minP, MaxP].
To overcome this issue, the solution space can be divided in more
regions in order to get more balanced solutions. Moreover, %DWT
increases as the complexity of the problems increases, which high-
lights the benefits of using the proposed approach in real cases. The
opposite happens with %DP since the more complex the problem
is, the fewer free time slots are available to offer more services.
Nonetheless, in all the cases the values %DWT and %DP show that
our approach improves the mean of both objective functions com-
pared to plans which were manually created (i.e., WT decreases
and P increases). Moreover, the solutions which are provided by
our approach dominate the associated real plan in all the cases
(cf. column %Dominated). That means that, regarding these objec-
tive functions, Alg. 1 provides at least one solution which improves
both profit and waiting time when compared with the real solu-
tions. Therefore, AQ3 is answered as true.

Regarding the flexibility of the generated configurable BP mod-
els (cf. column Flex), in most cases it achieves 100%, which means
that the uncertainty which was specified by the manager is totally
covered by the generated models. In fact, the value of Flex is over
83.3% even in the most complex problem, which represents a very
high degree of flexibility. Regarding the robustness, as the com-
plexity of the problems increases, both upper and lower limits of
the robustness decrease (cf. columns minRob and MaxRob). This
is due to the fact that the more activities exist in the plan, the less
slack appears. However, these columns present rather good values
since a value of 13.3% of robustness means that the related plan
will avoid replanning in this 13.3% of cases. Then, AQ4 and
consequently MQ2 are answered as true.
Comparing both embedded and holistic designs, we can say that
using both randomly generated data and real data from a log a sim-
ilar behavior is observed in the bounds of the objective function
values (cf. columns minWT, MaxWT, minP and MaxP in Tables 5
and 7). However, the upper bounds in the holistic design (cf. col-
umns MaxWT and MaxP in Table 7) tend to be slightly different
since the SDeclare model has been extended in this experiment
(i.e., more services, more resources and uncertainty are included).
The size of the ranges of the waiting time (i.e., differences between
columns minWT and MaxWT) increases as the average number of
services per client increases (i.e., column NS). Such dependency is
due to the fact that when NS is high, including additional services
involves more complex schedules and therefore, it increases the
waiting time more than when NS is low. However, the opposite
happens with the size of the ranges of the profit. This is
the expected behavior since the simpler the problems are (i.e.,
the lower values of NS), the more chances to include services exist.
Therefore, the approach behaves similarly against both sources of
problems.

6.7. Validity evaluation

This section evaluates if the results are valid and not biased.
Three types of validity are addressed in this section: construct,
internal and external.

Firstly, with relation to the construct validity, it has to be
addressed in how far the measures which have been used are
appropriate to address the research questions which have been
planned. Three different threats are identified related to the acqui-
sition of the data. The first threat is related to how the problems
have been randomly generated in the embedded design. In this
design, unsolvable problems were not considered in order to eval-
uate the algorithm better. This is checked considering a simple
rule: the generated appointment time of a client plus the time
which her booked services consume cannot overpass the closing
time of the beauty salon. Due to the parallelism which may exist
because of the temporal constraints (i.e., a client can be served
by different employees at the same time), this rule leaves out some
problems which might be solvable. To mitigate this threat, a more
elaborated algorithm can be performed to avoid eliminating prob-
lems which may be solvable. Secondly, the complexity of the prob-
lems which are generated in the embedded design is controlled
only by varying the number of clients and her booked services.
Although we consider that the beauty salon is a suitable business
due to its complexity, different ways of controlling this complexity
can be applied to mitigate this threat, e.g., by changing the type of
constraints. The third threat concerns the duration of the logged
data in the holistic design (90 days). To the best of our knowledge
there is no metric which states how long data must be logged to
obtain a meaningful log. To mitigate this threat, longer durations
can be considered to get more data and therefore to increase the
probability of finding situations where the algorithm does not per-
form well. Finally, in both designs some values have been fixed in
the algorithms, i.e., the number of regions into which the solution
space is divided (fixed to 4) and the number of samples which are
generated in the holistic design (fixed to 30). Increasing these val-
ues would increase the accuracy of the proposal.

Regarding the internal validity, the main threat is that the
obtained results related to flexibility and robustness concerns
could be biased since their interpretation can be subjective since
it depends on the business which is analyzed. To mitigate it, other
business experts can be consulted in order to state what is a suc-
cessful value for flexibility and robustness.

Finally, the external validity considers in how far the obtained
results could be generalized to any business. This generalization
is threatened by the fact that the beauty salon was the unique



scenario which was studied. Other scenarios can be considered to
replicate this study in order to mitigate this threat.
29 To support the graphical specification of SDeclare models the existing Declare
tool (available at http://www.win.tue.nl/declare/) has been adapted for allowing
resource specification, temporal and data constraints, as well as stochastic estimates.
7. Discussion and limitations

The current approach allows modeling the considered problems
in an easy way, since the considered declarative specifications (i.e.,
an extension of the Declare language [63]) are based on high-level
constraints. Moreover, with the proposed extension, the expres-
siveness of the process designs is enhanced compared to
[6,43,44] (e.g., stochastic values for modeling the uncertainty of
the scenario can be included), and hence more realistic problems
can be managed, e.g., the Beauty Salon detailed in Section 5. Such
scenario has been selected since: (1) it faces a complex problem
which goes far beyond a toy problem since it presents several chal-
lenges that can also be found in other domains (i.e., it highly
depends on the manager’s skill to take decisions, uncertainty is
inherit to the business and the declarative language ameliorate it
specification), (2) unlike more common scenarios, this kind of busi-
ness has not been widely supported by previous research and thus,
we considered it as an innovative application, and (3) in that sce-
nario we had access to the data and therefore, the analyst was able
to collect data for a long period of time for the evaluation.
Therefore, our approach is intended to reduce the human work
in scenarios with high variability in various ways:

� Since declarative BP model specifications allow their users to
specify what has to be done instead of how [63] and the tacit
nature of human knowledge is often an obstacle to eliciting
accurate process models [29], declarative specifications facili-
tate the human work which is involved in the process design
and analysis phase compared to imperative specifications. Spe-
cifically, using a declarative specification, the user only has to
define the constraints of her models without being aware of
how they are fulfilled. Therefore, several ways of executing such
declarative model exist. In turn, imperative specifications entail
more complexity since all the possible execution alternatives
need to be specified. Such complexity is even higher when a
high flexibility is required, in the presence of input uncertainty,
or when the resources need to be allocated in a suitable way
considering the optimization of certain objective functions.
� Typically, executing a declarative model (which presents high

variability) usually entails bigger effort for the involved users
compared to executing an imperative model [66,79] since
deciding how to exactly execute the process is difficult for the
user and this can lead to bad executions (i.e., very bad values
for some objective functions). For this, our approach extracts a
desirable part of the variability of a declarative model through
the generation of multi-objective optimized enactment plans
while discarding bad execution alternatives (according to the
optimization of some objective functions as well as high flexi-
bility and robustness). This way, the proposed approach facili-
tates the human work which is involved in the process
enactment phase.
� Such optimized plans are then merged into a configurable BP

model which supports the analysts in the management of these
plans and helps the analysts in understanding what the differ-
ent plans share, what their differences are, and why and how
these differences occur [71].

Since these kind of problems are NP-complete, getting optimal
solutions cannot be ensured in general (this is the reason why
we use the term optimized plans instead of optimal plans). This
way, the quality of the solution which is calculated depends on
the time limit which is establish in the search algorithm. Note that,
as mentioned, efficient filtering rules have been developed. Despite
the NP-complexity of the considered problems, such filtering rules
have demonstrated their effectiveness for improving performance
in previous works [6,7,9].

In addition, to further improve the quality of the resulting
execution alternatives regarding the uncertainty of the scenario,
flexibility and robustness concerns are considered. Unlike
[3,18,20,34,37,79,86,89], the current work proposes quantitative
definitions in order to measure how the uncertainty of the scenario
is supported by each generated enactment plan. Although some of
these proposals [3,86,89] do not apply these terms to BPs, they
were considered when developing the definitions of both flexibility
and robustness which are provided in this paper. Therefore, execu-
tion alternatives that are not desirable for the business regarding
both the quality and a set of given objective functions are avoided.

Furthermore, in contrast to related proposals [29,47,53,75,94],
not only a single enactment plan but a set of optimized enactment
plans are considered when generating the imperative model. This
way, the flexibility of the resulting imperative model is not unnec-
essarily restricted.

The optimized plans which are included in the generated con-
figurable BP model can be used, as discussed in previous works,
for (1) assisting users during the process execution to optimize
performance through recommendations [8,9], (2) providing predic-
tions, e.g., predict the completion time of all the running instances
[7] or (3) performing simulations, e.g., what-if scenarios [7].

Moreover, the automatic generation of optimized configurable
BP model can deal with complex and real problems in a simple
way as demonstrated in Section 6. Therefore, a wide study of sev-
eral aspects can be carried out by simulation. Nonetheless, an eval-
uation with more complex scenarios is required to improve the
generalizability of the results and is planned for future work.

However, our approach also presents a few limitations. In gen-
eral, different resource patterns can be taken into account. In the
proposed approach, motivated by the considered scenarios, we
consider that a resource can only perform an activity at the same
time (i.e., the same resource cannot be used to perform more than
one activity in parallel) and that activities are executed without
preemption. The business analysts must deal with a new language
for the constraint-based specification of BPs, thus a period of train-
ing is required to let them become familiar with the proposed lan-
guage, i.e., SDeclare.29 Furthermore, the optimized configurable BP
model is generated by considering estimated values for the number
of instances to execute, and hence our proposal is only appropriate
for processes in which this number is known a priori. As a real exam-
ple, the beauty salon problem is detailed and an extensive empirical
evaluation is carried out with the goal of supporting the contribu-
tions of our proposal. Some of our previous works also dealt with
scenarios in which the number of process instances to be executed
in a specific timeframe is known a priori (e.g., [7] describes a travel
agency problem and [10] considers computer support for clinical
guidelines as an application example). In a related way, activity attri-
butes and resource availability need to be estimated. For this, our
approach allows for including uncertainty regarding these attributes
through well-specified functions, i.e., the user has to define a PMF for
each uncertain variable. Unlike [57], our approach allows for assign-
ing any PMF to any stochastic attribute (i.e., the PMFs are not
restricted to time attributes). Although PMFs allow us to face the
uncertainty of the considered scenario (i.e., the beauty salon), other
approaches allow to specify the uncertainty through poorly-speci-
fied functions (e.g., using fuzzy techniques) [24,91] which may be
required for dealing with scenarios having different characteristics.



Although the stochastic feature of SDeclare facilitates to specify the
estimates, the problem complexity increases as the number of sto-
chastic variables increases. However, if the actual values deviate
from the estimated values during the execution of the model, P&S
techniques can be applied to replan the activities at runtime by con-
sidering the actual values of the estimates, as discussed in a previous
work [7].

In addition, motivated by the requirements of the considered
scenarios, the data perspective which is considered in the current
approach mainly includes data constraints which can be applied
to input data and activity relations. However, more advanced fea-
tures like dynamic data or data-flow perspective have been left out
since they are not part of the design requirements of the consid-
ered scenarios and will be addressed in future work when applying
our proposal to BPs with different characteristics.

8. Conclusions and future work

In this work, a method for generating optimized configurable BP
models from declarative specifications is proposed to facilitate the
human work which is involved in the process design & analysis
phase and to improve the resulting imperative BP models in sce-
narios subject to uncertainty. For this, a declarative specification
is used as starting point. Typically, such specifications enable dif-
ferent ways of executing it while reaching certain objectives. For
this, the variability of the initial declarative specification is reduced
to a desirable variability (i.e., those variants which present worst
values for the objective functions or which do not contribute to
the flexibility are removed) through the generation of multi-
objective optimized enactment plans. This process is done
automatically using a constraint-based approach for planning
and scheduling the process activities. For managing uncertainty,
flexibility and robustness concerns are considered as key aspects
of the current approach. From such set of multi-objective
optimized enactment plans, those alternatives which are too strict
or which only withstand an extent of the uncertainty which is
already withstood by another alternative are discarded. For
managing such uncertainty, flexibility and robustness concerns
are considered as key aspects of the current approach. Typically
the enactment plans which are kept after such filtering process
share many commonalities, and hence, a configurable BP model
can be created by merging such plans. The configurable BP models
which are generated support the analysts managing the set of
optimized plans and understanding what the different plans share,
what their differences are, and why and how these differences
occur. Note that although the proposed approach is focused on
the control-flow and the resource perspectives, the data perspec-
tive is also partially addressed.

The proposed approach is applied to a real scenario and is val-
idated through the analysis of different performance measures
related to such real scenario. Results indicate that, despite the NP
complexity of the considered problems, the plans which are gener-
ated through the proposed approach improve the actual results
provided by the business in most cases and, in addition, the gener-
ated configurable BP models support most of the variability
required by the manager of the business.

Regarding previous related work, on the one hand, we are not
aware of any other approach for generating configurable BP models
from declarative specifications. Although there exist some propos-
als which could be extended in such direction, most of such
approaches neither consider the optimization of multiple objective
functions nor the resource perspective. In addition, unlike the pro-
posed approach, none of such approaches considers the uncer-
tainty of the scenario through stochastic attributes. On the other
hand, although several approaches exist for dealing with flexibility
issues, in this paper as a novel contribution, we provide
quantitative definitions for both robustness and flexibility which
allow us to measure how the uncertainty of a real scenario is sup-
ported by an enactment plan and by a configurable BP model
respectively.

As for future work, we will explore various constraint-based
solving techniques as well as different multi-objective optimiza-
tion techniques like stochastic algorithms. Additionally, we intend
to consider further resource patterns. To conclude, an extended
empirical study is intended to be carried out with the goal of mea-
suring the impact of the robustness and flexibility on the process
performance in different real businesses with more variety of
activities, resources and sources of uncertainty, e.g., scenarios from
information processing or manufacturing processes. For this, the
tool related to the proposed approach still needs some refactoring
to make it ready to use by others and thus, to make it publicly
available.
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